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ABSTRACT New approaches are needed to control leprosy, but understanding of
the biology of the causative agent Mycobacterium leprae remains rudimentary, prin-
cipally because the pathogen cannot be grown in axenic culture. Here, we applied
13C isotopomer analysis to measure carbon metabolism of M. leprae in its primary
host cell, the Schwann cell. We compared the results of this analysis with those of a
related pathogen, Mycobacterium tuberculosis, growing in its primary host cell, the
macrophage. Using '3C isotopomer analysis with glucose as the tracer, we show that
whereas M. tuberculosis imports most of its amino acids directly from the host mac-
rophage, M. leprae utilizes host glucose pools as the carbon source to biosynthesize
the majority of its amino acids. Our analysis highlights the anaplerotic enzyme phos-
phoenolpyruvate carboxylase required for this intracellular diet of M. leprae, identify-
ing this enzyme as a potential antileprosy drug target.

IMPORTANCE Leprosy remains a major problem in the world today, particularly af-
fecting the poorest and most disadvantaged sections of society in the least devel-
oped countries of the world. The long-term aim of research is to develop new treat-
ments and vaccines, and these aims are currently hampered by our inability to grow
the pathogen in axenic culture. In this study, we probed the metabolism of M. lep-
rae while it is surviving and replicating inside its primary host cell, the Schwann cell,
and compared it to a related pathogen, M. tuberculosis, replicating in macrophages.
Our analysis revealed that unlike M. tuberculosis, M. leprae utilized host glucose as a
carbon source and that it biosynthesized its own amino acids, rather than importing
them from its host cell. We demonstrated that the enzyme phosphoenolpyruvate
carboxylase plays a crucial role in glucose catabolism in M. leprae. Our findings pro-
vide the first metabolic signature of M. leprae in the host Schwann cell and identify
novel avenues for the development of antileprosy drugs.
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available only in vivo. However, despite this genomic downsizing, its essential central
metabolic pathways appear to remain intact and as competent as those of M. tuber-
culosis, so why M. leprae fails to grow in vitro remains a puzzle. Also, there remains a
major question about the intracellular nutrient sources utilized by M. leprae growing
inside its human host cell. It is increasingly recognized that metabolism plays a key role
in the survival and virulence of intracellular pathogens (8-11). Carbon metabolism has
been extensively investigated in M. tuberculosis both in vitro (9, 10) and ex vivo (8, 11)
as a route toward identification of novel drug targets. It has been shown that M.
tuberculosis accesses multiple carbon sources, including lipids and cholesterol, when
replicating inside its host macrophage cell (8, 10, 11). For intracellular M. leprae,
impairment of host cell cholesterol metabolism decreases its survival, but cholesterol
was not utilized as either an energy or carbon source by the bacilli (12-17). This is
consistent with in silico studies that demonstrated that M. leprae has lost many genes
for cholesterol catabolism, including the Mce4 operon, which codes for a sterol lipid
transport system found in other mycobacteria, including M. tuberculosis (12). Fatty acids
have also been suggested as potential carbon sources, as palmitic acid is oxidized by
M. leprae (18, 19). Infection by M. leprae increases glucose uptake in Schwann cells (20),
yet whether this relates to the uptake of glucose as a carbon source by M. leprae is
unknown.

Here, '3C isotopomer analysis was used to study the metabolic interactions between
M. leprae and Schwann cells, and these results were compared to the profile of M.
tuberculosis replicating within human macrophages. Our analysis shows major differ-
ences in the metabolic adaptations of these two pathogens in their respective intra-
cellular environment.

Assimilation of ['3C/lglucose by host and pathogen. Previous studies showed
that infection with M. leprae boosted the glucose uptake rate of Schwann cells,
suggesting that this sugar is a potential carbon source for the pathogen (20). To test
this hypothesis, Schwann cells were infected with M. leprae in the presence of
['3Clglucose. We used a multiplicity of infection (MOI) of 100:1 in order to obtain
approximately 83% of Schwann cells infected with M. leprae (14). Infected cells were
then incubated in ['3Cg]glucose-containing tissue culture media, before they were
harvested, lysed, and separated into eukaryotic and bacterial fractions using our
previously established methods (8). To directly compare results to the intracellular
metabolism of M. tuberculosis, we performed the same postinfection ['3C/lglucose
labeling experiments with the THP-1 macrophage-M. tuberculosis model, which served
as a control for our M. leprae-Schwann cell model (8). Control experiments were
performed using uninfected mammalian cells (Schwann or macrophages) and bacteria
(M. tuberculosis or M. leprae) incubated in RPMI 1640 medium containing ['3C¢lglucose.
Cells were lysed, and 3C enrichment (*3C incorporated from the tracer) and isotopomer
distribution of amino acids were measured in eukaryotic and bacterial fractions by gas
chromatography-mass spectrometry (GC-MS) (21, 22) (Fig. 1; see also Data Set S1 in the
supplemental material). As an additional check, we also performed a prelabeling
experiment, in which Schwann cells were passaged three times in ['3Clglucose-
containing medium prior to infection with M. leprae, followed by recovery and '3C
analysis of host and bacterial amino acids. However, by using this experimental
approach, we found significantly lower levels of '3C incorporation with only a few
amino acids labeled in M. leprae. This was probably because of dilution of label in
prelabeled Schwann cells (see Fig. S1, panel i.a in the supplemental material). The
comparison of '3C profiles in the detected amino acids of M. leprae from the prelabeling
experiment were identical to those derived from postinfection pulsed Schwann cells
(Fig. S1, panel ii). This confirms that the labeling profiles from pulsed experiments were
not biased by the experimental approach used in this study.

To validate our results, it was first necessary to demonstrate that the fractionation
protocol successfully separated host and bacterial cells. This was confirmed by the
demonstration that intracellular M. leprae and infected Schwann cell fractions had
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FIG 1 Assimilation of ['3C,]glucose by pathogens and host cells. (a and b) Average '*C enrichments are compared
between uninfected Schwann cells, M. leprae-infected Schwann cells, intracellular M. leprae, and M. leprae in RPMI
1640 medium (control) (a) and uninfected THP-1 macrophage, M. tuberculosis-infected THP-1 macrophages,
intracellular M. tuberculosis (Mtb), and Mtb in RPMI 1640 medium (control) (b). (c to f) '3C isotopomer profiles are
shown in M. leprae-infected Schwann cells (c), intracellular M. leprae (d), M. tuberculosis-infected THP-1 macro-
phages (e), and intracellular M. tuberculosis (f). Measurements are shown as heat maps with a single gradient to
highlight the proportional abundances of isotopomers for an amino acid. M+1, M+2, M+3, M+4, and M+5 are
the isotopomer families with different numbers of labeled carbons. Significant differences in the profiles between
M. leprae and infected Schwann cells are indicated by an asterisk. The relative abundances of each isotopomer (see
Data Sets S2 and S3 in the supplemental material) are indicated by a color gradient. Amino acids and m/z values
are as follows: alanine (ALA), m/z 260; glycine (GLY), m/z 246; serine (SER), m/z 390; aspartate/asparagine (ASP/ASN
[ASP/N]), m/z 418; glutamate/glutamine (GLU/GLN [GLU/N]), m/z 432; phenylalanine (PHE), m/z 336; threonine
(THR), m/z 404; valine (VAL), m/z 288; proline (PRO), m/z 258; isoleucine (ILE), m/z 274; and tyrosine (TYR), m/z 466.
Amino acids not shown in the panels had no detectable '3C. Essential amino acids in Schwann cells (a) and THP-1
macrophages (b) are marked with an asterisk. Measurements are averages plus standard deviations (SD) (error bars)
from three independent infection experiments and are included in Data Sets S2 and S3.

different '3C enrichment of amino acids (Fig. 1a). Significantly, there was no '3C label
incorporated the essential amino acids of Schwann cells, such as phenylalanine (Phe),
threonine (Thr), valine (Val), and isoleucine (lle), but label was incorporated into these
amino acids derived from the bacterial fraction, confirming the separation of Schwann
cell and M. leprae compartments. This finding also demonstrated that intracellular M.
leprae bacilli are metabolically active and synthesizing new protein (Fig. 1a and Data Set
S1). In contrast, there was very little 3C incorporation when M. leprae was incubated in
RPMI 1640 medium, consistent with the lack of axenic growth (Fig. 1a). These control
experiments also confirmed that the incorporation of label into M. leprae is taking place
within its host cell, rather than in the RPMI 1640 tissue culture medium, confirming that
the intracellular results represented the metabolism of M. leprae within its host cell,
rather than being an artifact of being in a pool of RPMI 1640 medium. For M.
tuberculosis-infected THP-1 macrophages, we observed a similar pattern of segregation
of 13C assimilation as previously described (8) with no enrichment in the essential
amino acids of the host cell fractions, but the same amino acids were labeled in the M.
tuberculosis's fraction (Fig. 1b).
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The incorporation of '3C from ['3C¢]glucose into M. leprae amino acids demonstrates
that the leprosy bacillus has access to glucose-derived carbon from the host cell. The
majority of the amino acids showed <10% '3C enrichment. This is likely to be a
reflection of the slow dynamics of replacement of unlabeled amino acid pools synthe-
sized before incubation with labeled glucose. It may also reflect utilization of additional
unlabeled carbon sources. However, considering only the '3C enrichment data, it is not
possible to distinguish whether glucose or some product of glucose catabolism (such
as pyruvate) is imported from the host cell. To gain further insights into the precise
nature of the source of carbon, we first needed to ascertain which amino acids were
imported directly from the host cell and which were biosynthesized by M. leprae and
thereby function as reporters of M. leprae metabolism. We compared the '3C mass
isotopomer distribution (the pattern and proportion of '2C/'3C in the carbon backbone)
of five amino acids that had significant (>1%) "3C enrichment in both hosts and the
pathogens. The profiles of three M. leprae amino acids, serine (Ser), aspartate/aspara-
gine (Asp/Asn), and glutamate/glutamine (Glu/Gln), were significantly different from
the same amino acids from the infected Schwann cell (Fig. 1c and d), indicating that
these amino acids are biosynthesized by the pathogen rather than imported from the
host.

Of the labeled M. leprae amino acids, only alanine (Ala) and glycine (Gly) had similar
isotopomer profiles in M. leprae and in Schwann cells, suggesting that these amino
acids could be acquired by M. leprae directly from the host cell (Fig. 1c and d). In
contrast, the profiles of all five of these amino acids from intracellular M. tuberculosis
were indistinguishable from the same amino acids in its host THP-1 macrophage
(Fig. 1e and f), indicating that, as previously described (8), M. tuberculosis imports these
amino acids from its host cell and directly incorporates them into biomass. Our finding
that M. leprae amino acids are biosynthesized rather than imported is consistent with
previous proteomic analyses, which showed that enzymes required for biosynthesis of
several amino acids such as Asp/Asn, Ala, Thr, cysteine, proline (Pro), lysine, histidine,
leucine, lle, and Val are synthesized by intracellular M. leprae (23).

M. leprae utilized host glucose pools to biosynthesize amino acids. Since amino
acids are synthesized from precursors in central metabolism, the isotopomer profile of
biosynthesized (rather than imported) amino acids is a reporter of M. leprae’s central
carbon metabolism. For amino acids such as Val, Gly, and Ser that are synthesized from
precursors in the glycolytic arm of metabolism, all carbon atoms were '3C labeled in
intracellular M. leprae, indicating that the entire 3C, backbone of the labeled glucose
was delivered intact to their precursor (Fig. 2 and Fig. S2). This was in contrast to the
pattern for M. tuberculosis, in which only Ala was fully labeled, whereas Val, Ser, and Gly
had fewer labeled carbon atoms, indicating considerable carbon shuffling between the
carbon backbone of labeled glucose and their precursor. The labeling pattern for Phe,
which is synthesized from both the glycolytic and pentose phosphate pathway (PPP)
arms of the metabolic network, was also very different between M. leprae and M.
tuberculosis. In particular, the highest '3C isotopomer for Phe in M. leprae was M+6 (six
carbon atoms are '3C labeled), indicating that the pathogen incorporates the entire
carbon backbone of glucose into its biosynthesis (Fig. 2 and Fig. S2). In contrast, Phe in
M. tuberculosis was characterized by a range of isotopomers with a notable absence of
M+6, consistent with considerable carbon shuffling between labeled glucose and the
amino acid’s precursors and consistent with previous studies that indicate that patho-
gen imports carbon substrates, other than glucose, such as lipids, from its host cell (8,
10, 11, 24).

The amino acids derived from the tricarboxylic acid cycle (TCA) cycle, including
Asp/Asn, Thr, and lle, also showed very different profiles between M. leprae and M.
tuberculosis (Fig. 2 and Fig. S2). For M. tuberculosis, the predominant isotopomers were
M+1 and M+2, consistent with our previous studies indicating that the intracellular
pathogen utilizes carbon sources, such as host-derived lipids (rather than glucose),
which are catabolized through the oxidative TCA cycle (8, 9). A recent work by Serafini
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FIG 2 '3C isotopomer profiles of amino acids in intracellular M. leprae versus M. tuberculosis (Mtb). (A) Amino acid profiles are plotted on a metabolic map
showing the reactions for the TCA cycle, glycolysis, PPP, and anaplerotic pathway (ANA). M+1, M+2, M+3, M+4, M+5, M+6, M+7, M+8, and M+9 are the
mass isotopomer families. Proportional increases or decreases in the '3C abundance of mass isotopomers of a metabolite are indicated by a single gradient.
The isotopomer family occupying the highest proportion of '3C is shown with the highest color intensity. The metabolites are malate oxaloacetate (MVALOAA),
fumarate (FUM), succinate (SUC), succinyl coenzyme A (SUCCOA), 2-oxoglutarate (OXG), isocitrate (ICIT), citrate (CIT), acetyl coenzyme A (ACCOA), pyruvate (PYR),
phosphoglyceric acid (PGA), glyceraldehyde-3-phosphate (GAP), fructose-6-bisphosphate (FBP), fructose-6-phosphate (F6P), glucose-6-phosphate (G6P),
pentose-5-phosphate (P5P), erythrose-4-phsophate (E4P), sedoheptulose-7-phosphate (S7P), ketoisovalerate (KIV), chorismate (CHOR), histidine (HIS), glutamine
(GLN), glutamic acid (GLU), lysine (LYS), methionine (MET), and arginine (ARG). Measurements for M. leprae and M. tuberculosis are averages = SD from three
independent infection experiments (Data Sets S1 and S2). Statistically significant changes (P < 0.05) between the quantitative proportions of M. leprae and M.

tuberculosis obtained by Student’s t test are indicated by an asterisk.

et al. (25) also demonstrated that M. tuberculosis utilized both lactate and pyruvate as
carbon sources in vitro, suggesting that these terminal glycolytic intermediates could
be carbon sources for M. tuberculosis during infection. In contrast, the predominant
isotopomer for these amino acids in M. leprae was M+3, suggesting that the carbon
backbone of their precursor, oxaloacetate, is derived from glucose via anaplerotic
carboxylation of phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (7).
The '3C isotopomer profile for Asp/Asn from prelabeling experiments was also similar,
demonstrating identical pattern of glucose utilization via phosphoenolpyruvate car-
boxylase in both experiments (Fig. S1, panel ii).

Infection induces metabolic perturbations in the host cell. We compared the '3C
isotopomer profiles of amino acids in uninfected (control) and infected Schwann cells
and THP-1 macrophages (Fig. S3a to g). There were no significant alterations in the
profiles of Ala, Gly, Ser, Asp/Asn, Glu/Gln, and Pro in infected Schwann cells, suggesting
that there were no changes in host cell carbon flux through glycolysis and the TCA
cycle (Fig. S3, panels a.i, b.i, c.i, d.i, e.i, and f.i) as a result of infection. This was in contrast
to M. tuberculosis-infected THP-1 macrophages, which demonstrated differences in the
metabolic profiles of Gly, Ser, Asp/Asn, Glu/GIn, and Pro amino acids that are derived
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from glycolysis and the TCA cycle (Fig. S3, panels b.ii, c.ii, d.ii, e.ii, and f.ii), suggesting
major shifts in carbon flux through these host cell pathways upon M. tuberculosis
infection. Host cell metabolism was not, however, entirely unperturbed by M. leprae
infection. The isotopomer profile of tyrosine (Tyr) was different between uninfected and
infected Schwann cells (Fig. S3, panel g.i). The carbon backbone of Tyr is derived from
chorismate which is synthesized by the combination of carbons from erythrose-4-
phosphate and two molecules of PEP that enter the PPP. The data suggest that M.
leprae infection stimulates increased carbon flux into the PPP in Schwann cells. These
findings are consistent with previous evidence of increased glucose-6-phosphate de-
hydrogenase activity, a key enzyme of the oxidative PPP, in infected Schwann cells (20).
M. tuberculosis infection of macrophages also induced significant changes in the
isotopomer profile of Tyr, indicating that infection with M. tuberculosis induced a similar
increased routing of carbon flux through the PPP of host cells (Fig. S3, panel g.ii).

In summary, we demonstrated that the intracellular metabolism of M. leprae differs
from that of M. tuberculosis. Unlike M. tuberculosis, M. leprae accesses host cell glucose
pools as carbon sources and uses the anaplerotic pathway for the synthesis of amino
acids derived from the TCA cycle. The primary M. leprae host cell, the Schwann cell, is
the most important glial cell involved in metabolism and function of the nervous
system, and Schwann cells have access to glucose as the primary energy source in the
nervous system (26). Our data suggest that M. leprae accesses host glucose pools and
possibly the structural analogs of glucose, such as fructose or galactose, or even a
glucose (or isomer) polymer, such as glycogen, which is available in Schwann cells,
potentially explaining the lack of glucose incorporation in RPMI 1640 medium (27).
Note also that these differences in intracellular metabolism between M. leprae and M.
tuberculosis are not predictable by considering the gene repertoire of these related
pathogens, as despite the genetic downsizing of M. leprae, both pathogens encode all
the genes necessary for the central metabolic pathways. However, in contrast to M.
tuberculosis's complex anaplerotic node which is composed of phosphoenolpyruvate
carboxykinase (PEPCK), malic enzyme (MEZ), pyruvate carboxylase (PCA), and pyruvate
phosphate dikinase (PPDK), the M. leprae genome encodes only two anaplerotic
enzymes linking glycolysis and the TCA cycle: PEP carboxylase (PPC) and PEPCK (Fig. 3)
(28, 29). In other bacterial species where both enzymes are present, such as Escherichia
coli, Bacillus subtilis and Corynebacterium glutamicum, PEPCK is used primarily for
gluconeogenesis, whereas PPC is employed for anaplerotic synthesis of oxaloacetate
during glucose metabolism (30-32). Also, in E. coli, PEPCK failed to complement for the
loss of PPC (30), suggesting that, in M. leprae, PPC plays an anaplerotic role. Our analysis
thereby suggests that PPC is likely to be essential for the intracellular survival of M.
leprae, and since it is absent in humans, it is a potential drug target for treatment of
leprosy.

Experimental procedures. (i) Bacterial strains and growth. M. leprae Thai-53
strain of M. leprae was obtained from the Department of Biology at Lauro de Souza
Lima Institute by Patricia Sammarco Rosa. Briefly, M. leprae was isolated from athymic
nu/nu mouse footpads and then purified and counted at the Oswaldo Cruz Institute as
described previously (33). For the experiments, M. leprae viability over 80% was
measured by using a LIVE/DEAD bacterial viability kit (Life Technologies). M. tuberculosis
H37Rv was cultivated on Middlebrook 7H11 agar and Middlebrook 7H9 broth supple-
mented with 5% (vol/vol) oleic acid-albumin-dextrose-catalase enrichment supplement
(Becton Dickinson) and 0.5% (vol/vol) glycerol at 37°C with agitation (150 rpm).

(ii) Schwann cell culture and M. leprae infection. The human Schwann cell line
ST88-14 was obtained from the American Type Culture Collection (ATCC) and the cell
culture was maintained in RPMI 1640 medium supplemented with 10% fetal bovine
serum (Cripion Biotechnology) in 5% CO, atmosphere at 37°C. For infection, 3 X 106
Schwann cells were incubated using a multiplicity of infection (MOI) of 100 bacteria per
cell (100:1) for 48 h at 33°C, the ideal temperature of M. leprae maintenance. After 48 h
of the infection, the medium was changed to 30 ml RPMI 1640 medium without glucose
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phoglyceric acid (PGA), glyceraldehyde-3-phosphate (GAP), fructose-6-phosphate (F6P), and glucose-6-
phosphate (G6P).

supplemented with 100% [U-"3C] labeled glucose (Cambridge Isotopes Laboratories)
and 10% fetal bovine serum for 72 h.

(iii) THP-1 cell culture and M. tuberculosis infection. The THP-1 human monocytic
cell line was obtained from ATCC TIB-202 and was cultured as previously described (8).
Briefly, cells were grown in RPMI 1640 medium supplemented with 10% heat-
inactivated fetal calf serum (Sigma). Macrophages were generated by differentiation of
monocytes using 50 nM phorbol 12-myristate 13-acetate (PMA) (Sigma) for 72 h at 37°C,
5% CO,, and 95% humidity, and were used for infection assays. Bacterial infections were
performed as previously described (8). Each flask was seeded with 1 X 10 THP-1 cells,
and differentiated cells were washed with phosphate-buffered saline (PBS) supple-
mented with 0.49 mM Mg2™ and 0.68 mM Ca2™ (PBS+ [PBS supplemented with CaCl,
and MgCL,]). M. tuberculosis cultures were grown exponentially in Middlebrook 7H9
liquid medium to an optical density of 1.0 (1 X 108 CFU mI~") for the infection and then
washed in PBS and resuspended in RPMI 1640 medium. A total of 1 ml of bacterial
suspension was added to each flask to achieve a MOI of 5 and incubated for 3 to 4 h.
After incubation, the macrophages were washed three times with PBS+ (Sigma-
Aldrich), and 30 ml of RPMI 1640 medium containing 100% [U-"3C,] glucose (Cam-
bridge Isotope Laboratories) was added to each flask and incubated for 48 h at 37°C
and 5% CO..

(iv) [U-'3C¢lglucose labeling of bacterial cultures in RPMI 1640 medium. M.
leprae bacilli (3 X 108) were maintained in RPMI 1640 medium containing 100% [U-
13C]lglucose at 33°C for 48 h. M. tuberculosis bacilli (1 X 108) were maintained in RPMI
1640 medium containing 100% [U-'3C¢]glucose at 37°C, 150 rpm for 48 h. After incu-
bation, bacterial cultures were centrifuged at 11,000 X g for 10 min, and the amino acid
extract was prepared as previously described (8), proceeding as summarized below.

(v) Amino acid extraction. Infected Schwann cells and macrophages were har-
vested by removing the culture medium, and the adhered cells were washed with 3 ml
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of ice-cold PBS and lysed with 0.1% Triton X-100 (8). The cellular and bacterial fractions
for both infection models were harvested by differential centrifugation method (8). The
bacterial pellet was washed twice with RIPA buffer (radioimmunoprecipitation assay
buffer) (Sigma), and both bacterial and soluble amino acids from the cellular compart-
ment were subjected to hydrolysis with 6 N hydrochloric acid (HCI) at 100°C overnight.
After acid hydrolysis, samples were dried with nitrogen gas, followed by the addition
of 1 ml of distilled water. Then, the samples were transferred to another tube and
centrifuged at 11,000 X g. After centrifugation, samples were dried using nitrogen gas.

(vi) '*C mass isotopomer analysis. Amino acid hydrolysates were dried and
derivatized using pyridine and tert-butyldimethyl silyl chloride (TBDMSCI) (Sigma) (21).
Amino acids were analyzed using a VF-5ms inert 5% phenyl-methyl column (Agilent
Technologies) on a gas chromatography-mass spectrometry (GC-MS) system. Due to
hydrolysis, amino acid pairs aspartate/asparagine and glutamine/glutamate were de-
tected together as a single pool in MS analysis. MS data were extracted using Chem-
station GC-MS software (Agilent Technologies) and were baseline corrected using
Metalign (22). Mass isotopomer data were corrected for natural isotope effects using
MSCorr program (34). Average '3Cin an amino acid was calculated from the fractional
abundance of the '3C mass isotopomer in the entire fragment (21). Graphical
representation and statistical analysis of the data were performed by using Graph-
Pad Prism 8.0.
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