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Abstract

Scientific analysis often relies on the ability to make accurate predictions of a system’s

dynamics. Mechanistic models, parameterized by a number of unknown parameters, are

often used for this purpose. Accurate estimation of the model state and parameters prior to

prediction is necessary, but may be complicated by issues such as noisy data and uncer-

tainty in parameters and initial conditions. At the other end of the spectrum exist nonpara-

metric methods, which rely solely on data to build their predictions. While these

nonparametric methods do not require a model of the system, their performance is strongly

influenced by the amount and noisiness of the data. In this article, we consider a hybrid

approach to modeling and prediction which merges recent advancements in nonparametric

analysis with standard parametric methods. The general idea is to replace a subset of a

mechanistic model’s equations with their corresponding nonparametric representations,

resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid

approach allows for more robust parameter estimation and improved short-term prediction

in situations where there is a large uncertainty in model parameters. We demonstrate these

advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose

neurons before application to experimentally collected structured population data.

Author summary

The question of how best to predict the evolution of a dynamical system has received sub-

stantial interest in the scientific community. While traditional mechanistic modeling

approaches have dominated, data-driven approaches which rely on data to build predic-

tive models have gained increasing popularity. The reality is, both approaches have their

drawbacks and limitations. In this article we ask the question of whether or not a hybrid

approach to prediction, which combines characteristics of both mechanistic modeling

and data-driven modeling, can offer improvements over the standalone methodologies.
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We analyze the performance of these methods in two model systems and then evaluate

them on experimentally collected population data.

Introduction

Parametric modeling involves defining an underlying set of mechanistic equations which

describe a system’s dynamics. These mechanistic models often contain a number of unknown

parameters as well as an uncertain state, both of which need to be quantified prior to use of the

model for prediction. The success of parametric prediction is tied closely to the ability to con-

struct accurate estimates of the model parameters and state. This can be particularly challeng-

ing in high dimensional estimation problems as well as in chaotic systems [1, 2]. Additionally,

there is often a degree of model error, or a discrepancy between the structure of the model and

that of the system, further complicating the estimation process and hindering prediction

accuracy.

Despite these potential issues, mechanistic models are frequently utilized in data analysis.

The question we aim to address is when is it advantageous to use them? Under suitable condi-

tions where model error is relatively small and parameters can be reliably estimated, paramet-

ric predictions can provide a great deal of accuracy. However, as we will see in the subsequent

examples, a large uncertainty in the initial parameter values often leads to inaccurate estimates

resulting in poor model-based predictions.

An alternative approach to modeling and prediction abandons the use of any mechanistic

equations, instead relying on predictive models built from data. These nonparametric methods

have received considerable attention, in particular those methods based on Takens’ delay-

coordinate method for attractor reconstruction [3–17]. The success of nonparametric methods

is strongly influenced by the amount of data available as well as the dimension of the dynam-

ical system. If only a sparse amount of training data is available, the result is often inaccurate

predictions due to the lack of suitable nearby neighbors in delay-coordinate space. Further-

more, as the dimension and complexity of the dynamical system increases, nonparametric pre-

diction becomes significantly more difficult due to the necessary data requirements [17].

Several recent works have investigated the situation where only a portion of a mechanistic

model is known [18, 19]. Our motivation here though is to explore how best to use a full mech-

anistic model when it is available. We consider a hybrid methodology to modeling and predic-

tion that combines the complementary features of both parametric and nonparametric

methods. In our proposed hybrid method, a subset of a mechanistic model’s equations are

replaced by nonparametric evolution. These nonparametrically advanced variables are then

incorporated into the remaining mechanistic equations during the data fitting and prediction

process. The result of this approach is a more robust estimation of model parameters as well as

an improvement in short-term prediction accuracy when initial parameter uncertainty is

large.

Our proposed hybrid method is in a sense related to the field of grey-box modeling and

identification [20–25]. This broad class of methods is referred to as “grey” since they exist

somewhere between white-box/clear models (physical definitions and principles only) and

black-box models (data-based only). For example, a grey method resulting from the combina-

tion of semi-physical and black-box modeling was proposed in [26, 27], where a black-

box artificial neural network was used to explain the error residuals from the physical portion

of the model. Our hybrid method offers a novel take on this grey box philosophy, merging

white and black-box modeling to obtain robust estimation of model parameters.

Hybrid modeling and prediction of dynamical systems
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The utility of the hybrid method is demonstrated in several example systems. The assump-

tion throughout is that noisy training data from a system are available as well as a mechanistic

model that describes the underlying dynamics. However, several of the model parameters are

unknown and the model state is uncertain due to the noisy measurements. The goal is to make

accurate predictions of the system state up to some forecast horizon beyond the end of the

training data. We compare the prediction accuracy of the standard parametric and nonpara-

metric methodologies with the novel hybrid method presented here.

We begin our analysis by examining prediction in the classical Lorenz-63 system [28],

which exhibits chaotic dynamics. Motivated by the success of the hybrid method in the

Lorenz-63 system, we consider a more sophisticated example of predicting the spiking dynam-

ics of a neuron in a network of Hindmarsh-Rose [29] cells. Finally, we examine the prediction

problem in a well-known experimental dataset from beetle population dynamics [30].

Materials and methods

The assumption throughout is that a set of noisy data is available over the time interval [t(0),

t(T)]. This is referred to as the training data of the system. Using these training data, the ques-

tion is how best to predict the system dynamics over the interval [t(T + 1), t(T + TF)], known

as the prediction interval. Standard parametric and nonparametric methods are presented

before our discussion of the novel hybrid method which blends the two approaches.

Parametric modeling and prediction

When a full set of mechanistic equations is used for modeling and prediction, we refer to this

as the parametric approach. Assume a general nonlinear system of the form

xðkþ 1Þ ¼ fðtðkÞ; xðkÞ; pÞ þ wðkÞ

yðkÞ ¼ hðtðkÞ; xðkÞ; pÞ þ vðkÞ
ð1Þ

where x = [x1, x2, . . ., xn]T is an n-dimensional vector of model state variables and p = [p1,

p2, . . ., pl]T is an l-dimensional vector of model parameters which may be known from first

principles, partially known or completely unknown. f represents our system dynamics which

describe the evolution of the state x over time and h is an observation function which maps x

to anm-dimensional vector of model observations, y = [y1, y2, . . ., ym]T. To simplify the

description of our analysis, we assume that the training data maps directly to some subset of x.

w(k) and v(k) are assumed to be mean 0 Gaussian noise terms with covariances Q and R

respectively. While discrete notation is used in Eq 1 for notational convenience, the evolution

of x is often described by continuous-time systems. In this situation numerical solvers, such as

Runge-Kutta or Adams-Moulton methods, are used to obtain solutions to the continuous-

time system at discrete time points.

When the state of a system is uncertain due to noisy or incomplete observations, nonlinear

Kalman filtering can be used for state estimation [1, 31–43]. Here we choose the unscented

Kalman filter (UKF), which approximates the propagation of the mean and covariance of a

random variable through a nonlinear function using a deterministic ensemble selected

through the unscented transformation [44–46]. We initialize the filter with state vector x+(0)

and covariance matrix P+(0). At the kth step of the filter there is an estimate of the state

x+(k − 1) and the covariance matrix P+(k − 1). In the UKF, the singular value decomposition

is used to find the square root of the matrix P+(k − 1), which is used to form an ensemble of

2n + 1 state vectors.

The model f is applied to the ensemble, advancing it forward one time step, and then

observed with h. The weighted average of the resulting state ensemble gives the prior state

Hybrid modeling and prediction of dynamical systems
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estimate x−(k) and the weighted average of the observed ensemble is the model-predicted

observation y−(k). Covariance matrices P−(k) and Py(k) of the resulting state and observed

ensemble, and the cross-covariance matrix Pxy(k) between the state and observed ensembles,

are formed and the equations

KðkÞ ¼ PxyðkÞðPyðkÞÞ� 1

PþðkÞ ¼ P� ðkÞ � PxyðkÞðPyðkÞÞ� 1PyxðkÞ

xþðkÞ ¼ x� ðkÞ þ KðkÞðyðkÞ � y� ðkÞÞ:

ð2Þ

are used to update the state and covariance estimates with the observation y(k).
The UKF algorithm described above can be extended to include the joint estimation prob-

lem allowing for parameter estimation. In this framework, the parameters p are considered as

auxiliary state variables with trivial dynamics, namely pk+1 = pk. An augmented n + l dimen-

sional state vector can then be formed consisting of the original n state variables and lmodel

parameters allowing for simultaneous state and parameter estimation [1, 43].

To implement parametric prediction, the UKF is used to process the training data and

obtain an estimate of p, as well as the state at the end of the training set, x(T). The parameter

values are fixed and Eq 1 is forward solved from t(T) to generate predictions of the system

dynamics over the prediction interval [t(T + 1), t(T + TF)]. Namely, predictions x(T + 1),

x(T + 2), . . ., x(T + TF) are calculated.

Takens’ method for nonparametric prediction

Instead of using the mechanistic model described by Eq 1, the system can be represented non-

parametrically. Without loss of generality consider the observed variable xj. Using Takens’ the-

orem [47, 48], the d + 1 dimensional delay coordinate vector

xdj ðTÞ ¼ ½xjðTÞ; xjðT � tÞ; xjðT � 2tÞ; . . . xjðT � dtÞ� is formed which represents the state of

the system at time t(T). Here d is the number of delays and τ is the time-delay.

The goal of nonparametric prediction is to utilize the training data in the interval [t(0),

t(T)] to build local models for predicting the dynamics over the interval [t(T + 1), t(T + TF)].
Here, the method of direct prediction is chosen. Prior to implementation of direct prediction, a

library of delay vectors is formed from the training data of xj.
Direct prediction begins by finding the κ nearest neighbors, as a function of Euclidean dis-

tance, to the current delay-coordinate vector xdj ðTÞ within the library of delay vectors. Neigh-

boring delay vectors

xdj ðT
0Þ ¼ ½xjðT 0Þ; xjðT 0 � tÞ; xjðT 0 � 2tÞ; . . . xjðT 0 � dtÞ�

xdj ðT
00Þ ¼ ½xjðT 00Þ; xjðT 00 � tÞ; xjðT 00 � 2tÞ; . . . xjðT 00 � dtÞ�

..

.

xdj ðT
kÞ ¼ ½xjðTkÞ; xjðTk � tÞ; xjðTk � 2tÞ; . . . xjðTk � dtÞ�

are found within the training data and the known xj(T0 + i), xj(T00 + i), . . ., xj(Tκ + i) points are

used in a local model to predict the unknown value xj(T + i) where i = 1, 2, . . ., TF. In this arti-

cle, a locally constant model is chosen

xjðT þ iÞ � w0jxjðT
0 þ iÞ þ w00j xjðT

00 þ iÞ þ . . .þ wk
j xjðT

k þ iÞ ð3Þ

where w0j; w
00
j ; . . . ;wk

j are the weights for the jth state that determine the contribution of each

neighbor in building the prediction. In its simplest form, Eq 3 is an average of the nearest
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neighbors where w0j ¼ w
00
j ¼ . . . ¼ wk

j ¼
1

k
. More sophisticated weighting schemes can be cho-

sen, for example assigning the weights based on the Euclidean distance from each neighbor to

the current delay vector [18, 49, 50]. Selection of values for d, τ and κ is necessary for imple-

mentation of the direct prediction algorithm. There is a wide range of literature on the selec-

tion of embedding parameters d and τ (see for example [51–58]). These parameters can also be

chosen using a cross-validation approach whereby the training data are partitioned into a

smaller training set and a validation set to allow for within-sample prediction and evaluation.

The known training data can thus be used to select d, τ and κ prior to the out-of-sample pre-

diction that occurs during the prediction interval [t(T + 1), t(T + TF)]. Parameters for nonpara-

metric prediction were chosen within each example.

The accuracy of the predicted xj(T + i) is subject to several factors. The presence of noise in

the training data plays a substantial role in decreasing prediction accuracy. However, recent

advancements in nonparametric analysis have addressed the problem of filtering time series

without use of a mechanistic model. In [17], a nonparametric filter was developed which

merged Kalman filtering theory and Takens’ method. The resulting Kalman-Takens filter was

demonstrated to be able to reduce significant amounts of noise in data. Application of the

method was extended in [59] to the case of filtering stochastic variables without a model. In

the results presented below, the training data used for nonparametric prediction are filtered

first using the method of [17, 59].

Hybrid modeling and prediction: Merging parametric and nonparametric

methods

As an alternative to the parametric and nonparametric methods described above, we propose a

hybrid approach which blends the two methods together. In this framework, we assume that a

full mechanistic model as described by Eq 1 is available. However, rather than using the full

model, a subset of the mechanistic equations are used and the remainder of the variables are

represented nonparametrically using delay-coordinates.

In formulating this method it is convenient to first think of Eq 1 without vector notation

x1ðkþ 1Þ ¼ f1ðtðkÞ; x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ; p1; p2; . . . ; plÞ

x2ðkþ 1Þ ¼ f2ðtðkÞ; x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ; p1; p2; . . . ; plÞ

..

.

xnðkþ 1Þ ¼ fnðtðkÞ; x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ; p1; p2; . . . ; plÞ

ð4Þ

Now assume only the first n − 1 equations of Eq 4 are used to model state variables x1, x2, . . .,

xn−1, while xn is described nonparametrically

x1ðkþ 1Þ ¼ f1ðtðkÞ; x1ðkÞ; x2ðkÞ; . . . ; xn� 1ðkÞ; xnðkÞ; p1; p2; . . . ; plÞ

x2ðkþ 1Þ ¼ f2ðtðkÞ; x1ðkÞ; x2ðkÞ; . . . ; xn� 1ðkÞ; xnðkÞ; p1; p2; . . . ; plÞ

..

.

xn� 1ðkþ 1Þ ¼ fn� 1ðtðkÞ; x1ðkÞ; x2ðkÞ; . . . ; xn� 1ðkÞ; xnðkÞ; p1; p2; . . . ; plÞ

xnðkþ 1Þ � w0n~xnðT
0 þ kþ 1Þ þ w00n~xnðT

00 þ kþ 1Þ þ . . .þ wk
n~xnðT

k þ kþ 1Þ

ð5Þ

We refer to Eq 5 as the hybrid model. Note, in Eq 5 only xn is assumed to be advanced nonpara-

metrically. This is done purely for ease of presentation and the hybrid model can instead con-

tain several variables whose equations are replaced by nonparametric advancement.

Nonparametric advancement in the hybrid model similarly requires setting the number of

Hybrid modeling and prediction of dynamical systems
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delays, time-delay and the number of nearest neighbors with which to build the local model.

Throughout our examples, these values are kept the same as those used by the standalone non-

parametric method to ensure fair comparison.

The hybrid model has several distinguishing features. Notice, in this framework nonpara-

metrically advanced dynamics are incorporated into mechanistic equations, essentially merg-

ing the two lines of mathematical thought. Furthermore, equations for state variables within

Eq 4 can be replaced only if there are observations which map directly to them, otherwise their

dynamics can not be nonparametrically advanced. Finally, the process of replacing equations

in the hybrid method will generally result in a reduction in the number of unknown model

parameters to be estimated. We will observe two benefits of this methodology. By reducing the

number of mechanistic equations, and consequently the number of unknown parameters, we

are able to obtain a more robust estimation of the model parameters in the mechanistic por-

tion of the model. This is to be expected since in a sense, the hybrid approach allows us to

reduce the dimension and complexity of the parameter space over which we have to optimize,

allowing us to obtain better estimates of the parameters compared to the full dimensional esti-

mation problem required by standard parametric modeling. This improvement is particularly

noticeable when there is large uncertainty in the initial parameter values. Secondly, as a conse-

quence of this robust estimation, the hybrid method offers improved predictions for those var-

iables it models mechanistically. The more accurate parameterization results in improved

short-term prediction accuracy when compared to the other methods.

In this hybrid scheme, obtaining an estimate of the unknown parameters in the n − 1 mech-

anistic equations and an estimate of x(T) requires a combination of the nonparametric analysis

developed in [17] and traditional parametric methodology. The state variable xn, which is not

defined by a mechanistic equation in Eq 4, is represented by delay coordinates within the

UKF. Therefore at step k we have the hybrid state

xHðkÞ ¼ ½x1ðkÞ; x2ðkÞ; . . . ; xn� 1ðkÞ; xnðkÞ; xnðk � tÞ; xnðk � 2tÞ; . . . ; xnðk � dtÞ�
T

The UKF as described above is implemented with this hybrid state xH(k) and the model

described by Eq 5. Notice that in the case of the hybrid model when we have to advance the

state dynamics and form the prior estimate in the UKF, the advancement is done parametri-

cally for the first n − 1 states and nonparametrically for the nth state. Similarly to before, we

can augment xH with the unknown parameters in the n − 1 mechanistic equations allowing for

simultaneous parameter estimation. Once the training data are processed and an estimate of

xH(T) and the parameters are obtained, the hybrid model in Eq 5 is implemented to generate

predictions xH(T + 1), xH(T + 2), . . ., xH(T + TF).
The natural question to ask is which mechanistic equations should be replaced by nonpara-

metric representation in this hybrid scheme? This is a complicated question and inevitably is

situation dependent. In some situations, which hybrid model to choose may not be clear a pri-

ori, and several different models may need to be considered in combination with an uncer-

tainty analysis on the results to determine the optimal hybridization. In other situations, the

mechanistic equations to replace may be clearer. For example, if the researcher is less confident

in the mechanistic description of certain variables, or certain equations include parameters

about which one has less confidence, then those equations should be replaced by their non-

parametric counterpart to reduce the overall error in the model. If one is only interested in cer-

tain parameters or processes, then the appropriate mechanistic equations need to be included

and the remainder of the equations can be replaced by nonparametric evolution to reduce the

estimation complexity and obtain better estimates and predictions for the included equations.

Nevertheless, individual experimental situations will dictate if and how much confidence we
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have in our mechanistic model as well as which portions are most important to our analysis.

These factors must be used as guidance for constructing the preferred hybrid formulation.

Results

We demonstrate the utility of the hybrid methodology, with comparison to standard paramet-

ric and nonparametric modeling and prediction, in the following example systems. When con-

ducting this analysis, two types of error are considered. The first, error in the observations,

manifests itself as noise in the training data which all three methods will have to confront. The

second type, error in the parameters, takes the form of an uncertainty in the initial parameter

values used by the UKF for parameter estimation. Only the parametric and hybrid methods

will have to deal with this parameter error. Throughout, we will refer to a percentage uncer-

tainty which corresponds to the standard deviation of the distribution from which the initial

parameter value is drawn relative to the mean. For example, if the true value for a parameter

p1 is 12 and we have 50% uncertainty in this value, then the initial parameter value used for

estimating p1 will be drawn from the distribution N(12, (0.5 � 12)2).

To quantify prediction accuracy, the normalized root-mean-square-error, or SRMSE, is cal-

culated for each prediction method as a function of forecast horizon. Normalization is done

with respect to the standard deviation of the variable as calculated from the training data. In

using the SRMSE metric, the goal is to be more accurate than if the prediction was simply the

mean of the training data (corresponding to SRMSE = 1). Thus a prediction is better than a

naive prediction when SRMSE < 1, though for chaotic systems prediction accuracy will even-

tually converge to this error level since only short-term prediction is possible.

Prediction in the Lorenz-63 system

As a demonstrative example, consider the Lorenz-63 system [28]

_x ¼ sðy � xÞ

_y ¼ xðr � zÞ � y

_z ¼ xy � bz

ð6Þ

where σ = 10, ρ = 28, β = 8/3. Data are generated from this system using a fourth-order

Adams-Moulton method with sample rate h = 0.05. We assume that 500 training data points

of the x, y and z variables are available, or 25 units of time. The Lorenz-63 system oscillates

approximately once every unit of time, meaning the training set consists of about 25 oscilla-

tions. The goal is to accurately predict the dynamics of x, y and z one time unit after the end of

the training set. However, the observations of each variable are corrupted by Gaussian observa-

tional noise with mean zero and variance equal to 4. Additionally the true value of parameters

σ, ρ and β are unknown. Fig 1 shows an example simulation of this system.

The parametric method utilizes Eq 6 to estimate the model state and parameters, and to

predict the x, y and z dynamics. For the nonparametric method, delay coordinates of the

variables are formed with d = 9 and τ = 1. The local constant model for prediction is built

using κ = 20 nearest neighbors. For the hybrid method, the mechanistic equation governing

the dynamics of y are replaced nonparametrically resulting in the reduced Lorenz-63 model

_x ¼ sðy � xÞ

_z ¼ xy � bz
ð7Þ

Note, this hybrid model in Eq 7 does not require estimation of the ρ parameter since the mech-

anistic equation for y is removed.

Hybrid modeling and prediction of dynamical systems
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Fig 2 shows a comparison of parametric (black), nonparametric (blue) and hybrid (red)

prediction error as a function of forecast horizon. SRMSE results averaged over 500 system

realizations with error bars denoting standard error. With an initial parameter uncertainty

level of 80% (solid lines), the hybrid method offers improved short-term prediction of the

Lorenz-63 x (Fig 2a), y (Fig 2b) and z (Fig 2c) variables over standalone parametric prediction.

Note that parametric prediction at this uncertainty level does very poorly and in the cases of y
and z its result is not seen due to the scale of the error.

The success of the hybrid method can be traced to more accurate estimates of the model

parameters in the mechanistic equations that it uses. Table 1 shows the resulting hybrid and

Fig 1. Example of Lorenz-63 realization. 500 samples, or 25 units of time, of noisy training data (grey circles) are available for (a) x, (b) y and (c) z.

Note, we have only shown the last 5 units of time worth of training data for visualization purposes. From the end of the training data (indicated by

dashed black line), we want to accurately predict the system dynamics within the next unit of time (solid black line).

https://doi.org/10.1371/journal.pcbi.1005655.g001
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parametric estimation of the Lorenz-63 parameters. The hybrid method is able to construct

accurate estimates of both σ and β, with a mean close to the true value and a small standard

deviation of the estimates. The parametric method at the same 80% uncertainty level is unable

to obtain reliable estimates, exemplified by the large standard deviation of the estimates.

Fig 2. Comparison of the prediction methods in the Lorenz-63 system. Results of predicting the Lorenz-63 (a) x, (b) y and (c) z variables

averaged over 500 realizations. Error bars denote standard error over the 500 realizations. Training data consists of 500 data points generated

from Eq 6 with σ = 10, ρ = 28 and β = 8/3 with sample rate h = 0.05. Data are corrupted by Gaussian observational noise with mean 0 and

variance of 4. Parametric (black), nonparametric (blue) and hybrid (red) prediction accuracy with parameter uncertainty of 80% (solid line) plotted

as a function of forecast horizon. Hybrid prediction, which utilizes mechanistic equations in describing x and z but nonparametrically represents y,

offers an improvement in short-term prediction accuracy over standalone nonparametric prediction. Parametric prediction at this uncertainty level

performs poorly in predicting all three variables and in the case of (b) and (c) is not seen due to the scale of the error. For comparison purposes,

the parametric method with 50% (dotted line) and 20% (dashed line) uncertainty is also considered. As the uncertainty shrinks, performance of

the parametric method improves. However, only at a small uncertainty level does it outperform the short-term improvement in prediction afforded

by the hybrid method.

https://doi.org/10.1371/journal.pcbi.1005655.g002
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For comparison purposes, we consider the parametric method at smaller parameter uncer-

tainty levels of 50% (Fig 2, dotted line) and 20% (Fig 2, dashed line). As the uncertainty

decreases for the parametric method, its performance improves. Similarly in Table 1, we

observe that the shrinking uncertainty results in a more accurate estimation of the model

parameters. However at 50% uncertainty, the parametric method is still outperformed by the

hybrid method with a higher uncertainty level. When the uncertainty is small, parametric pre-

diction offers better performance, which is to be expected since it has access to the true model

equations and starts out with close to optimal parameter values. The hybrid method was tested

at these additional uncertainty levels, however its performance did not change substantially.

This can be attributed to the fact that the hybrid method already obtains an accurate estima-

tion of the model parameters at 80% uncertainty and thus shrinking the initial parameter

uncertainty does not drastically change the results.

The hybrid method also provides improved prediction of the x and z variables compared to

standalone nonparametric prediction. We note that hybrid and nonparametric prediction of y
is comparable, which is to be expected since y is represented nonparametrically in the hybrid

model chosen. This is a subtle, but important point to note and throughout our results we will

see that the hybrid method offers improved prediction only for those variables that it models

mechanistically. Those that are modeled nonparametrically will have similar performance to

standalone nonparametric prediction.

The formulation chosen in Eq 7 is of course one of several possible hybrid model decompo-

sitions. As another example, we can consider the hybrid model

_x ¼ sðy � xÞ ð8Þ

where y and z are represented nonparametrically. Notice that for this hybrid model, nonpara-

metric advancement of z does not enter into the mechanistic equation. Fig 3 shows a compari-

son in predicting the x variable between the hybrid model in Eq 8 with 80% uncertainty (solid

red curve) and standalone nonparametric prediction (solid blue curve) for three different

noise levels. Results are averaged over 500 realizations with error bars denoting standard error.

In Fig 3a the training data are corrupted by noise with variance of 1, Fig 3b noise with variance

Table 1. Summary of Lorenz-63 parameter estimation results. Mean and standard deviation calculated over 500 realizations. The hybrid method, which

only needs to estimate σ and β, is robust to a large initial parameter uncertainty. The parametric method on the other hand is unable to obtain reliable estimates

of the Lorenz-63 parameters unless the uncertainty is small enough.

Lorenz-63 Parameter Estimation Results

True Parameter Method Mean Standard Deviation

σ = 10 Hybrid (80% Uncertainty) 9.77 0.75

Parametric (80% Uncertainty) 8.03 4.81

Parametric (50% Uncertainty) 9.84 3.06

Parametric (20% Uncertainty) 10.06 0.95

ρ = 28 Hybrid (80% Uncertainty) NA NA

Parametric (80% Uncertainty) 24.55 14.07

Parametric (50% Uncertainty) 25.63 6.37

Parametric (20% Uncertainty) 27.89 0.83

β = 2.67 Hybrid (80% Uncertainty) 2.58 0.11

Parametric (80% Uncertainty) 1.61 1.34

Parametric (50% Uncertainty) 2.20 0.98

Parametric (20% Uncertainty) 2.63 0.19

https://doi.org/10.1371/journal.pcbi.1005655.t001
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of 4 and in Fig 3c noise with variance of 16. At all three noise levels, the hybrid method outper-

forms the nonparametric method in predicting x. Prediction of y and z are comparable

between the two methods in this instance since these variables are represented nonparametri-

cally by this hybrid model. Prediction accuracy for both methods decreases as the noise level

increases due to growing inaccuracies in the state and parameter estimates as well as inaccurate

nearest neighbors.

Fig 3. Predicting Lorenz-63 x dynamics at three different noise levels. Training data corrupted by noise with variance of (a) 1, (b) 4 and (c)

16. Error bars denote standard error over 500 realizations. Hybrid prediction with 80% uncertainty (solid red line), which utilizes mechanistic

equations in describing x only and nonparametrically represents y and z, offers an improvement in prediction accuracy over standalone

nonparametric prediction (solid blue line). While the accuracy of both methods decreases as the noise level increases, the hybrid method offers

improved prediction accuracy.

https://doi.org/10.1371/journal.pcbi.1005655.g003
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Predicting neuronal network dynamics

We now consider the difficult high dimensional estimation and prediction problem posed by

neuronal network studies. If we are only interested in predicting a portion of the network,

then we can use the proposed hybrid method to refine our estimation and prediction while

simultaneously reducing estimation complexity. As an example of this potential network appli-

cation we consider the prediction of spiking dynamics in a network ofMHindmarsh-Rose

neurons [29]

_xi ¼ yi � aix3
i þ bix

2
i � zi þ 1:2þ

XM

i6¼m

bim
1þ 9e� 10xm

xm

_yi ¼ 1 � cix2
i

_zi ¼ 5� 10� 5 4 xi � �
8

5

� �� �

� zi

� �

ð9Þ

where i = 1, 2, . . .,M. xi corresponds to the spiking potential while yi and zi describe the

fast and slow-scale dynamics, respectively, of neuron i. Each individual neuron in the network

has parameters ai = 1, bi = 3 and ci = 5 which are assumed to be unknown. βim represents the

connectivity coefficient from neuron i to neuronm. For a network of sizeM, we haveM2 −M
possible connection parameters since neuron self connections are not allowed (i.e. βii = 0).

These connection parameters are also assumed to be unknown. The neurons in this

network are coupled to one another through the voltages by an exponential term which acts as

a gating function, allowing the transfer of information only when a neuron is about to spike.

This prevents constant communication across the network, and has biophysical plausibility

[40].

For this example we examine networks of sizeM = 3 with 5 random connections. Data

from these networks are generated using a fourth-order Adams-Moulton method with sample

rate h = 0.08 ms. We assume that the training data consists of 3000 observations, or 240 ms, of

the x1, x2, x3 variables each of which are corrupted by Gaussian noise with mean 0 and variance

of 0.2. Under the stated parameter regime, the neurons in the network spike approximately

every 6 ms, meaning our training set has on average around 40 spikes per neuron. In this

example, we restrict our focus to predicting 8 ms of the x3 variable (though a similar analysis

follows for the prediction of x1 and x2). Fig 4a shows a representative realization of this

problem.

Fig 4b shows the resulting accuracy in predicting x3 when using parametric (black), non-

parametric (blue) and hybrid (red) methods. Results are averaged over 200 realizations with

error bars denoting standard error. Error bars are only shown for every tenth forecast point so

as to aid in visualization. At the 80% uncertainty level (solid line), the parametric method per-

forms poorly. The parametric approach uses the full mechanistic model described by Eq 9 for

modeling and prediction, requiring estimation of the x, y and z state variables and parameters

a, b and c for each neuron, as well as the full connectivity matrix. Notice that once again with

80% uncertainty, the scale of error for the parametric method is much larger compared to the

other methods.

The nonparametric method for this example (τ = 1, d = 9) uses κ = 10 neighbors for build-

ing the local model for prediction. Network level dynamics such as these can prove problem-

atic for nonparametric prediction due to the increased complexity of the system dynamics. As

the size of the network grows, the requisite data needed to make accurate multi-step-ahead
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predictions substantially increases. For the small network in this example, the nonparametric

method is still able to provide fairly accurate predictions. However, dimensionality of the sys-

tem and the required data needed is a considerable limiting factor when analyzing high-

dimensional networks.

Fig 4. Predicting neuron potential x3 in random 3-neuron Hindmarsh-Rose networks. (a) 3000 samples (or 240 ms) of

training data (grey circles) are available from each neuron in the network. From the end of the training data (indicated by

dashed black line), we want to accurately predict the next 8 ms of x3 (solid black line). (b) Forecast accuracy in predicting 8

ms of x3 when using parametric (black), nonparametric (blue) and hybrid (red) methods. Results averaged over 200 randomly

generated 3-neuron Hindmarsh-Rose network realizations and error bars, shown only for every tenth forecast point, denote

standard error. At 80% uncertainty (solid line), the hybrid method outperforms both parametric and nonparametric methods.

When considering the parametric method with 50% uncertainty, prediction accuracy between it and the hybrid method is

comparable over the first 2 ms.

https://doi.org/10.1371/journal.pcbi.1005655.g004
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The benefit of the hybrid method in analyzing this network is that since we are only inter-

ested in neuron 3, we can assume a mechanistic equation for only this neuron

_x3 ¼ y3 � a3x3
3
þ b3x2

3
� z3 þ 1:2þ

XM

36¼m

b3m

1þ 9e� 10xm
xm

_y3 ¼ 1 � c3x2
3

_z3 ¼ 5� 10� 5 4 x3 � �
8

5

� �� �

� z3

� �

ð10Þ

and nonparametrically represent neuron 1 and neuron 2. The hybrid model in Eq 10 results in

a substantial reduction in the complexity of the estimation problem while still giving us some

information about the dynamics of neuron 3. This blending once again results in improved

prediction accuracy. We see that the the hybrid method outperforms both parametric and

nonparametric predictions. For comparison purposes, we show the parametric method at a

smaller uncertainty level of 50% (Fig 4b, dotted line). The hybrid method with higher uncer-

tainty offers comparable prediction within the first 2 ms to the parametric method with this

lower uncertainty level. Note that unlike in the Lorenz-63 example, we do not consider the

parametric method with 20% uncertainty since reasonable parameter estimates and predic-

tions are obtained with 50% uncertainty. Table 2 shows the robustness of the hybrid method

in estimating the individual parameters for neuron 3. Even with a high uncertainty, the hybrid

method is able to obtain accurate and reliable estimates of the neuron parameters compared to

the parametric method at both the high and medium uncertainty levels.

Predicting flour beetle population dynamics

We now investigate the prediction problem in a well-known data set from an ecological study

involving the cannibalistic red flour beetle Tribolium castaneum. In [30], the authors present

experimentally collected data and a mechanistic model describing the life cycle dynamics of T.
castaneum. Their discrete time model describing the progression of the beetle through the lar-

vae, pupae, and adult stages is given by

Lðt þ 1Þ ¼ bAðtÞe� celLðtÞ� ceaAðtÞ

Pðt þ 1Þ ¼ LðtÞð1 � mlÞ

Aðt þ 1Þ ¼ PðtÞe� cpaAðtÞ þ AðtÞð1 � maÞ

ð11Þ

Table 2. Summary of neuron 3 parameter estimation results. Mean and standard deviation calculated over 200 realizations. The hybrid method once

again is robust to a large initial parameter uncertainty. The parametric method on the other hand is unable to obtain reliable estimates of the neuron parame-

ters with large uncertainty.

Neuron 3 Parameter Estimation Results

True Parameter Method Mean Standard Deviation

a3 = 1 Hybrid (80% Uncertainty) 0.98 0.04

Parametric (80% Uncertainty) 1.07 0.51

Parametric (50% Uncertainty) 0.98 0.15

b3 = 3 Hybrid (80% Uncertainty) 2.96 0.10

Parametric (80% Uncertainty) 2.92 0.88

Parametric (50% Uncertainty) 2.92 0.26

c3 = 5 Hybrid (80% Uncertainty) 4.93 0.16

Parametric (80% Uncertainty) 4.66 1.04

Parametric (50% Uncertainty) 4.83 0.43

https://doi.org/10.1371/journal.pcbi.1005655.t002
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where L, P and A correspond to larvae, pupae and adult populations, respectively. The essential

interactions described by this model are (i) flour beetles become reproductive only in the adult

stage, (ii) adults produce new larvae, (iii) adults and larvae can both cannibalize larvae, and

(iv) adults cannibalize pupae. We note that since Eq 11 only approximates the life cycle

dynamics of the beetle, there is a degree of model error in the proposed system, unlike the pre-

vious examples.

The authors of [30] experimentally set the adult mortality rate (μa) to 0.96 and the recruit-

ment rate (cpa) from pupae to adult to seven different values (0, 0.05, 0.10, 0.25, 0.35, 0.50, 1.0).

Experiments at each recruitment rate value were replicated three times resulting in 21 different

datasets. Each dataset consists of total numbers of larvae, pupae, and adults measured bi-

weekly over 82 weeks resulting in 41 measurements for each life stage. These data were fit

to Eq 11 in [30] and parameter estimates b = 6.598, cel = 1.209 × 10−2, cea = 1.155 × 10−2 and

μl = 0.2055 were obtained. We treat these parameter values as ground truth when considering

the different parameter uncertainty levels for fitting the data to the model.

In our analysis of this system, we treat the first 37 measurements (or 74 weeks) within an

experiment as training data and use the remaining 4 time points (or 8 weeks) for forecast eval-

uation. Fig 5 shows an example of this setup for a representative dataset. Fig 6 shows the results

of predicting the larvae (Fig 6a), pupae (Fig 6b) and adult (Fig 6c) populations using paramet-

ric (black), nonparametric (blue) and hybrid prediction methods with 80% (solid lines) param-

eter uncertainty. Error bars correspond to the standard error over the 21 datasets. The

parametric method uses the full mechanistic model described in Eq 11 to estimate the popula-

tion state and parameters b, cel, cea and μl before prediction. We note in Fig 6 that the paramet-

ric method is not seen due to the scale of the error, and is significantly outperformed by the

nonparametric prediction (τ = 1, d = 2, κ = 5). For the hybrid method, we only consider the

mechanistic equations for pupae and adult population dynamics

Pðt þ 1Þ ¼ LðtÞð1 � m1Þ

Aðt þ 1Þ ¼ PðtÞe� cpaAðtÞ þ AðtÞð1 � maÞ
ð12Þ

and nonparametrically represent larvae. Similarly to our previous examples, the hybrid

method outperforms parametric prediction at the 80% uncertainty level. The parametric

method with a smaller uncertainty of 50% (dotted lines) offers comparable performance to the

hybrid method with larger uncertainty. As a result of the hybrid model described by Eq 12,

prediction accuracy for larvae (Fig 6a) should be comparable between the hybrid and nonpara-

metric methods, and we do in fact see overlap between the two prediction curves. However,

the hybrid method in this example does give us improved one-step ahead (2 weeks) prediction

of pupae levels and improved two-step ahead (4 weeks) prediction for adult population levels

over standalone nonparametric prediction. After these forecast horizons, there is overlap in

the error bars between the two methods.

Conclusion

By blending characteristics of parametric and nonparametric methodologies, the proposed

hybrid method for modeling and prediction offers several advantages over standalone meth-

ods. From the perspective of model fitting and the required parameter estimation that arises in

this process, we have shown that the hybrid approach allows for a more robust estimation of

model parameters. Particularly for situations where there is a large uncertainty in the true

parameter values, the hybrid method is able to construct accurate estimates of model parame-

ters when the standard parametric model fitting fails to do so. At first this may seem counter-

intuitive, but in fact it is not that surprising. The replacement of mechanistic equations with
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their nonparametric representations in effect reduces the dimension of the parameter space

that we have to optimize in, resulting in better parameter estimates. As we have demonstrated

in the above examples, this refinement in the parameter estimates leads to an improvement in

short-term prediction accuracy for the mechanistic equations used by the hybrid model.

The limitations of the hybrid method are similar to those of parametric and nonparametric

methods in that if not enough training data are available then accurate estimation and predic-

tion becomes difficult. However, the demonstrated robustness of the hybrid method to large

parameter uncertainty is encouraging, particularly when considering experimental situations

where we may not have a good prior estimate of the model parameters. One could consider

implementing the hybrid method in an iterative fashion, estimating the parameters of each

Fig 5. Example data set from T. castaneum experiment presented in [30]. 37 observations, or 74 weeks, of training data (grey circles) are

available for (a) larvae, (b) pupae and (c) adult population levels. From the end of the training data (indicated by dashed black line), we want to

accurately predict the next 8 weeks of population dynamics (solid black line).

https://doi.org/10.1371/journal.pcbi.1005655.g005
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equation separately, then piecing the model back together for analysis and prediction. We can

think of this as an iterative hybrid method, and is the subject of future work.

We view this work as complementary to recent publications on forecasting [49, 50, 60]. The

authors of [49, 50] advocate nonparametric methods over parametric methods in general,

while a letter [60] addressing the work of [49] showed that a more sophisticated method for

model fitting results in better parameter estimates and therefore model-based predictions

which outperform model-free methods. Our results support the view that no one method is

uniformly better than the other. As we showed in the above examples, in situations where the

model error and uncertainty in initial parameters are relatively small, the parametric approach

Fig 6. Results for predicting population levels of T. castaneum. Average SRMSE over 21 experimental datasets when using parametric

(black curve), nonparametric (blue curve) and hybrid (red curve) methods for predicting (a) larvae, (b) pupae and (c) adult population levels with

uncertainty of 80% (solid line) and 50% (dashed-dotted line). Error bars correspond to standard error over the 21 datasets. Hybrid prediction with

80% uncertainty offers improved prediction over both nonparametric and parametric with 80% uncertainty (not visible due to scale of error), and

comparable performance to parametric with 50% uncertainty.

https://doi.org/10.1371/journal.pcbi.1005655.g006
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outperforms other prediction methods. Furthermore it gives us system relevant parameter val-

ues that have some quantifiable interpretation. Often in experimental studies though, we are

not operating in this ideal situation and instead are working with a model that has substantial

error with a large uncertainty in parameters which can lead to inaccurate system inference. In

situations such as these, nonparametric methods are particularly useful given their reliance on

data only. Of course their limitation is that they sacrifice the potential for biophysical interpret-

ability during the model fitting process.

The main appeal of the hybrid method is that we can confront these situations without hav-

ing to completely abandon the use of either parametric or nonparametric methodologies,

effectively operating within the grey spectrum of mathematical modeling. While we explored

in detail the robustness of the hybrid method to large levels of parameter uncertainty in the

mechanistic portion of the model, its usefulness stretches well beyond that. In some instances,

we may only have a model for some of the states, or portions of the model may have higher

error than others. By supplementing these parts with their nonparametric representation, the

hybrid method would allow us to only use the parts of the model we are confident in and thus

improve our analysis. The quantification of model error and uncertainty is thus an important

future direction to incorporate into this hybrid modeling framework. Uncertainty quantifica-

tion methods will allow us to further evaluate the confidence of the various estimates and pre-

dictions. Additionally, incorporating ideas from adaptive filtering [38] would give us a

framework with which to evaluate the error present during the data fitting process for each

model. Leveraging these fields of mathematical analysis would provide us with additional guid-

ance in forming these hybrid models.
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