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Abstract

Background: Deep Phenotyping is the precise and comprehensive analysis of

phenotypic features in which the individual components of the phenotype are Invited Referees
observed and described. In UK mental health clinical practice, most clinically 1 2
relevant information is recorded as free text in the Electronic Health Record,

and offers a granularity of information beyond what is expressed in most v v
medical knowledge bases. The SNOMED CT nomenclature potentially offers version 2 report report
the means to model such information at scale, yet given a sufficiently large published

body of clinical text collected over many years, it is difficult to identify the 08 May 2018

language that clinicians favour to express concepts.

Methods: By utilising a large corpus of healthcare data, we sought to make use version 1 ? ?
of semantic modelling and clustering techniques to represent the relationship g:’bF":EZ% . report report
between the clinical vocabulary of internationally recognised SMI symptoms

and the preferred language used by clinicians within a care setting. We explore

how such models can be used for discovering novel vocabulary relevant to the 1 Julian Hong , Duke University School

task of phenotyping Serious Mental lliness (SMI) with only a small amount of

prior knowledge. of Medicine, USA

Results: 20 403 terms were derived and curated via a two stage methodology. Jessica Tenenbaum "2, Duke

The list was reduced to 557 putative concepts based on eliminating redundant University School of Medicine, USA
information content. These were then organised into 9 distinct categories

pertaining to different aspects of psychiatric assessment. 235 concepts were 2 Karin Verspoor "2/, The University of
found to be expressions of putative clinical significance. Of these, 53 were Melbourne, Australia

identified having novel synonymy with existing SNOMED CT concepts. 106 had The University of Melbourne, Australia
no mapping to SNOMED CT.

Conclusions: We demonstrate a scalable approach to discovering new
concepts of SMI symptomatology based on real-world clinical observation.
Such approaches may offer the opportunity to consider broader manifestations Comments (0)
of SMI symptomatology than is typically assessed via current diagnostic

frameworks, and create the potential for enhancing nomenclatures such as

SNOMED CT based on real-world expressions.
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;77573 Amendments from Version 1

This revision includes amendments that we hope address the
issues raised by the peer review process. A response to each
comment can be found in the ‘response to reviewer’ section that
accompanies the article, but the changes can be summarised as
follows:

1. Improvements to the clarity of the methods section,
addressing some comprehension issues that were
raised such as consistency of terminology and the
description of techniques employed

2. An expanded rationale for several decisions that were
made in the development of the approach, against
alternatives that were available

3. The citation of additional relevant literature for this
domain, such as work on automated term recognition
and existing work on symptom grouping

4. Some additional results regarding the counts of
unigrams, bigrams and trigrams

5. Areference to a publicly available code repository
that demonstrates the approach (since sharing the
underlying data is not possible)

6. Several minor grammatical errors

We offer our gratitude to both sets of reviewers for their time
and valuable assistance.

See referee reports

Introduction

The dramatic decrease of genetic sequencing costs, coupled
with the growth of our understanding of the molecular basis
of diseases, has led to the identification of increasingly granu-
lar subsets of disease populations that were once thought of as
homogenous groups. As of 2010, the molecular basis for nearly
4 000 Mendelian disorders has been discovered', subsequently
leading to the development of around 2 000 clinical genetic
tests’. The resulting ‘precision medicine’ paradigm has been
touted as the logical evolution of evidence-based medicine.

Precision medicine has arisen in response to the fact that the
real-world application of many treatments have a lower efficacy
and a differential safety profile compared to clinical trials,
most likely due to genetic and environmental differences in the
disease population. Precision medicine seeks to obtain deeper
genotypic and phenotypic knowledge of the disease population,
in order to offer tailored care plans with evidence-based out-
comes. Amongst the challenges presented by precision medicine
is the requirement to obtain highly granular phenotypic
knowledge that can adequately explain the variable manifestation
of disease.

To realise the ambitions of precision medicine, large amounts
of phenotypic data are required to provide sufficient statisti-
cal power in tightly defined patient cohorts (so called ‘Deep
Phenotyping’”). Historical clinical data mined from Electronic
Health Record (EHR) systems are frequently employed to meet
the related use case of observational epidemiology. As such, EHRs
are often posited as the means to provide extensive phenotypic
information with a relatively low cost of collection®’.
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In order to standardise knowledge representation of clinically
relevant entities and the relationships between them, phenotyping
from EHRs often employs curated terminology systems, most
commonly SNOMED CT. The use of such resources creates a
common domain language in the clinical setting, theoretically
allowing an unambiguous interpretation of events to be shared
within and between healthcare organisations. The anticipated
value of such a capability has prompted the UK National
Information Board to recommend the adoption of SNOMED CT
across all care settings by 2020°. However, the task of represent-
ing the sprawling and ever-changing landscape of healthcare
in such a fashion has proven complex’~'’. Although a complete
description of the structure and challenges of SNOMED CT
are beyond the scope of this paper, we describe how aspects of
these problems manifest themselves in accordance with the task
of phenotyping serious mental illness (SMI) from a real-world
EHR system.

Phenotyping SMI

The quest for empirically validated criteria for assessing the
symptomatology of mental illness has been a long term goal of
evidence-based psychiatry. SMI is a commonly used umbrella
term to denote the controversial diagnoses of schizophrenia
(encoded in SNOMED as SCTID: 58214004), bipolar disor-
der (SCTID: 13746004), and schizoaffective disorder (SCTID:
68890003). While field trials of DSM-5 have revealed promising
progress in reliably delineating these three conditions in clinical
assessment'', such diagnostic entities continue to have low
clinical utility'*'*. Recent evidence from genome-wide asso-
ciation studies appears to suggest that such disorders share
common genetic loci, further countering the argument that
SMI can be classified into discrete, high level diagnostic units'.
In terms of clinical practice, the presenting symptomatology
of SMI is usually the basis for treatment. This is often
characterised by abnormalities in various mental processes,
which are in turn categorised according to broad groupings of
clinically observable behaviours. For instance, ‘positive symp-
toms’ refer to the presence of behaviours not seen in unaffected
individuals, such as hallucinations, delusional thinking and
disorganised speech. Conversely, ‘negative symptoms’, such as
poverty of speech and social withdrawal refer to the absence
of normal behaviours. Such symptomatology assessments are
organised via an appropriate framework such as Postive and
Negative Symptom Scale'® (PANSS) or Brief Negative Symptom
Scale'’. Accordingly, SNOMED CT includes coverage for many
of these symptoms, generally within the ‘Behaviour finding’
branch (SCTID: 844005).

A qualitying factor regarding the adoption of SNOMED amongst
SMI specialists might therefore require that the list of clinical
‘finding’ entities in SNOMED are sufficiently expansive and
diverse to represent their own experiences during patient inter-
actions. Specifically, this may manifest as two key challenges
for terminology developers.

First, insight must be obtained regarding real-world language
usage such that universally understood medical concepts, encom-
passing hypernomy, synonymy and hyponomy. Similarly, the
abundant use of acronyms in the medical domain means that a
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large percentage of acronyms to have two or more meanings'®,
creating word sense disambiguation problems. As such, signifi-
cant efforts have arisen to supplement these types of knowledge
bases with appropriate real-world synonym usage extracted
from EHR datasets'”. The problem may be considered analo-
gous to difficulties in the recognition, classification and mapping
of technical terminology variants throughout the biomedical
literature, which is known to be an impediment to the construction
of knowledge representation systems (see 20 for a review).

Second, if there is controversy over international consensus in
a particular area of medicine, the use of ‘global’ perspectives
may not be sufficient to meet local reporting/investigatory
requirements. Such issues are particularly pertinent in mental
health where many diseases defy precise definition and biomar-
ker development has yielded few successes’’. More generally,
all medical knowledge bases are incomplete to one degree or
another. The opportunity to utilise large amounts of EHR data to
discover novel observations and relationships arising from
real-world clinical practise must not be overlooked.

Given a sufficiently large corpus of documents, typically writ-
ten by hundreds of clinical staff over several years, it is often
difficult to track the evolution of vocabulary used within the
local EHR setting to describe potentially important clinical
constructs. In previous work, we describe our attempts to extract
fifty well known SMI symptomatology concepts from a large
electronic mental health database resource””, based upon the
contents of such frameworks. During the course of manually
reviewing clinical text, we made two subjective observations
of the documentation resulting from clinician/patient interactions:

e The tendency of clinicians to use non-technical vocabulary
in describing their observations
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» The occasional appearance of highly detailed, novel obser-
vations that do not readily fit into known symptomatology
frameworks

Such observations may feasibly have clinical relevance, for
example, as non-specific symptomatology prodromes”. On
the basis that the modelling of SMI for precision medicine
approaches require the full dimensionality of the disease to be
considered, we sought to explore these observations further.

In this study, we present our efforts to utilise a priori knowl-
edge discovery methods to identify preferences in real-world
language usage that reflect clinically relevant SMI symptoma-
tology within the context of a large mental healthcare provider.
We contrast and compare these patterns with a modern version
of the UK SNOMED CT (v1.33.2), and suggest how such
approaches may offer novel and/or more granular symptom
expressions from patient/clinician interactions when used
to supplement resources such as SNOMED CT, potentially
offering alternatives to classify psychiatric disorders with finer
resolution and greater real-world validity.

Methods

Our general approach for SMI knowledge discovery is com-
posed of several discrete steps. An overview of the workflow
is given in Figure 1.

Corpus creation from the Clinical Record Interactive
Search

The South London and Maudsley NHS Foundation Trust
(SLaM) provides mental health services to 1.2 million resi-
dents over four south London boroughs (Lambeth, South-
wark, Lewisham and Croydon). Since 2007, the Clinical
Record Interactive Search (CRIS)* infrastructure programme
has been operating to offer a pseudonymised and de-identified

-

: Document preprocessing and
Vocabulary Creation

2: Word embedding model
development

3: Clustering and cluster scoring

~

/

4a: Manual curation (n-gram
categorisation and
inter-annotator agreement
scoring)

4b; SNOMED mapping

4c: N-gram frequency analysis

Figure 1. Overview of project workflow.
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research database of SLaM’s EHR system. As the CRIS
resource received ethical approval as a pseudonymised and
de-identified data source by Oxford Research Ethics Committee
(reference 08/H0606/71+5), patient consent was not required for
this study.

11 745 094 clinical documents were collected from the CRIS
database from the period 01/01/2007 - 27/10/2016 on the
basis that the 20 472 associated patients were assigned an SMI
ICD10 code of F20, F25, F30 or F31 at some point during their
care, in accordance with current clinical practice.

Pre-processing and vocabulary creation

Sentences and tokens were extracted from each document
using the English Punkt tokeniser from the NLTK 3.0 suite™.
Each token was converted to lower case. A vocabulary was then
constructed of all 1-gram types in the corpus, supplemented with
frequently occuring bi-grams and tri-grams using the Gensim”
suite and the sampling method proposed by Mikolov et al.”’.
Bi-grams and tri-grams with a minimum frequency of 10
occurrences in the entire corpus were retained, to give a total
vocabulary size of 896 195 terms (617 095 unigrams, 277 490
bigrams, 303 trigrams and 1 307 non-word entities). No further
assumptions about the structure of the data, such as the need
for stemming/lemmatisation, were made.

Building a word embedding model

The distributional hypothesis was first explored by Harris™,
which proposed that, given a sufficiently large body of text,
linguistic units that co-occur in the same context are likely to
have a semantically related meaning. Modelling the distribu-
tion of such units may therefore have value for a wide range of
natural language processing applications. Models of distribu-
tional semantics, including word embeddings, are techniques
that aim to derive models of semantically similar units in a
corpus of text by co-locating them in vector space. In recent
years, the use of the Continuous Bag-of-Words (CBOW)
model proposed by Mikolov et al.”’ has risen to prominence,
owing to its ability to accurately capture semantic relationships
whilst scaling to large corpora of text”’. Recently, the CBOW
model has been used to identify the semantic similarities
between single word entities in biomedical literature and clini-
cal text, suggesting that biomedical literature may serve as
a useful proxy for clinical text, for tasks such as synonym
identification and word sense disambiguation tasks under limited
conditions™.

A full description of the CBOW architecture is discussed in 31.
For brevity, we describe only the key features used in our work
here. The purpose of the architecture is to ’learn’ in an unsu-
pervised manner, a representation of the semantics of different
terms, given an input set of documents. CBOW might be
described as a simple feed forward neural network consisting
of three layers. An input layer X composed of o nodes (where
o is the number of unique terms in a corpus produced from our
above described pre-processing), a hidden layer H of a user
defined size n (usually between 100 and 300), and an output
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layer Y that is also composed of o nodes. Every node in
X is connected to every node in H, and every node in H is
connected to every node in Y . Between each of the layers is
a matrix of weight values; for the X and H layer, an ‘input’
matrix of dimensions o x n (hereafter denoted W); and between
the H and the Y layer, an ‘output’ matrix of dimensions n X o
(denoted W’). The output of training the neural network is
to produce weights in each of these matrices. The weights
learnt in the W matrix might be intuitively described as the
semantic relationships between each term in the vocabulary
as represented in vector space, with semantically similar words
located in closer proximity to each other. Weights in the W’
matrix represent the predictive model from the H to the Y
layer. A training instance is composed of a group of terms,
known as a context. A context can be composed of natural
language structures, such as sentences in a document, or more
complex arrangements, such as a sliding window of terms
(usually between 5 and 10) that move over each token in a
document (potentially ignoring natural grammatical struc-
tures). For a given input term, the input into the nodes on the
hidden layer is the product of each vector index in matrix W
corresponding to each context word and the average vector.
From the H to the Y layer, it is then possible to score each term
using the W' matrix, from which a posterior probability is
obtained for each word in the vocabulary using the softmax
function. The weights in each matrix are then updated using
computationally efficient hierarchical softmax or negative
sampling approaches. Once training is complete, the semantic
similarity of terms is often measured via their cosine distance
between vectors in the W matrix.

Using the Gensim implementation of CBOW and our previ-
ously constructed vocabulary, we trained a word embedding
model of n = 100 over our SMI corpus to produce a vector space
representation of our clinical vocabulary. Due to patient confi-
dentiality, offline access to records was not feasible and so only
a limited number of epochs of training could be performed.
However, due to the relatively narrow/controlled vocabulary
employed in clinical records (compared to normal speech/text)
the range of possible input vectors was narrower than might
otherwise be expected, and even a single epoch of training
appeared to yield meaningful clusters that could be identified
with SMI. As we were primarily intending to identify initial
clusters for validation by clinical experts it was felt that sin-
gle epoch of training, over the 20M clinical records available,
was sufficient.

Vocabulary clustering and cluster scoring

The task of clustering seeks to group similar dataset objects
together in meaningful ways. In unsupervised clustering, the
definition of ‘meaningfulness’ is often subjectively defined
by the human observers. In our task, we sought to identify
clusters of terms derived from our word embedding model that
represent semantically linked components of our clinical
vocabulary, based on the theory that our word embedding
model would cause related symptom concepts to appear close to
each other within the vector space.
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A particular challenge in the development of clustering
algorithms 1is achieving scalability to large datasets. Since
many clustering algorithms make use of the pairwise distance
between n samples (or terms, in our case), the memory require-
ments of such algorithms tend to run in the order of n% One such
algorithm that does not suffer from this limitation is k-means
clustering. k-means clustering is a partitional clustering
algorithm that seeks to assign n samples into a user defined
k clusters by minimising the squared error between each cen-
troid of a cluster and its surrounding points. A global (although
not necessarily optimal) solution is derived when the algorithm
has minimised the sum of squared errors across all k clusters,
subject to some improvement threshold or other stopping
criteria. For all experiments, we used the k-means++ imple-
mentation from the Scikit-Learn framework™ with 8 runs each
time, to control against centroids emerging in local minima.

The key parameter for k-means clustering is the selection of
k. While techniques exist for estimating an appropriate value,
such as silhouette analysis and the ‘elbow method’*, these
utilise pairwise distances between samples, creating substan-
tial technical limitations for large matrices in terms of memory
usage. To overcome this, we opted for a memory efficient
version of the elbow method, involving plotting the minimum
centroid distance for different values of k. The intuition behind
this approach is that every increase in k is likely to result in a
smaller minimum centroid distance in vector space (subject
to a random seed for the algorithm). As k increases, genuine
clusters should be separated by a steady decline in minimum
centroid distance. However, when the slope of the decline
flattens out (i.e. the ‘elbow’ of the curve), assignment of samples
to new clusters is likely to be random).

With the data clustered, we sought to identify one or more
clusters of interest for further examination. To this end, we devised
a simple ‘relevance’ cluster scoring approach based upon prior
knowledge of common SMI symptom concepts. The intuition
behind our approach is that the training of the Word2Vec
model will cause terms that represent ‘known’ concepts of
SMI symptomatology to colocate in close proximity to each
other in vector space, and the clustering approach will place
them in the same cluster, along with other terms that theoreti-
cally relate to these SMI symptomatology concepts. The addi-
tional contents of this cluster may therefore hold terms that
represent concepts of SMI symptomatology undefined by our
team, but in natural use by the wider clinical staff of the SLaM
Trust during the course of their duties. By identifying the
richest cluster(s) in terms of the known SMI symptomatology
lexicon, we sought to drastically reduce the search space of terms
in the corpus to carry forward for human assessment.

We selected 38 internationally recognised symptom concepts
of SMI based upon their expression in SMI frameworks and
on their specificity in clinical use (Table 1), to form the basis of
our scoring algorithm. For instance, we did not select ‘loosen-
ing of associations’, due to the different word sense that the
word ‘associations’ appears in, such as ‘housing associations’,
and organisational references such as ‘Stroke Association’.
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Table 1. Known symptomatology
concepts and Prior Concept
vocabulary matching sequences used
for cluster scoring. An underscore
represents a bigram match.

Prior Concept

SMI symptom  matching character
sequence

aggression aggress

agitation agitat

anhedonia anhedon

apathy apath

affect affect

catalepsy catalep

catatonic cataton

circumstantial

circumstant

concrete concrete
delusional delusion
derailment derail

eye contact eye_contact
echolalia echola
echopraxia echopra
elation elat
euphoria euphor
flight of ideas foi

thought disorder thought_disorder
grandiosity grandios
hallucinations hallucinat
hostility hostil
immobility immobil
insomnia insomn
irritability irritab
coherence coheren
mannerisms mannerism
mutism mute
paranoia paranoi
persecution persecut
motivation motivat
rapport rapport
posturing postur
rigidity rigid
stereotypy stereotyp
stupor stupor
tangential tangenti
thought block thought_block
waxy waxy

Rather, we chose symptoms such as ‘aggression’, ‘apathy’ and
‘agitation’, which are less likely to have different word sense
interpretations in the context of SMI clinical documents.

For each of the 38 concepts, we produced a set of terms consti-
tuting stems and appropriate synonyms/acronyms as described
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in Table 1, in order to produce a set of character sequences
representing existing domain knowledge, or ‘prior concepts’
(hereafter, termed PCs) that could be matched against each
term in each cluster via regular expressions. With this matching
criterion, we scored each cluster based on the number of hits
to derive a cluster/PC count matrix x where x;; represents the
count of the ith PC in the jth cluster. For example, a cluster
containing the 1-gram ‘insomnia’ and ‘insomniac’ would receive
a count of two for the ‘insomni’ PC. For each PC, we then
calculated a vector of the minimum count per concept across all
clusters:

u;=min,ijii, i=1,..,m. (1)
where m is 38 (denoting the number of PCs we describe in
Table 1). Similarly, we generated a vector of maximum count

per PC across all clusters:

vi=max,, X; i=1,...,m 2)
to enable us to rescale the value of each PC/cluster count to
between 0 and 1 into a matrix x:

X, . —Uu,

xij{ = 3)

VvV, —U;
The purpose of rescaling in such a way was to prevent overrep-
resented PCs unduly influencing the overall result (for instance,
a PC with many hits in a cluster would unduly bias the score
towards that concept, whereas we sought a scoring mechanism
that would weigh all input PCs equally, regardless of their
frequency).

Finally, we summed all rescaled PC counts per cluster, and
divided by the total cluster size to provide a score per cluster z
representing the value of the:
m
7’
2,’:1 xij

z, = —— (C))
J
5
where s is a vector of the total count of terms in each cluster. The
purpose of dividing by cluster size was to prevent the tendency
of larger clusters to score higher on account of their size.

To select clusters for further investigation, the robust median
absolute deviation (MAD) statistic was chosen (the distribu-
tion of our cluster scores was non-normal). This precipitated
clusters that were the most valuable, in terms of the breadth
of PC concept hits they contain. We adopted a conservative
approach to cluster selection by choosing clusters that scored
at least six MAD above the median score for further processing,
which is approximately equivalent to four standard deviations
for a normally distributed dataset.

We provide a worked example of this technique in the code
repository that accompanies this paper, using publically available
data.
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Expert curation of symptom concepts, frequency analysis
and SNOMED CT mapping

The contents of the top scoring clusters underwent a two
stage curation process. The first stage was performed by an
informatician, and involved several simple string processing
tasks to filter out uninteresting terms. Such processes
included removal of terms that contained tokenisation failures
(for example, single character non-word tokens such as ‘y’,
‘p’) and other constructs that had low information content,
such as terms composed of stop words. A final manual check
followed to reduce the annotator burden required by the clinical
team.

The second, more important, stage was composed of inde-
pendent annotation of the curated concept list by two psychia-
trists, to identify likely synonyms and new symptomatology
based on their clinical experience. Each concept was assigned
to one of the below 8 ‘substantive’ categories, or a 9th ‘other’
category. The categories were derived from 34, and the experience
of the team Clinical Psychiatrists.

Appearance/Behaviour Implying a real-time description of
the way a patient appears or behaves (including their interac-
tion with the recording clinician)

Speech Anything implying a description of any vocalisation
(i.e. theoretically a subset of behaviour but restricted to
vocalisations)

Affect/Mood Implying clinician-observed mood/emotional
state (i.e. theoretically a subset of appearance but restricted
to observed emotion), or implying self-reported mood/
emotional state (i.e. has to imply a description that a patient
would make of their own mood; theoretically a subset of
thought)

Thought Implying any other thought content
Perception Implying any described perception

Cognition Implying anything relating to the patient’s cogni-
tive function

Insight Implying anything relating to insight (awareness of
health state)

Personality Anything implying a personality trait or atti-
tude (i.e. something more long-standing than an observed
behaviour at interview)

Other A mixed bag of definable terms that do not fit into the
above. Common examples included anything implying infor-
mation that will have been collected as part of a patient’s
history, often of behaviours that would have to have been
reported as occurring in the past and cannot have been
observed at interview, but also which cannot be termed a per-
sonality trait. Alternatively, anything where insufficient context
was available to make a decision
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Inter annotator agreement (IAA) was measured with the

Cohen’s Kappa agreement statistic*.

To explore the frequency of both our prior symptomatology
concepts and the newly curated ones in our symptom clus-
ters, we counted the number of unique patient records and the
number of unique documents in which the stems of each term
appeared. To protect patient anonymity, we discarded any con-
cept that appeared in ten or fewer unique patient records. Finally,
we mapped the remaining concepts to SNOMED CT, UK
version v1.33.2, using the following method. First, the root
mopheme of each concept was matched to a relevant finding,
observable entity or disorder type in SNOMED CT. If
a match could not be found, SNOMED CT was explored for
potential synonymy, or other partial match. If a clear synonym
could not be found, we classified the concept as novel.

Results

Word embedding model training

Processing the corpus of SMI clinical documents took approxi-
mately 100 hours on an 8-core commodity hardware server.
Documents were fed sequentially from an SQL Server 2008
database operating as a shared resource, with an additional
overhead likely resulting from network latency.

Parameter selection for k-means clustering

Figure 2 shows a scatterplot of variable values of k£ and the
resulting minimum centroid distance. This suggests a k value
of around 50-75 may be optimal for our data. On this basis, we
chose a k value of 75.

Cluster scoring

The application of our relevancy scoring algorithm to the 75
derived clusters resulted in a median score was 0.000229 and a
MAD of 0.000277, and is visualised in Figure 3.
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Three clusters emerged with a score at least six MADs
outside of the median cluster score: No. 52 (score: 0.002883),
containing 6 665 terms, No. 69, containing 9 314 (score:
0.002282) terms and No. 49 (score: 0.001940), containing
4 424 terms. Taken together, these three clusters contained
a total of 20 403 terms.

Expert curation of symptom concepts, frequency analysis
and SNOMED CT mapping

The combined 20 403 terms were taken forward for cura-
tion as described above. The first phase of curation reduced
the list to 519 putative concepts. The majority of eliminated
terms were morphological variations, misspellings and tokeni-
sation anomalies of singular concepts. For instance, 84 varia-
tions were detected for the stem ‘irrit*’ (as in ‘irritable’). Other
terms were removed because insufficient context was available
for a reasonable clinical interpretation, such as ‘fundamentally
unchanged’, amusing’ and ‘formally tested’. Finally, terms that
appeared to have no relevance to symptomatology at all were
removed, such as dates and clinician names.

Expert curation by two psychiatrists of the 557 concepts (519
discovered concepts and 38 prior concepts) produced a Cohen’s
Kappa agreement score of 0.45, where 337 concepts were
assigned to one of our 9 categories independently by expert
psychiatric curation. Of the 337 concepts, 235 were assigned to
a substantive category (i.e. not the indeterminate ‘other’ group).
Table 2 shows the number of terms per category where
agreement was reached.

Supplementary File 1 is a CSV table of all 557 terms. In
addition to the term itself, the table contains the following
information; the counts of the unique patient records of our
20 472 patient SMI cohort in which the term was detected;
the counts of the unique documents of the 11 745 094 clinical
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Figure 3. Scoring of clusters according to known symptomatology content. Each dot represents a unique cluster. The unique cluster IDs

of the most relevant clusters according to our scoring algorithm are labelled.

Table 2. Counts of terms where
annotators independently

agreed by category.

Category Count
Affect/Mood 6
Appearance/Behaviour 78
Cognition

Insight

Mood/Anxiety/Affect 26
Other 102
Perception 9
Personality 23
Speech 63
Thought 22

document corpus wherein the term was detected; the category
assigned to the term by each of our clinical annotators, and
the SNOMED CT ID code for each term, where mapping was
possible.

The most frequently detected concept mentions include ‘affect’
(detected in 91% of patients), ‘eye contact’ (85%), ‘halluci-
nations’ (85%), ’delusions’ (83%) and ‘rapport’ (81%). Other
concepts follow a long tailed distribution, with mentions of the
top 407 concepts found in at least 100 unique patient records.

Regarding SNOMED CT mapping, it was possible to suggest
direct mappings for 177 concepts and to suggest synonymy or
partial mapping for another 53 concepts. This left a remaining
327 concepts that did not appear to be referenced in SNOMED
CT, of which 106 were classified as belonging to a substantive
symptom category by independent curation.

Figure 4 visualises the top 20% most frequent terms by appearance
in unique patient records, where annotators agreed and were not
classified as our ‘other’ grouping.

Owing to the difficulty of the IAA and categorisation task,
an extended analysis of the top 40% most frequent terms by
appearance in unique patient records, irrespective of IAA and
categorisation is provided in Supplementary Figure 1.

In this project, we sought to explore SMI symptomatology and
other language constructs as expressed by clinicians in their
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own words, using more than ten years of observations made
during real-world clinician/patient interactions from more
than 20 000 unique SMI cases. Within the context of a large
mental healthcare provider, the results of our vocabulary curation
efforts suggest that psychiatrists make use of a wide range of
vocabulary to describe detailed symptomatic observations.

Many of the curated entities where both annotators agreed
upon a substantive category map directly to preferred terms or
synonyms of well known symptomatology constructs as described
in SNOMED CT. Reassuringly, many of most frequently
encountered entities as represented by unique patient count are
represented in SNOMED CT, suggesting that SNOMED CT offers
a reasonable coverage of what clinicians deem to be the most
salient features of a psychiatric examination.

Nevertheless, our work produces evidence to suggest that many
suitable synonyms are currently missing from SNOMED CT
symptom entities. For instance, ‘aggression’ is commonly observed
in SMI patients. Our results indicate that this construct might
also be referred to by adjectives and phrases such as ‘combatative’
[sic], ‘assaultative’ [sic], ‘truculent’, ‘stared intimidatingly’ and
‘stared menacingly’, amongst others. Similarly, direct synonyms
of ‘paranoia’ might include ‘suspiciousness’, ‘mistrustful’ and
‘conspirational’[sic].

In addition, many of the curated constructs appear to reflect
more granular observations of known symptomatology. For
example, the PANSS utilises a 30-point scale of different symp-
tomatology constructs. Specifically regarding abnormal speech,
the PANSS provide guidance amounting to the high level
clinical scrutiny of ‘lack of spontaneity & flow of conversation’.
However, clinical expressions of speech within our dataset sug-
gest around 68 distinct states, including ‘making animal noises’,
‘staccato quality’, ‘easily interruptible’, ‘prosody’ and ‘silently
mouthing’.

We note the occurrence of several constructs that defy classifica-
tion under existing schemas of SMI symptomatology, such as
behaviours of ‘over politeness’, ‘over complimentary’, ‘spending
recklessly’ and ‘shadow boxing’. The clinical interpretation
of such entities is a non-trivial exercise, and is out of scope for
this piece. Nevertheless, word embedding models may offer the
potential to gain insight into potentially novel symptomatology
constructs observed from real-world clinician/patient interac-
tions. Future work might explore the context for such constructs
in more detail.

The emergence of such diverse language in turn has implica-
tions for how SNOMED CT might be implemented within an
SMI context, raising the question of whether such gaps rep-
resent significant barriers to the use of SNOMED CT as a
phenotyping resource. The issue of SNOMED CT’s sufficiency
in this context has previously been raised for other areas, such
as rare disease™, psychological assessment instruments’’ and
histopathology findings*. However, in fairness, SNOMED CT
is not a static resource, but an international effort dependent
on the contributions of researchers. Perhaps a more pertinent
question for the future development of SNOMED CT concerns
balancing its objective to be a comprehensive terminology of
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clinical language (capable of facilitating interoperability and mod-
elling deep phenotypes within disparate healthcare organisations
across the globe) and the overwhelming complexity it would
need to encompass in order to not constrain its users. Cer-
tainly, at more than 300 000 entities in its current incarnation,

39

its size already presents problems in biomedical applications™.

Limitations and future work

On the basis that manifestations of symptoms are the result of
abnormal mental processes, novel symptom entities possibly
represent observations of clinical significance. However, one
particular complication in validating the clinical utility of novel
symptomatology constructs with historic routinely recorded
notes arises from systemic biases in EHR data. Specifically,
the breadth and depth of symptomatic reporting is likely to be
highly variable for a number of reasons. For instance, estab-
lished symptoms as defined by current diagnostic frameworks are
likely to be preferentially recorded, as clinicians are mandated
to capture such entities in their assessments. On the other hand,
constructs that fall outside of such frameworks may only be
recorded as tangential observations made during patient/clinician
interactions. Regardless of whether they are observed or not,
without an established precedent of their clinical utility, they
may be subject to random variation as to whether they are docu-
mented in a patient’s notes. This is borne out by the tendency
of SNOMED CT-ratified concepts to appear more frequently
in unique documents compared to our derived expressions.
The validation of new symptoms from historic data is therefore
something of a ‘chicken and egg’ situation, a widely-discussed
limitation of the reuse of EHR data'™'. Nevertheless, our
frequency analysis of our discovered constructs suggests that
there is evidence that many are observed often enough to war-
rant their consideration within an expanded framework. Simi-
larly, older frameworks with a limited scope of symptomatic
expression were likely designed with pragmatic constraints
around speed and reproducibility of assessment in mind. How-
ever, modern technology allows for a far greater scope of data
capture and validation going forward, creating opportunities to
develop new frameworks that maximise the value of psychiatric
assessment. Future work in this domain might seek statistical
validation via randomised experimental design, as opposed to
observational study.

Our work suggests an approximate correlation between patient
and document count, such that intra and inter patient symptoma-
tological clinical language usage varies relatively consistently.
However, some notable exceptions to this correlation (i.e.
with a higher document level frequency to patient record level
frequency) include ‘aggression’, ‘pacing’, ‘sexual inappropriate-
ness’, ‘sexual disinhibition’ and ‘mutism’. Further work might
seek to study these effects in greater detail, to uncover whether
they represent a systemic bias in how such concepts are represented
in the EHR.

The results of our IAA exercise between two experienced
psychiatrists suggested a moderate level of agreement in catego-
rising the newly identified constructs. Given that this annotation
exercise did not provide any context beyond the term, and that
the nature of SMI symptom observation is somewhat subjec-
tive, perhaps it is to be expected that agreement was not higher.
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As suggested during peer review, providing a concordance
of some of the instances of each term, along with expert panel
discussion and engagement with international collaborative
efforts in SMI research may prove valuable in seeking more
formal definitions of the identified concepts.

Our method for vocabulary building produced nearly 1 million
terms. A manual annotation of this list may have resulted in
further discoveries, although would have been intractable in
practical terms. To reduce the volume of terms taken forward
for curation, we employed a word embedding model with a
clustering algorithm. With our cluster scoring methodology
that makes use of existing domain knowledge, we were able to
successfully produce meaningful clusters of terms reflect-
ing the semantics of SMI symptomatology. However, as with
many unsupervised tasks, it is difficult to determine whether
an optimal solution has been achieved. In particular, the
emergence of three ‘symptom’ clusters instead of one indi-
cates sub-optimal localisation of symptom constructs in vector
space. Addressing such a problem is multifaceted. For techni-
cal reasons, only a single epoch of training was possible in this
exercise. Additional epochs would likely contribute to better
cluster definition, in turn allowing us to reduce the value of
our k parameter. In addition, spell checking and collapsing
terms into their root forms may also have assisted. However,
the latter may have also created new word sense disambigua-
tion problems if common, symptom-like morphemes also
appear in nonsymptomatological assessment contexts.

After clustering, a two stage manual curation of more than 20
000 terms was necessary. Methods that produce a smaller vocab-
ulary might conceivably reduce annotator burden. This might
include the use of spell checkers and stemming/lemmatisation
to correct and normalise tokens, at the risk of introducing new
issues associated with morphological forms in word embed-
ding model building. For this attempt, we took the conscious
decision to make as few assumptions about the underlying
structure of the data as possible.

During peer review, it was suggested that recent advance-
ments in topic modelling approaches may be relevant to our
work. Many groups have sought to combine the popular tech-
nique of Latent Dirichlet Allocation (LDA)*” with word
embedding models to derive appropriate terminology for a given
topic**~*. For instance, Nguyen et al.** propose an extension of
LDA that makes use of a word embedding model trained on a
very large corpus of text to improve the performance of topic
coherence modelling on several datasets. Future work might
seek to explore such techniques, and (assuming regulatory
barriers can be overcome), the potential of creating word
embedding models from very large clinical text corpora by
combining data with other care organisations.

Conclusions
Evidence-based mental health has long sought to produce
disease model definitions that are both valid, in the sense they
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represent useful clinical representations that can inform treat-
ment, and reliable, in that they can be consistently applied by
different clinicians to achieve the same outcomes. In practice
this has proven difficult, due to the often subjective nature of
psychiatric examination/phenotyping and insufficient knowl-
edge about the underlying mechanisms of disorders such as SMI.
Here, we demonstrate that clinical staff make use of a diverse
vocabulary in the course of their interactions with patients. This
vocabulary often references findings that are not represented
in SNOMED CT, raising questions about whether clinicians
should observe the constraints of SNOMED CT or whether
SNOMED CT should incorporate greater flexibility to
reflect the nature of mental health. It is outside the scope of
this work to explore how the granularity of symptom-based
phenotyping affects patient outcomes, although the possibility of
offering a fully realised picture of symptom manifestation may
prove valuable in future endeavours of precision medicine.

Data availability
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Supplementary material
Supplementary File 1: This file contains all of the 557 terms taken forward for expert annotation. It includes SNOMED mappings where
possible, unique document and patient counts within the corpus, and the annotations provided by RP and RS.

Click here to access the data.

F1000Research 2018, 7:210 Last updated: 24 MAY 2018

Supplementary Figure 1: This file is an expanded visualisation of the frequency analysis figure contained in the main manuscript, with the

agreement and nonsubstantive ‘other’ classification restrictions lifted.

Click here to access the data.
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The authors have done a rigorous job of addressing the comments of the initial round of reviews. Thank
you for that effort.

To clarify my comments on word embeddings in the context of topic modelling, | wasn't actually
suggesting to use external resources for word embeddings; rather, since you are already building word

embeddings, to use an alternative -- potentially more effective -- strategy for producing the clusters from
those word embeddings. But your modifications to address this point are fine.
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The authors have addressed our concerns. Thank you for clarifying the method, and thanks also for the
WordToVec reference!
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The paper introduces a strategy for unsupervised analysis of a corpus of documents in order to identify
terminology related to Serious Mental lliness (SMI). It applies a process of (1) identification of frequent
terms (n-grams), (2) clustering of terms based of word embedding vector similarity using k-means, (3)
scoring of clusters using mappings to known SMI concepts, (4) manual annotation of concepts/terms
(which?) to categories. The authors then provide a detailed analysis supported by manual review by two
psychiatrists. A substantial number of new relevant symptomology terms are identified through this
process.

The authors apply standard approaches/tools for doing the text analysis, which are generally well
explained and easy to follow. The authors do not directly justify the frequency floor of 10, or provide
details of how many of each type of n-gram (uni/bi/tri-grams) were identified in the data. There appear to
be very few trigrams, for instance. Using only frequency, how do you prevent uninteresting patterns such
as "of the"?

The manual data cleaning process could have been performed semi-automatically with simple string
processing tools; was this considered? (Why else would an informatician specifically need to do it?)

The intuitions underlying the cluster scoring functions are not clearly stated; we are told it is related to
prior knowledge of concepts but it is unclear what the objectives of the specific formulas presented/used
are. Why are outliers of particular interest?

For future work, the authors may be interested in experimenting with topic modeling rather than k-means
clustering; see ! for an approach which couples word embeddings with topic modeling. This could be
more effective than k-means clustering, in particular due to the challenge of having to determine a good
value for "k".

The notion of "n-gram" is not used entirely consistently with its broader usage in the literature; usually that
refers specifically to a term of a given length (e.g. 1-grams/unigrams, 2-grams/bigrams) while different
length terms are mixed here. The authors might consider using the word "term", or they have referred to
"concepts" which seem to be equivalent to terms.

Regarding the limitation that no context was provided to the annotators; would it make sense to provide a
concordance of some of the instances of the terms to the annotators in future efforts?

Also, the IAA is tied to the 9 categories defined on page 7; where do these categories come from? Are
they related to standard or validated frameworks for symptoms in psychiatric assessment? If not, why
were those categories chosen?
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Did you perform any error analysis to explore the 1AA further, e.g. a confusion matrix between categories?
Is it possible that rather than considering these categories to be independent (the typical assumption for
Cohen's Kappa) that some overlap between the categories might be expected?

The data is protected by patient privacy constraints and hence cannot be made openly available (indeed
the authors could only work on the data in a restricted "offline" setting). Given the nature of the data, this is
understandable. OTOH, given that the analysis largely makes use of existing code plus extensions for
scoring functions, it would make sense to share the methods in an open repository.

The authors should include a suitable reference for PANSS. There is also a substantial literature on
terminology induction (e.g. 2) which would be appropriate to reference.

The writing in the manuscript is generally clear, although | identified a few things that could be rephrased
or clarified:
® The word "depiction" seems to mean "usage" or "phrase" or "expression" or similar; "depiction" is
typically used in the context of art or illustration and | found it strange in a language-expression
related context.
® Are phenotypes and symptomatology always the same thing? Is a phenotype a set of
behaviours/symptoms?
® The abstract is not as clear as it could be. The final sentence of the Background paragraph should
use "it is" rather than "it's" but more importantly it implies that the objective is to assess clinician
preferences as opposed to actual usage. Are these the same? Also, n-grams, vector space
models, concepts, vocabulary and depictions are all introduced; it is a bit confusing without having
read the full paper. | wonder if it could be simplified somewhat?
® As anitpick, in the Introduction the authors refer to "predicting the diversity of vocabulary"; the work
does not address prediction of vocabulary or its diversity but rather involves analysis of that
vocabulary.
®  Another nitpick in the Introduction is the use of the term "authorship"; | suppose the authors mean
"writing" or "description" or "summary" or similar.
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Competing Interests: No competing interests were disclosed.
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I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Richard Jackson,

Thank you very much for your insightful comments.
Please see our responses below:

The authors apply standard approaches/tools for doing the text analysis, which are generally well
explained and easy to follow. The authors do not directly justify the frequency floor of 10, or provide
details of how many of each type of n-gram (uni/bi/tri-grams) were identified in the data. There
appear to be very few trigrams, for instance. Using only frequency, how do you prevent
uninteresting patterns such as "of the"?

We started this project with the explicit intention of making as few assumptions as possible about
semantic relationships contained within the 20 million documents in the CRIS corpus. To this end,
we kept pre-processing very light, and no attempt was made to eliminate very common n-grams.
Our chief assumption in planning the methodology was that uninteresting, high frequency n-grams
that appear in many contexts would occupy locations in the vector space a substantial distance
away from the n-grams we were interested in (symptomatology). We therefore sought to maximise
the performance of our clustering method and scoring algorithm, which we hoped would filter off
the n-grams that carry little information. In addition, any uninteresting patterns that did survive the
filter, we removed via some simple string processing tools (see response to your additional
question below on this). Regarding the counts of different n-grams, we have added the following to
the vocabulary creation subsection:

Sentences and tokens were extracted from each document using the English Punkt tokeniser from
the NLTK 3.0 suite\cite{bird_natural_2009}. Each token was converted to lower case. A vocabulary
was then constructed of all 1-gram types in the corpus, supplemented with frequently occuring
bi-grams and tri-grams using the Gensim\cite{rehurek_lIrec} suite and the sampling method
proposed by Mikolov \textit{et al}\cite{mikolov2013distributed}. Bi-grams and tri-grams with a
minimum frequency of 10 occurrences in the entire corpus were retained, to give a total vocabulary
size of 896 195 terms (617 095 unigrams, 277 490 bigrams, 303 trigrams and 1307 non-word
entities). No further assumptions about the structure of the data, such as the need for
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stemming/lemmatisation, were made.

The manual data cleaning process could have been performed semi-automatically with simple
string processing tools; was this considered? (Why else would an informatician specifically need to
do it?)

Indeed it was, although this was not made clear in the manuscript. We have added a short piece of
text (in the “expert curation” subsection) to explain this:

The contents of the top scoring clusters underwent a two stage curation process. The first stage
was performed by an informatician, and involved several simple string processing tasks to filter out
uninteresting n-grams. Such processes included removal of n-grams that contained tokenisation
failures (for example, single character non-word tokens such as ‘y’, ‘p’) and other constructs that
had low information content, such as n-grams composed of stop words. A final manual check

followed to reduce the amount of annotator burden required by the clinical team.

The intuitions underlying the cluster scoring functions are not clearly stated; we are told it is related
to prior knowledge of concepts but it is unclear what the objectives of the specific formulas
presented/used are. Why are outliers of particular interest?

We accept this was not clearly stated and have adjusted the manuscript accordingly, in the
“Vocabulary clustering and cluster scoring” section:

With the data clustered, we sought to identify one or more clusters of interest for further
examination. To this end, we devised a simple "relevance' cluster scoring approach based upon
prior knowledge of common SMI symptom concepts. The intuition behind our approach is that the
training of the Word2Vec model will cause n-grams that represent "known' concepts of SMI
symptomatology to co-locate in close proximity to each other in vector space, and the clustering
approach will place them in the same cluster, along with other n-grams that theoretically relate to
these SMI symptomatology concepts. The additional contents of this cluster may therefore hold
n-grams that represent concepts of SMI symptomatology undefined by our team, but in natural use
by the wider clinical staff of the SLAM Trust during the course of their duties. By identifying the
richest cluster(s) in terms of the known SMI symptomatology lexicon, we sought to drastically
reduce the search space of n-grams in the corpus to carry forward for human assessment.

For future work, the authors may be interested in experimenting with topic modeling rather than
k-means clustering; see 1 for an approach which couples word embeddings with topic modeling.
This could be more effective than k-means clustering, in particular due to the challenge of having to
determine a good value for "k".

We agree that recent advancements in topic modelling approaches are relevant to our work here.
Regarding the specific case of using external word embedding models, we suspect that our target
domain, (UK clinical text), is a sub-language, and the use of external word embeddings (even from
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very large corpora, such as Google News in the model proposed in the suggested citation) will
have limited value for discovery on our data. The concepts of interest in our work are technical in
nature, and seem likely to be specific to heavily regulated documents and therefore unlikely to exist
in publically available datasets. On the other hand, there is no requirement to build the word
embedding model from external datasets. Ultimately, there’s clearly a range of additional
techniques in the literature that would be worthwhile experimenting with. We have updated our
discussion as follows:

During peer review, it was suggested that recent advancements in topic modelling approaches
may be relevant to our work. Many groups have sought to combine the popular technique of Latent
Dirichlet Allocation (LDA)\cite{blei2003latent} with word embedding models to derive appropriate
terminology for a given topic\cite{cao2015novel,hinton2009replicated,srivastava2013modeling}.
For instance, Nguyen et al\cite{nguyen2015improving} propose an extension of LDA that makes
use of a word embedding model trained on a very large corpus of text to improve the performance
of topic coherence modelling on several datasets. Future work might seek to explore such
techniques, and (assuming regulatory barriers can be overcome), the potential of creating word
embedding models from very large clinical text corpora by combining data with other care
organisations.

The notion of "n-gram" is not used entirely consistently with its broader usage in the literature;
usually that refers specifically to a term of a given length (e.g. 1-grams/unigrams, 2-grams/bigrams)
while different length terms are mixed here. The authors might consider using the word "term", or
they have referred to "concepts” which seem to be equivalent to terms.

For technical clarity, we’ve removed references to ‘n-gram’ and replaced them with ‘term’ where
appropriate. Our usage of concept refers to medical concepts (via our putative discovery process
or otherwise). This is now consistent in our amendments.

Regarding the limitation that no context was provided to the annotators; would it make sense to
provide a concordance of some of the instances of the terms to the annotators in future efforts?
We agree this would be a useful method to assist in the decision making process for manual
curation, and have adjusted the text:

The results of our IAA exercise between two experienced psychiatrists suggested a moderate level
of agreement in categorising the newly identified constructs. Given that this annotation exercise did
not provide any context beyond the n-gram, and that the nature of SMI symptom observation is
somewhat subjective, perhaps it is to be expected that agreement was not higher. As suggested
during peer review, providing a concordance of some of the instances of each n-gram, along with
expert panel discussion and engagement with international collaborative efforts in SMI research
may prove valuable in seeking more formal definitions of the identified constructs.

Also, the IAA is tied to the 9 categories defined on page 7; where do these categories come from?
Are they related to standard or validated frameworks for symptoms in psychiatric assessment? If
not, why were those categories chosen?
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The categories were derived from the Shorter Oxford Textbook of Psychiatry (chapter 3, page 44),
and the experience of the teams Clinical Psychiatrists. We have updated the text as follows:

The second, more important stage was composed of independent annotation of the curated
concept list by two psychiatrists, to identify likely synonyms and new symptomatology based on
their clinical experience. Each concept was assigned to one of the below 8 "substantive'
categories, or a 9th "other' category. The categories were derived
from\cite{harrison_shorter_2018}, and the experience of the team Clinical Psychiatrists.

Did you perform any error analysis to explore the IAA further, e.g. a confusion matrix between
categories? Is it possible that rather than considering these categories to be independent (the
typical assumption for Cohen's Kappa) that some overlap between the categories might be
expected?

No further attempts to explore the errors in IAA were made in this analysis. Given the high level of
cross-sectional and longitudinal overlap between mental disorder diagnoses classified as ‘SMI’
and the subjectivity involved in observation, it's reasonable to think that there would be a tendency
for errors to overlap in certain categories (for instance ‘insight’ and ‘cognition’). However, we think
that this is outweighed by the far more complex issue of the clinical validation of the concepts we
identified (which the scope of this study did not allow for).

The data is protected by patient privacy constraints and hence cannot be made openly available
(indeed the authors could only work on the data in a restricted "offline" setting). Given the nature of
the data, this is understandable. OTOH, given that the analysis largely makes use of existing code
plus extensions for scoring functions, it would make sense to share the methods in an open
repository.

We agree this would be useful, and now provide a link to a repository in the paper:

Example code used in this analysis is available at: https://github.com/RichJackson/clustering_w2v

”

The authors should include a suitable reference for PANSS. There is also a substantial literature on
terminology induction (e.g. 2) which would be appropriate to reference.

We think that the reviewer might have missed our original reference to the PANSS on page 3.
However we mistakenly repeated the full acronym on page 10. This is now corrected.

Regarding terminology induction, we have modified the following text in the introduction as
follows. This now includes a reference to this article which we feel is particularly topical, given our
domain:

First, insight must be obtained regarding real-world language usage such that universally
understood medical entities, encompassing hypernomy, synonymy and hyponomy adequately
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represent models of concepts. Similarly, because of the abundant use of acronyms in the medical
domain, a large percentage have two or more meanings\citefliu_study_2002}, creating word sense
disambiguation problems. As such, significant efforts have arisen to supplement these types of
knowledge bases with appropriate real world synonym usage extracted from EHR
datasets\cite{henriksson_identifying_2013}. The problem may be considered analogous to
difficulties in the recognition, classification and mapping of technical terminology variants
throughout the biomedical literature, which is known to be an impediment to the construction of
knowledge representation systems (see \cite{krauthammer_term_2004} for a review).
Krauthammer, Michael, and Goran Nenadic. "Term identification in the biomedical literature."
Journal of biomedical informatics 37.6 (2004): 512-526.

The writing in the manuscript is generally clear, although | identified a few things that could be
rephrased or clarified:

The word "depiction” seems to mean "usage" or "phrase" or "expression” or similar; "depiction" is
typically used in the context of art or illustration and | found it strange in a language-expression
related context.

We have rephrased this language throughout

Are phenotypes and symptomatology always the same thing? Is a phenotype a set of
behaviours/symptoms?

Yes - the definition of a phenotype is the set of observable characteristics of an organism resulting
from its genotype and interaction with its environment. We believe that symptom/behaviour profiles
can be reasonably viewed in this way (and these are commonly referred to in phenotypic terms in
mental health research).

The abstract is not as clear as it could be. The final sentence of the Background paragraph should
use "it is" rather than "it's" but more importantly it implies that the objective is to assess clinician
preferences as opposed to actual usage. Are these the same?

You are correct to say that ‘actual usage’ and ‘clinical preference’ are different concepts here. Our
work aims to capture ‘preference’ in clinical language constructs that do not reflect matches to
industry knowledge base projects (regardless of the reason). We have made several small
changes in the text to reflect this.

Also, n-grams, vector space models, concepts, vocabulary and depictions are all introduced; it is a
bit confusing without having read the full paper. | wonder if it could be simplified somewhat?

This now reads:

By utilising a large corpus of healthcare data, we sought to make use of semantic modelling and
clustering techniques to represent the relationship between the clinical vocabulary of internationally
recognised SMI symptoms and the preferred language used by clinicians within a care setting. We
explore how such models can be used for discovering novel vocabulary relevant to the task of
phenotyping Serious Mental lliness (SMI) with only a small amount of prior knowledge.

As a nitpick, in the Introduction the authors refer to "predicting the diversity of vocabulary”; the work
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does not address prediction of vocabulary or its diversity but rather involves analysis of that
vocabulary.

This sentence now reads:

Given a sufficiently large corpus of documents, typically authored by hundreds of clinical staff over
several years, it is often difficult to track the evolution of vocabulary used within the local EHR
setting to describe potentially important clinical constructs.

”

Another nitpick in the Introduction is the use of the term "authorship"; | suppose the authors mean
"writing" or "description” or "summary" or similar.

We’'ve also addressed this.

Thanks once again for your valuable insights

Competing Interests: No competing interests were disclosed.
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The authors present a method to extract from a clinical corpus novel terms used to described serious
mental iliness (SMI). They use vector space models to represent the relationship between words in the
corpus and combine this approach with clustering techniques and manual curation to identify relevant
n-grams (1, 2, or 3-word concepts). 106 concepts had no mapping to current SNOMED terms indicating
that they have indeed discovered new knowledge, i.e. terms used by clinicians to describe patients that
are not already included in SNOMED CT.

1. The introduction was unusually well written, if a little longer than strictly necessary, and provided
excellent motivation for the work at hand. It has been shown that SNOMED coverage of mental
health terms is sub-optimal and this is a clever approach to learning new relevant terms in a
semi-automated manner.

2. For the rest of the paper, each individual part was well written, but | had a hard time seeing how
they flowed together.

3. Figure 1 was a helpful overview, but I still found it difficult to follow how the sub-steps tied in
together and in some cases why they were important. e.g.

1. How did creation of the putative cluster of 38 terms help? | think it was to facilitate the
scoring method, but | wasn't completely clear how.

2. Why 387? Particularly when the clusters they later looked at were so much larger, not clear
why that number was chosen.

4. | found the math/logic challenging to follow. (Admittedly, | am not a statistician, and was not
previously familiar with CBOW.)
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1. It was helpful that the authors included examples in some places, but they could have gone
even further to make the approach concrete. Toy examples of u1 and v1 would help.

2. Onfirst and second read, | was having a hard time with intuition for what a high-scoring
cluster means. | now realize (Il think?) it meant the cluster was particularly enriched for
mental health terms. It might be helpful to state that- for some reason | was thinking it meant
that the concepts were relatively similar/cohesive?

3. | had trouble wrapping my head around the sentence "we scored each cluster based on the
number of per concept hits to derive a cluster/concept count matrix x where xi,j represents
the count of the ith concept in the jth cluster.” | think it means 38 rows, 1 for each concept
and 3 columns, 1 for each cluster, and the value of the cell is the number of times that
concept was encountered in some form in the cluster?

4. Equations could also be numbered for reference.

5. The authors report choosing not to perform stemming/lemmatization in order not to make
assumptions about the structure of the data, but this decision is not very well explained or justified.
Indeed they call it out as a potential limitation in Discussion. It would be useful/interesting to try the
approach both ways and see if the results were different.

6. How were the 8 "substantive categories" chosen?

7. Why does inter-rater agreement matter in mapping the concepts to those categories? Was it only
that the ability to map them to a single category makes it more likely the concept is semantically
interesting and reliable?

8. The authors mention that the semantic similarity of n-grams is often measured via their cosine
distance between vectors in the W matrix. Just out of curiosity, could distance in the W' matrix be
used as well/instead?

9. My "partly" answer to "Are sufficient details of methods and analysis provided to allow replication
by others?" reflects the fact that the authors very reasonably cannot publish the raw data, but they
do address how to obtain the data through a formal application process. (Ergo the "Yes" to whether
source data are available, even if not readily...) It would be helpful if code were to be made
available.

Minor:
1. Page 3, paragraph 4 should be employS curated terminology
2. Page 6 line 5 should have ) after "Table 1"

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
| cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
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Yes
Competing Interests: No competing interests were disclosed.
Referee Expertise: Patient stratification in mental health using EHR data, structured and free text.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

Richard Jackson,

Thank you for your valuable comments. Please see our responses below

For the rest of the paper, each individual part was well written, but | had a hard time seeing how
they flowed together.

Figure 1 was a helpful overview, but | still found it difficult to follow how the sub-steps tied in
together and in some cases why they were important. e.g.

How did creation of the putative cluster of 38 terms help? | think it was to facilitate the scoring
method, but | wasn't completely clear how.

Why 38? Particularly when the clusters they later looked at were so much larger, not clear why that
number was chosen.

We think there’s some misunderstanding of our methodology and apologise if it wasn’t clear in the
manuscript. We didn’t create any clusters in this work by hand. All of the 896 195 terms generated
from the corpus were assigned to one of 75 distinct clusters via the K-means algorithm. We then
needed to identify which of the 75 clusters were worth looking at. The 38 concepts constitute the
prior knowledge about SMI symptomatology that our clinical team fed into the scoring algorithm we
describe in the manuscript. This revealed three clusters that we took forward for further analysis.

We’ve re-written the text concerning this, and introduced something we call ‘Prior Concepts’ to
differentiate between the domain knowledge we use in cluster scoring and the clusters themselves.
Please do let us know if you feel that this hasn't improved the manuscript clarity.

I found the math/logic challenging to follow. (Admittedly, | am not a statistician, and was not
previously familiar with CBOW.)

It was helpful that the authors included examples in some places, but they could have gone even
further to make the approach concrete. Toy examples of u1 and v1 would help.

We’ve added an example of the analysis pipeline to the accompanying code repository, and added
the line:

We provide a worked example of this technique in the code repository that accompanies this
paper, using publically available data.
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On first and second read, | was having a hard time with intuition for what a high-scoring cluster
means. | now realize (I think?) it meant the cluster was particularly enriched for mental health
terms. It might be helpful to state that- for some reason | was thinking it meant that the concepts
were relatively similar/cohesive?

Actually you are correct on both counts. Training the Word2Vec model causes n-grams with
semantically similar meanings to co-locate near to each other in the vector space model. The
application of the clustering algorithm groups semantically similar n-grams together. Three clusters
scored highly in our relevancy scoring algorithm, signifying that they were enriched for our existing
knowledge of SMI symptomatology.

I had trouble wrapping my head around the sentence "we scored each cluster based on the
number of per concept hits to derive a cluster/concept count matrix x where xi,j represents the
count of the ith concept in the jth cluster." | think it means 38 rows, 1 for each concept and 3
columns, 1 for each cluster, and the value of the cell is the number of times that concept was
encountered in some form in the cluster?

This is almost correct, although j represents the total number of clusters (75). The result is a score
per cluster that is plotted in figure 3. We have rewritten this section of text accordingly, as per the
previous comment on this issue

Equations could also be numbered for reference.
This is now done

The authors report choosing not to perform stemming/lemmatization in order not to make
assumptions about the structure of the data, but this decision is not very well explained or justified.
Indeed they call it out as a potential limitation in Discussion. It would be useful/interesting to try the
approach both ways and see if the results were different.

This is a potential limitation of our work, in that using un-stemmed tokens will have led to vastly
more n-grams than we might have otherwise had to deal with, and that stemming might have lead
to the identification of additional n-grams of interest. However, we feel our decision not to make
assumptions about the value of stemming in this context was appropriate for two reasons:

1. In the context of a mental health assessment, stemming may cause important information
loss. For instance, the term ‘insomnia’ shares the same stem as ‘insomniac’. However, short
term ‘insomnia’ is a relatively common symptom amongst the general population for a large
variety of conditions. ‘Insomniac’ in the context of mental illness, on the other hand, might
imply a chronic condition.

2. Our IAA task would have been substantially more complex if we were to offer
stemmed n-grams for human evaluation, rather than complete words.

How were the 8 "substantive categories” chosen?

The categories were derived from the Shorter Oxford Textbook of Psychiatry (chapter 3, page 44),
and the experience of the teams Clinical Psychiatrists. We have updated the text as follows:
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The second, more important stage was composed of independent annotation of the curated
concept list by two psychiatrists, to identify likely synonyms and new symptomatology based on
their clinical experience. Each concept was assigned to one of the below 8 “substantive'
categories, or a 9th "other' category. The categories were derived
from\cite{harrison_shorter_2018}, and the experience of the team Clinical Psychiatrists.

”

Why does inter-rater agreement matter in mapping the concepts to those categories? Was it only
that the ability to map them to a single category makes it more likely the concept is semantically
interesting and reliable?

Yes, we felt that offering a binary choice per n-gram (i.e. potentially relevant/irrelevant) was likely to
heavily bias our results in favour of high agreement. Rather, we thought that agreement on the
mapping of the identified n-grams to defined groups of symptomatology would suggest a greater
degree of robustness.

The authors mention that the semantic similarity of n-grams is often measured via their cosine
distance between vectors in the W matrix. Just out of curiosity, could distance in the W' matrix be
used as well/instead?

We don’t believe this is possible, as the W matrix corresponds to weights between the input layer
and the hidden layer of the neural network, where each row represents a single n-gram. The W'
corresponds to the weights between the hidden layer and the output layer, which has different
dimensions. | recommend this reference for a detailed description of the Word2Vec methodology.

My “partly” answer to "Are sufficient details of methods and analysis provided to allow replication
by others?" reflects the fact that the authors very reasonably cannot publish the raw data, but they
do address how to obtain the data through a formal application process. (Ergo the "Yes" to whether
source data are available, even if not readily...) It would be helpful if code were to be made
available.

We agree this would be useful, and now provide a link to a repository in the paper:

Example code used in this analysis is available at: https://github.com/RichJackson/clustering_w2v

”

Minor:
Page 3, paragraph 4 should be employS curated terminology
Page 6 line 5 should have ) after "Table 1

This is now corrected.

Thanks once again for your time and efforts with our paper.
Best wishes

Richard

Page 27 of 28


http://www.1-4-5.net/~dmm/ml/how_does_word2vec_work.pdf

FIOOOResearch F1000Research 2018, 7:210 Last updated: 24 MAY 2018

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

®  Your article is published within days, with no editorial bias

® Youcan publish traditional articles, null/negative results, case reports, data notes and more
® The peer review process is transparent and collaborative

®  Your article is indexed in PubMed after passing peer review

® Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com F]mResea rCh

Page 28 of 28



