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Abstract

Motivation: Cell-type abundance data arising from mass cytometry experiments are compositional in nature.
Classical association tests do not apply to the compositional data due to their non-Euclidean nature. Existing meth-
ods for analysis of cell type abundance data suffer from several limitations for high-dimensional mass cytometry
data, especially when the sample size is small.

Results: We proposed a new multivariate statistical learning methodology, Compositional Data Analysis using
Kernels (CODAK), based on the kernel distance covariance (KDC) framework to test the association of the cell type
compositions with important predictors (categorical or continuous) such as disease status. CODAK scales well for
high-dimensional data and provides satisfactory performance for small sample sizes (n< 25). We conducted simula-
tion studies to compare the performance of the method with existing methods of analyzing cell type abundance data
from mass cytometry studies. The method is also applied to a high-dimensional dataset containing different sub-
groups of populations including Systemic Lupus Erythematosus (SLE) patients and healthy control subjects.

Availability and implementation: CODAK is implemented using R. The codes and the data used in this manuscript
are available on the web at http://github.com/GhoshLab/CODAK/.

Contact: prudra@okstate.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Recent developments in single-cell-based technologies, such as mass
cytometry (i.e. cytometry by time-of-flight, CyTOF), have led to the
need for computational and analytic approaches that can accommo-
date the high dimensionality and single-cell granularity. The analysis
of CyTOF data can elucidate novel disease biomarkers and mecha-
nisms of the underlying immunopathology, leading to improved
treatments and prognostic measures.

Mass cytometry allows the simultaneous detection of more
than 40 proteins per cell in hundreds of thousands of cells per sam-
ple (Bendall et al., 2011; Saeys et al., 2016). The data are often
clustered into cell subpopulations first, which can then be used to
answer scientific questions regarding the abundance of cell types
and expressions of specific parameters (e.g. activation markers,
signaling proteins, cytokines) across groups, such as disease and
control groups, pre- and post-treatment groups, or samples that
are stimulated or not. There have been significant research on

clustering procedures with these high-dimensional datasets [see
Aghaeepour et al. (2013) and Weber and Robinson (2016) for a re-
view]. We will focus on the downstream statistical analysis after
the clustering has been performed. The statistical questions about
the tree-structured cell population data (e.g. Fig. 1) can be visual-
ized in two layers. First, it is clinically interesting to know if the
abundance of the cell subpopulations is different across two or
more groups and/or conditions. Given the proportion of cell types
for each sample, the next question is whether there is any differen-
tial expression of activation markers, signaling proteins or cyto-
kines (functional measurements of the cell populations studied).
The latter is also known as ‘cell state’ analysis while the former is
called ‘cell type’ analysis (Weber et al., 2019). In this paper, we
focus on the analysis of cell type.

While there are a variety of methods that test differential cell
type abundance (Arvaniti and Claassen, 2017; Bruggner et al., 2014;
Lun et al., 2017; Weber et al., 2019), several of them suffer from
limitations such as
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1. Difficulty of interpretation due to not clearly distinguishing be-

tween cell type (abundance/frequency) and cell state (activation,

function) questions.

2. No way of testing statistical significance for individual features

(cell types).

3. Computational scalability.

See Weber et al. (2019) for a more detailed discussion on these
limitations. The two approaches that overcome these limitations are
(i) a GLMM-based approach using logistic mixed model (Nowicka
et al., 2017) and (ii) the diffcyt method by Weber et al. (2019).
These approaches effectively perform mass univariate analyses for
each cell type. This ignores correlations between cell types as well as
increases the multiple testing burden. In this paper, we propose a
statistical framework that can test for the association of the multidi-
mensional cell-type profile (or, ‘cell-type abundance’, to be used
interchangeably) with the predictor variables (e.g. disease groups).
Starting the analysis with the test of this global null hypothesis
avoids the problem of multiple comparisons and also accounts for
the correlation structure present in the data.

This multivariate approach can often help us better understand
the biological functions of immune cell types. In the context of
understanding disturbances to normal immune phenotype and func-
tion (i.e. a disease process, iatrogenic intervention), the interdepend-
ent relations between different cell types and their function need to
be addressed collectively. If we evaluated statistical significance for
changes in each single-cell population, independent of the frequency
changes in other cellular populations, it would not accurately depict
the immunopathology, as the immune system is dynamic and
changes in one compartment directly (or indirectly) affect the other.
This is also the reason why ‘biomarker panels’ are currently used in-
stead of single disease biomarkers, since single parameters do not ac-
curately prognosticate disease progression or response to therapy
and cannot account for the underlying pathology (no matter how
significant that single parameter is). Lastly, the field of multiomic
and systems immunology is accelerating our understanding of dis-
ease processes because of the capability to assess multiple processes
simultaneously, depicting a closer view of the disease process.
Hence, statistical analyses must account for this multiplexed cap-
ability as opposed to addressing single differences.
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Fig. 1. Hierarchical tree structure of the cell types from the SLE study 2. See Supplementary Materials for a full list of the cell subpopulations. It is of interest to (i) test if the

compositional profile of the cell types is associated with the disease groups, i.e. if there is differential abundance of any of the cell types between SLE patients and controls; and

(ii) if yes, which cell types contribute the most to the association
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1.1 Motivating data
1.1.1 Study 1

This example originates from a previous CyTOF study conducted by
O’Gorman et al. (2017) to understand single-cell phenotypic and
functional characterization of pediatric Systemic Lupus
Erythematosus (SLE) patients and healthy controls. SLE patients
with presentation prior to age 18-years old and age and gender-
matched controls were recruited for the study. Peripheral blood was
collected at initial diagnosis prior to the initiation of any treatment.
Blood samples were fixed either immediately after collection (T0);
or after incubation at 37�C with a protein transport inhibitor cock-
tail for 6 h (T6). The final dataset after all filtering steps contained
28 single-cell data files (7 patients and 7 controls, and 2 stimulation
conditions, T0 and T6, per subject). Single-cell data for every subject
were manually gated to obtain the hierarchical clustered cell type
data. It is of interest to test if the cell-type compositions are different
(i) across the disease groups (ii) across the stimulation conditions.

1.1.2 Study 2

A second study comparing SLE patients and healthy controls is cur-
rently being conducted by the authors with a larger number of par-
ticipants (see Supplementary Section S5, for a partial analysis of this
data using our method). The hierarchical clustering structure for this
study is shown in Figure 1. Due to the hierarchical nature of the
data, cell-type abundance can be defined in many different ways by
choosing different parent and children nodes of the tree. For ex-
ample, it might be of interest to consider the abundance of all cell
types from the terminal nodes as a fraction of the lymphocytes, but
one may also want to test, e.g. the abundance of the B-cell subpopu-
lations as a fraction of the B-cells. Our proposed multivariate ap-
proach can be used to conduct the test to answer each of these
questions separately.

1.2 Statistical challenge
Data on cell-type abundance is compositional by nature, i.e. the sum
of the cell-type proportions add up to one. In mathematical nota-
tion, if P � ðP1;P2; . . . ;PqÞ denotes the cell-type abundance of the q
cell types, then

P 2 Sq ¼
(

p ¼ ðp1; p2; . . . ; pqÞ :
Xq

i¼1

pi ¼ 1

)
;

where Sq is the q-dimensional simplex (Aitchison, 1982). Due to
this, the classical statistical models for non-compositional data
are not appropriate for testing differential abundance in mass
cytometry.

Although there is a rich literature of statistical methods for com-
positional data analysis (Pawlowsky-Glahn et al., 2015), most of the
traditional methods of compositional data analysis (often based on
multinomial or Dirichlet distributions) test the association of the
predictors with the individual components one at a time. A multi-
variate approach accounting for the correlation among the compo-
nents is expected to perform better and have higher statistical power
due to a decreased burden of multiple testing. The advantage of
using such multivariate approaches for genomic association studies
is well documented (e.g. Broadaway et al., 2016; Wu et al., 2011).
The authors are unaware of an appropriate multivariate approach
to test association in high-dimensional cell-type abundance data
arising from mass cytometry.

The traditional generalized linear models cannot be used here
due to the presence of overdispersion typical for these data. The
state-of-the-art methods to analyze differential abundance for mass
cytometry data are based on classical generalized linear mixed mod-
els (GLMM; Nowicka et al., 2017) with the help of ‘observation-
level random effects’ (OLRE), or based on newer developments such
as edgeR, limma or voom (Law et al., 2014; Ritchie et al., 2015;
Robinson et al., 2010). The recently developed diffcyt methods
(Weber et al., 2019) using the above approaches are shown to

perform well for mass cytometry data, but they have the same limi-
tation of approaching the problem in an univariate manner. Also, it
has been shown that the statistical tests based on the GLMM ap-
proach often leads to anticonservative results, especially in small
samples (Bolker et al., 2009; Forstmeier et al., 2017; Silk et al.,
2020) which is typical for clinical studies using CyTOF data. The
newer methods such as edgeR or voom do not provide theoretical
guarantee of type-I error control either. These methods have been
shown to have inflated type-I error rate when applied to other types
of data (Datta and Nettleton, 2014; Hawinkel et al., 2019; Rocke
et al., 2015; Vestal et al., 2020). In this paper, we propose a multi-
variate statistical framework, ‘Compositional Data Analysis using
Kernels’ (CODAK), based on kernel distance covariance (KDC; Hua
and Ghosh, 2015) to quantify and test the association of predictors
such as grouping or application of drugs with the composition pro-
file of cell types. This association test can often be used as the test of
differential abundance, but we present the method in general so that
it can be used for more general cases (e.g. continuous predictor) be-
sides the two-group comparison. We also propose two approaches
of covariate adjustment under this framework and suggest some
follow-up methods to understand which components of the compos-
ition are most responsible for the association. We illustrate the per-
formance of our methods using extensive simulation studies and
also apply it to high-dimensional mass cytometry dataset we col-
lected on SLE patients and healthy control subjects. Analysis of the
data revealed clinically relevant patterns such as differential cell type
abundance between the disease and the control group.

2 Materials and methods

2.1 The kernel distance covariance framework
Distance covariance/correlation is a method to quantify and test for
association between random variables of arbitrary dimensions
(Sz�ekely et al., 2007, 2009). It is powerful against any form of lack
of independence. The distance covariance approach is closely related
to the kernel-based approaches using Hilbert Schmidt Independence
Criterion (HSIC; Gretton et al., 2007). The equivalence of the two
approaches was shown by Sejdinovic et al. (2013) and Shen and
Vogelstein (2020). Hua and Ghosh (2015) discussed the equivalence
in the context of genetic association studies and introduced the term
‘kernel distance covariance’ (KDC).

For n measurements on two multidimensional random variables
X1�p and Y1�q, let us denote the observation from ith sample unit as
ðXðiÞ;YðiÞÞ. Define the matrices K ¼ ðkijÞ and L ¼ ðlijÞ as

kij ¼ kðYðiÞ;YðjÞÞ;
lij ¼ lðXðiÞ;XðjÞÞ; (1)

where k and l are the appropriate kernel functions measuring the
similarity of pairs of observations. The KDC statistic is defined as

KDCn ¼
1

n2
traceðKHLHÞ; (2)

where H ¼ In � 1n1T
n =n is the centering matrix, In being the identity

matrix of dimension n and 1n being the n� 1 vector with each elem-
ent equal to 1.

For our application of the KDC approach, suppose we have a
(potentially multivariate) predictor X ¼ ðX1;X2; . . . ;XpÞ and that

the cell-type abundance is given by P ¼ ðP1;P2; . . . ;PqÞ, wherePq
k¼1 Pk ¼ 1. A key aspect of the KDC approach is the choice of the

kernels k and l. Some common choices of kernels in association stud-
ies are the linear kernel, polynomial kernel and Gaussian kernel
(Schölkopf et al., 2004). However, these do not directly apply to
cell-type abundance compositional data since the data belongs to a
simplex. For CODAK, we propose a kernel using Aitchison distance
(Aitchison, 1982) as an appropriate kernel for measuring similarity
between two compositions. Let the cell-type composition for the ith

sample be PðiÞ ¼ ðPi1;Pi2; . . . ;PiqÞ. Then the similarity between the
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composition profiles of the ith and the jth sample can be given by
(Gower, 1966)

kðPðiÞ;PðjÞÞ ¼ �1

2
HD2H; (3)

where the ði; jÞth element of the matrix D2 is d2ðPðiÞ;PðjÞÞ, square
of the Aitchison distance (AD) between PðiÞ and PðjÞ. The AD is
defined by

dðPðiÞ;PðjÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2q

Xq

r¼1

Xq

s¼1

ln
Pir

Pis

� �
� ln

Pjr

Pjs

� �( )2
vuut (4)

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

r¼1

ln
Pir

gðPðiÞÞ

� �
� ln

Pjr

gðPðjÞÞ

� �( )2
vuut ; (5)

where g(P) is the geometric mean of P1;P2; . . . ;Pq. Alternatively,
one can use a Gaussian kernel (Schölkopf et al., 2004) with AD as

kðPðiÞ;PðjÞÞ ¼ exp f�dðPðiÞ;PðjÞÞ=cg; (6)

where dðPðiÞ;PðjÞÞ is the AD between PðiÞ and PðjÞ and c is a tuning
parameter which is often chosen as the median distance. Our empir-
ical results show that the performance of these two kernels
[Equations (3) and (6)] are nearly identical (Supplementary Fig. S6).

Note that AD is same as the Euclidean distance calculated after
applying the centered log-ratio (clr) transformation (discussed later in
section) to the compositions. The AD has some desirable properties
such as scale invariance, permutation invariance, perturbation invari-
ance and subcompositional dominance [see Mart�ın-Fernández et al.
(1998) for a detailed discussion]. For example, scale invariance
ensures that rescaling each composition does not change the distance,
and subcompositional dominance ensures that the distance between
two subcompositions can only be smaller than the distance between
the original compositions. Neither of these two properties is satisfied
by the Euclidean distance (Mart�ın-Fernández et al., 1998). These
properties are important for using distance-based methods, and failing
to ensure them can result in reduced statistical power (Gloor et al.,
2017; Pawlowsky-Glahn and Buccianti, 2011). We have also demon-
strated this in our simulation studies (Section 3).

Another commonly used distance for compositional data is the
Bray–Curtis (BC) distance (Bray and Curtis, 1957). Therefore, we
have also implemented a kernel based on the BC distance by replacing
the AD in Equation (3) by the BC distance dBCðPðiÞ;PðjÞÞ defined as

dBCðPðiÞ;PðjÞÞ ¼
Pq

k¼1 jPik � PjkjPq
k¼1ðPik þ PjkÞ

: (7)

However, the BC distance is not a proper distance (Greenacre
and Primicerio, 2014) and therefore the kernel defined based on it
may not be positive semidefinite. It is a common practice to modify
the BC kernel matrix by changing the negative eigen values to 0
(Zhao et al., 2015), but this may lead to inferior results.

In some other fields such as microbiome data analysis where the
Operational Taxonomic Units (OTU) are related by a phylogenetic
tree, it is important to account for the hierarchical structure of the
phylogenetic tree to capture the degree of evolutionary divergence
between neighboring bacterial groups. Different versions of Unifrac
distance have been considered in the microbiome data analysis lit-
erature for this purpose (Chen et al., 2012; Lozupone and Knight,
2005; Lozupone et al., 2007; Wong et al., 2016). Other approaches
to account for hierarchical structures have been studied by
Silverman et al. (2017), Wang and Zhao (2017a, 2017b) and Wang
et al., (2020). While it is possible to extend CODAK to incorporate
distances that account for a hierarchical tree structure, for instance,
using weighted Unifrac (Lozupone et al., 2007) or generalized
Unifrac distance (Chen et al., 2012), doing so is less relevant for
CyTOF as there is no natural equivalent of phylogenetic distance.
Therefore, we have not used such a distance in favor of the simpli-
city of interpretation and follow-up analysis for the immunologist.

For most applications, XðiÞ is univariate and for the remainder of
the paper we treat it as such. We use a linear kernel for continuous
predictors defined by

lðXðiÞ;XðjÞÞ ¼ XðiÞXðjÞ; (8)

and a kernel based on Hamming distance for binary predictors given
by

lðXðiÞ;XðjÞÞ ¼ expð�jXðiÞ �XðjÞjÞ: (9)

Since the Hamming distance is a distance metric, we can use
standard arguments (Sejdinovic et al., 2013; Shen and Vogelstein,

2020) to show that (9) is a proper kernel. We use a permutation
method to obtain the null distribution of the KDC statistic. We have

also explored the performance of a Gaussian kernel for X and found
it to have relatively worse statistical power (Supplementary Fig. S7).

The intuition for the KDC approach for the motivating data

(Section 1.1.1) is demonstrated in Figure 2. The figure shows the
densities for the kernel similarity measures when comparing the two

disease groups (first panel) and when comparing the two stimulation
conditions (second panel). The red curve shows the within-group (or
condition) similarity and the blue curve shows between-group (or

condition) similarity. It is often the case that the cell type composi-
tions are different in two disease groups (SLE and healthy control).

Loosely speaking, this is same as saying that the similarity in the
compositional profiles between observations from the same disease
group is likely to be more compared to that between observations

from different disease groups. This is reflected in the first panel
where the red ‘same group’ curve is located to the right of the blue

‘different group’ curve. On the other hand, the compositions are less
likely to vary across stimulation conditions, which is why the curves
in the second panel are more similar.

2.2 Adjusting for covariates
Our framework CODAK allows for covariate adjustment using two

different approaches. Suppose we have a set of covariates
Z ¼ ðZ1;Z2; . . . ;ZKÞ. Denote the value of Z from the ith subject as

ZðiÞ. In the first approach, we use the additive log-ratio transform-
ation (alr) commonly used in compositional data analysis
(Aitchison, 1982; Aitchison et al., 2000; Pawlowsky-Glahn et al.,
2015) to transform the data to Yn�ðq�1Þ ¼ alrðPn�qÞ, perform covari-
ate adjustment to compute the residuals YðZÞ ¼ ðIn �HZÞY using

linear regression, and transform the residuals back to the simplex Sq

using the inverse alr-transformation: PðZÞ ¼ alr�1ðYðZÞÞ. Here, HZ

is the hat matrix obtained from the design matrix of Z and In is the

identity matrix. We can then also compute the residuals XðZÞ ¼
ðIn �HZÞX by regressing X on Z, and use CODAK on P(Z) and
X(Z). The alr-transformation and the inverse alr-transformation for

a single compositional observation are given by

Y ¼ alr Pð Þ ¼ ln
P1

Pq

� �
; ln

P2

Pq

� �
; :::; ln

Pq�1

Pq

� �" #
(10)

and

P ¼ alr�1ðYÞ ¼ C½exp ðY1Þ; exp ðY2Þ; . . . ; exp ðYq�1Þ;1�: (11)

Here, C is the closure operator which divides each component of

the vector by the sum to ensure the constant sum 1 of the resulting

vector. We can skip this technicality of converting P ¼ alr�1ðYÞ to a

composition such that
Pq

i¼1 Pi ¼ 1 due to the scale invariance prop-

erty of the AD. Note, however, that the alr-transformation is asym-
metric in the components, and the alr-coordinates are non-isometric

in nature (Pawlowsky-Glahn and Buccianti, 2011). Alternatively,
one may use the centered log-ratio (clr) transformation and its in-

verse given by
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Y ¼ clr Pð Þ ¼ ln
P1

gðPÞ

� �
; ln

P2

gðPÞ

� �
; :::; ln

Pq

gðPÞ

� �" #
(12)

and

P ¼ clr�1ðYÞ ¼ C½exp ðY1Þ; exp ðY2Þ; . . . ; exp ðYqÞ�; (13)

where g(P) is the geometric mean of P1;P2; . . . ;Pq. The clr-trans-
formed vector Y is symmetrical in the components, but belongs to a

subset of Rq due to the constraint
Pq

i¼1 Yi ¼ 0. One can obtain an

orthonormal coordinate system based on the clr-transformed vector,
but it is not necessary for our purpose, and it can be shown that alr
and clr have identical result for our covariate adjustment (see
Supplementary Section S7 for a simple proof). We present the results
using the alr-based approach (CODAK-alr) in Section 3.

A second approach, motivated by Zhan et al. (2015), is devel-
oped when the covariates are categorical. This approach is based on
the idea of stratified kernel, which, in our context, is defined as

kðPðiÞ;PðjÞÞ ¼
�

e�dðPðiÞ;PðjÞÞ=c; if ZðiÞ ¼ ZðjÞ

0; otherwise :
(14)

The kernel l is defined similarly. The method essentially consid-
ers two observations i and j to have (potentially) non-zero similarity
kðPðiÞ;PðjÞÞ only if they are from the same stratum, where the strata
are defined by the values of the categorical covariates. We can then
proceed to use CODAK using Equation (2). It can be shown that the
stratified kernel defined in this manner is strictly positive definite
(Park et al., 2012; Zhan et al., 2015). It should be noted that this
method reduces the effective sample size by only considering similar-
ity within strata and therefore may lose power, especially in the
presence of multiple categorical covariates. However, in many appli-
cations (e.g. the motivating problem), we only have one categorical
covariate. The stratified kernel approach (CODAK-sk) can be effect-
ive in such cases, and has been empirically shown to be robust
against slight violation of the independence of sample observations
(Section 3.3).

One important consideration for permutation test in the presence
of covariates is the choice of permutation method. Kennedy and
Cade (1996) suggested residualizing both Y and X on Z and using a
permutation test for the association between Y(Z) and X(Z) as dis-
cussed above. However, several studies have found the Kennedy and
Cade method to be anticonservative (Anderson and Legendre, 1999;
Winkler et al., 2014) for linear and generalized linear models. These
studies found that the alternative approach of Freedman and Lane
(1983) achieves better control of type-I error. We have explored

both the Kennedy and Cade (KC) method and the Freedman and
Lane (FL) method here.

2.3 A measure of effect size
A measure of estimated effect size can be obtained by using the idea

of distance correlation (Sz�ekely et al., 2007). Following Sejdinovic
et al. (2013), the distance correlation (dcor) between the variables P
and X, in our context, can be defined as

dcorðP;XÞ ¼ KDCðP;XÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KDCðP;PÞKDCðX;XÞ

p ; (15)

¼ traceðKHLHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðKHKHÞ traceðLHLHÞ

p : (16)

This is equivalent to the squared distance correlation from
Sz�ekely et al. (2007) if both K and L are L2-distance kernels (Hua
and Ghosh, 2015). Since the L2-distance is not the appropriate

distance for compositional data for reasons discussed earlier, the
‘original’ distance correlation (Sz�ekely et al., 2007) should not be

used in this case. We include some results on application of the
original distance correlation method for this type of data in
Supplementary Figure S8.

2.4 Follow-up methods for individual components
One criticism of multivariate approaches is the difficulty of inter-

pretation for individual components of the composition profile.
For example, as a follow up to differentially abundant cell-type

compositions, it is often of interest to understand the cell types
that are the top contributors to the differential abundance. While
one can use the traditional effect sizes such as odds ratio or

average difference in proportions for each cell type, we provide
two kernel-based solutions here.

2.4.1 Leave-one-out approach

One intuition is that if a component c of the composition contrib-

utes to the association of the compositional profile P with a pre-
dictor X, then dropping that component from the compositional
profile should lead to a decrease in the distance correlation.

Therefore, we can compute the following leave-one-out (LOO)
statistic for every component c 2 f1;2; . . . ; qg and rank them in
order of their values:

Fig. 2. Motivation of the KDC approach for the first SLE study: the densities for the kernel similarity measures are plotted when comparing the two disease groups (first panel)

and when comparing the two stimulation conditions. The red curve shows the similarity of observations within the same group (conditions) and the blue curve shows the simi-

larity of observations between groups (conditions)
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dcorLOO ¼ maxf0; dcorðP;XÞ � dcorðP�c;XÞg; (17)

where P�c ¼ CðP1;P2; . . . ;Pc�1;Pcþ1; . . . ;PqÞ. It is obvious from
Equation (4) that the AD between two compositions PðiÞ and PðjÞ

reduces when a component is excluded (subcompositional dom-
inance). Further, it can be shown (see Supplementary Section S6
for a simple proof) that the reduction is maximized when the
component c with the log Pic

Pjc

� �
value farthest from the mean is

excluded, i.e.

argmin
c

dðPðiÞ�c;P
ðjÞ
�cÞ ¼ argmax

c

�����ln Pic

Pjc

	 

� ln

gðPðiÞÞ
gðPðjÞÞ

" #�����: (18)

This further strengthens the above intuition since it is clear that
the component with the highest true ratio of abundance in the two-
groups contributes the most to the AD between the composition
profiles of observations in different groups. Therefore, we propose
picking the top cell-type candidates based on the ranking of this
LOO statistic defined in Equation (17).

2.4.2 Weighted distance correlation approach

A second approach is motivated by Wen et al. (2020) and based on
weighted Aitchison distance (Egozcue and Pawlowsky-Glahn,
2016). Following Wen et al. (2020), we define weighted distance
correlation between P and X by modifying the kernel k in Equation
(6) to use the weighted AD dwðPðiÞ;PðjÞÞ instead of dðPðiÞ;PðjÞÞ, where
the weighted AD is defined as

dwðPðiÞ;PðjÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

r¼1

wr ln
Pir

gwðPðiÞÞ

� �
� ln

Pjr

gwðPðjÞÞ

� �( )2
vuut ; (19)

where gwðPðlÞÞ ¼ exp 1
sw

Pq
k¼1 wk log Plk

� �
and sw ¼

Pq
k¼1 wk. A set

of weights that maximize the weighted distance correlation between
P and X can then be obtained. Following Wen et al. (2020), we sim-
plify the optimization problem by defining

wk ¼
bc

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
r¼1 fb

c
rg

2
q ; (20)

and by subsequently optimizing for c > 0, where bk is the distance
correlation between Pk and X. Larger values of c make the weights
of the components with the strongest association with X contribute
more to the weighted AD and subsequently to the KDC statistic.
These weights can then be ranked in order of magnitude to indicate
the top cell-type candidates contributing to the association.

2.5 Implementation
CODAK is implemented using statistical software package R, and
the codes are available at http://github.com/GhoshLab/CODAK/.
The time taken on a single computer to run CODAK for a mass
cytometry data of usual size ranges from less than a second to �90 s
depending on number of permutations used for the test (103 to 106).
A comparison of the computation time of CODAK with commonly
used methods for CyTOF cell-type abundance testing is provided in
Supplementary Table S1.

2.6 Relationship between CODAK and other kernel/

distance-based approaches
The kernel distance covariance method of testing has previously
been shown to be closely related to some other approaches. The ker-
nel machine regression (KMR) approach (Kwee et al., 2008; Liu
et al., 2007) uses a semiparametric linear model where the relation-
ship of the predictor variable X with the response Y is modeled
through a function hð:Þ which is estimated from the data. The null
hypothesis of interest is H0 : h ¼ 0. The form of the function hð:Þ is
determined by a user-specified kernel function Kð:; :Þ and the test is
often done using a score test. Hua and Ghosh (2015) showed that
this test using the KMR approach is equivalent to the KDC

approach when the kernels chosen for Y and X in the KDC approach
are K and the linear kernel, respectively. The KMR approach has
been used in many omics applications (e.g. Maity et al., 2012; Wu
et al., 2011). One such application was developed for compositional
data in a different set up by Zhao et al. (2015). They proposed
MiRKAT, a test of association for microbiome abundance data. In
their model, they used different forms of Unifrac distances
(Lozupone and Knight, 2005) and BC distance (Bray and Curtis,
1957), but did not use AD. However, the MiRKAT method can in
principle be used with AD.

Another related approach is PERMANOVA, developed by
McArdle and Anderson (2001), which tests the association between
the two variables using a MANOVA-like F-statistic while obtaining
the P-values using permutations. Although it was originally devel-
oped for the one-way ANOVA case, several extensions have been
proposed to use quantitative variables and covariates (Anderson,
2014). PERMANOVA is a distance-based approach where the user
can choose any appropriate distance including AD. Pan (2011)
showed that the KMR approach (when using permutation test) and
PERMANOVA are equivalent when there are no covariates.
Therefore, the KDC approach with linear kernel for the predictor,
the KMR approach and the PERMANOVA approach are all equiva-
lent in the no covariate case, and CODAK can be thought of as
either of these approaches applied to compositional data from mass
cytometry through an appropriate AD kernel.

However, these methods are not all equivalent when adjusting
for covariates as we show using our simulation results. In particu-
lar, based on the discussion of Hua and Ghosh (2015), the KDC
approach is equivalent to KMR if we only adjust the response vari-
able Y for the presence of Z, the covariate. However, adjusting
only Y and not X in a permutation test can lead to suboptimal
results (Kennedy and Cade, 1996). Therefore, the covariate adjust-
ment procedure of CODAK is not equivalent to PERMANOVA or
MiRKAT, and we explore the relative performances of them in
section.

Both PERMANOVA and MiRKAT provide an R2-like meas-
ure of effect size. The R2 of MiRKAT using AD is equivalent to
the square of our dcor measure [Equation (15)]. The R2 of
PERMANOVA is not equivalent to these (see Supplementary
Section S2 for more discussion).

3 Results

3.1 Simulation studies
3.1.1 Description of the simulations

We conducted simulations to compare type-I error and power per-
formance of the different methods for the following scenarios: (i) no
covariate (binary or continuous predictor) (ii) with covariate adjust-
ment (binary or continuous predictor) (iii) with covariate adjust-
ment for repeated measures (binary predictor). We report the results
for the binary predictor (i.e. two-group comparisons) here (Fig. 3)
and the results for continuous predictor in Supplementary Figures
S2 and S4. The third scenario was explored to understand the ro-
bustness of the methods for the violation of the independence
assumption.

The ‘true’ effect sizes of multivariate parameter vectors (as used
in the simulations) are difficult to illustrate using power plots.
Instead, measures such as the true maximum log odds ratio (OR) or
the true Aitchison distance can be used in place of effect size, which
we explored separately in Figure 4. In order to demonstrate the com-
parison of statistical power, for each of the above scenarios, we con-
sidered four cases: (a) no association (null hypothesis) (b) all cell
types have some small association with the predictor (e.g. small dif-
ference in abundance of every cell type across two groups), (c) 50%
of the cell types have small associations with the predictor (d) 25%
of the cell types have larger associations with the predictor. The
‘small association’ is defined as the 0.2 percentage point difference,
and ‘larger difference’ as 0.4 percentage point difference between
the two groups. For scenario (ii), the effect of the covariate Z is
simulated similarly to the effect of the predictor in case (b). We used
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N¼10 000 simulations for each case and plotted the estimated size
and power against different choices of the nominal level a.

We simulated data for 2n ¼ 24 subjects, i.e. n¼12 per group for
the two-group comparison. Using a multinomial logit model, we
generated 30 000–50 000 cells per individual sample with probabil-
ity depending on the value of the predictor for a cell to be one of the
20 cell types. An OLRE term was included in the multinomial logit
model to model the overdispersion present in real CyTOF datasets.
The parameters, such as probabilities in the control group (ranging
from 0.002 to 0.15), and the standard deviation of the random
effects term (rb ¼ 0:2) were chosen based on the estimates obtained
from real data (Study 1.1.1). For scenario (iii), we used an additional

subject-specific random effect term to induce the correlation in the

repeated measures structure.

3.2 Competing methods
Besides using CODAK with the AD kernel, we included CODAK
with Bray-Curtis distance (CODAK-BC) and Euclidean distance
(CODAK-ED) for the purpose of comparison. We also compared

the results using the original distance correlation (Sz�ekely et al.,
2007), but did not include it in Figures 3–6 since its performance

was nearly identical to CODAK-ED (see Supplementary Fig. S8 for
a comparison). We used 10 000 permutations for each CODAK

Fig. 3. Comparison of statistical power for binary predictor adjusting for a binary covariate. The black dashed line in the first plot shows the nominal level a and the gray

dashed line shows two times a. Only the methods with reasonable control of type-I error are shown in the other three plots
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method. To compare the performance of CODAK with the com-
monly used methods for testing cell type abundance in mass cytome-
try, we considered two GLMM-based methods and two methods
from the diffcyt package. The GLMM-based methods were both lo-
gistic mixed effects models to test the association of the predictor
with the abundance of each cell type (followed by adjustments for
multiple testing using Bonferroni method), the difference among the
two methods being the test used: Wald test or likelihood ratio test
(LRT). The methods for diffcyt were also conducted per cell type
(followed by adjustments for multiple testing) using either the edgeR
or the voom method [as suggested by Weber et al. (2019)]. It should
be noted that there is also a GLMM test option in the diffcyt pack-
age which is essentially same as the Wald test we considered. Since
both the GLMM-based methods resulted in inflated type-I error, we
also applied a resampling method using the LRT statistic where the
LRT statistic was calculated using the logistic mixed model and a
permutation method was used to obtain the P-value instead of using
the asymptotic distribution of the LRT statistic. Due to high compu-
tational time, we only used this method for one of our simulation
scenarios and we only reported the power/type-I error rate for
a ¼ 0:05.

When adjusting for covariates, we included them directly in the
model for the GLMM or diffcyt methods. We have also compared
PERMANOVA (McArdle and Anderson, 2001) and MiRKAT
(Zhao et al., 2015) using AD since these methods are not equivalent
to CODAK when adjusting for covariates. R-packages MiRKAT
(Zheng et al., 2017) and vegan (Oksanen et al., 2007) were used.
For scenario (iii) with repeated measures, when fitting the GLMM
models, we used the known information on which observations are
coming from the same individual subject to fit multilevel models
accounting for the repeated measures structure. On the other hand,
CODAK did not use this information.

3.3 Results from the simulation studies
The results for binary predictor (Fig. 3) shows that all the three
CODAK methods controlled the type-I error at the target level, but
none of the other methods could do so. The type-I error control of
diffcyt-voom was near satisfactory and the LRT method among the
GLMM methods lead to less inflation of the type-I error. Therefore,
we choose one from each of the approaches of the competing meth-
ods and only show the diffcyt-voom and GLMM-LRT for the subse-
quent power comparisons. However, the comparison of power of
GLMM-LRT and the other two methods are still unfair since the
size of GLMM-LRT is approximately twice the as large as the target
a level for the range of values of a considered. The power

comparison shows that CODAK (using the default distance AD)
performed better than the existing univariate methods in the case
with small differences in all cell types (case b). With the reduction in
the number of associated cell types, the relative advantage of
CODAK compared to the univariate methods gradually diminished.
The resampling-based LRT method controlled the type-I error at the
nominal level, but failed to achieve high power. It is also extremely
computationally intensive. CODAK using BC or Euclidean distance
failed to provide satisfactory power. This clearly demonstrates that
CODAK with AD has far superior performance compared to these
distances. Hence, these distances were not used for the next simula-
tion scenarios. Similar results were obtained for continuous predict-
or (see Supplementary Fig. S2).

The results for binary predictor in the presence of a covariate
(Fig. 3) lead to similar findings. CODAK-alr had slightly inflated
type-I error here when we used the KC method of permutations
(Kennedy and Cade, 1996), but it was comparable to diffcyt-voom.
Using the FL method of permutations (Freedman and Lane, 1983)
for CODAK-alr resulted in good control of type-I error, but slight-
ly less power compared to the KC method. This is consistent with
previous findings for linear models (Anderson and Legendre,
1999). CODAK-sk also controlled of type-I error at the nominal
level. However, CODAK-sk had slightly inferior power perform-
ance compared to CODAK-alr. This is not unexpected, as dis-
cussed in section. Both PERMANOVA and MiRKAT appeared to
be somewhat conservative and had less statistical power. The stat-
istical power of MiRKAT was especially poor. It is likely to be due
to the fact that it essentially adjusts the effect of the covariate only
on the response variable. Such behavior of covariate adjustment
methods has previously been discussed in the literature (Kennedy
and Cade, 1996).

The simulation results from scenario (iii) are shown in
Figure 6. CODAK-sk achieved reasonable control of type-I error
under slight misspecification of the independence assumption
(subject-specific random effect variance¼0.1) and the power was
also comparable to its performance in other cases. None of the
other methods (including CODAK-alr) controlled the type-I error
rate. We also verified that when the amount of dependence was
increased, the control of type-I error by CODAK-sk gradually
worsened (Supplementary Fig. S5).

To better understand the situations where CODAK (or other uni-
variate methods) have advantage, we plotted the true AD and max-
imum log(OR) for each simulation [from scenario (i)] and color
coded according to which method had higher power (Fig. 4). It is
not unexpected that the GLMM and diffcyt-voom appeared to per-
form better than CODAK when maximum log(OR) was high but

Fig. 4. Comparison of CODAK with GLMM and diffcyt-voom for various effect sizes. For every simulation scenario, the true Aitchison distance (AD) and true maximum log

odds ratio are plotted. The colors represent the method with a higher statistical power for that scenario. It is evident that CODAK favors higher AD while the other methods

favor strong effects for individual components. Scenarios AD> 1 or j log ðORÞj > 0:5 are not shown since all methods had perfect power in such cases
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the AD was not (blue/green points). These were the cases where a
smaller number of cell types are associated and the association is strong.
CODAK performed better for effects that were relatively weaker, but
more spread out across the cell types (red points). All methods per-
formed well (black points) when there was strong association for several
cell types, or very strong association for fewer cell types.

Finally, we compared the ranking of the cell types for the differ-
ent follow-up methods. For every simulation, we calculated the rank
correlation of the true log(OR) with the rank of the cell types
obtained using the LOO and the weighted dcor methods. The me-
dian of the rank correlations was 0.49 for the LOO method and
0.41 for the weighted dcor method. These are reasonably high

considering that the rank correlation between estimated log(OR)
and the true log(OR) was 0.42. The median number of ‘true’ top-5
cell types in the top-5 list provided by these methods was 3 for all
the three methods [LOO, weighted dcor, and estimated log(OR)]. A
histogram of the number of cell types (among top five) identified by
the different methods is shown in Supplementary Figure S10, which
shows that both LOO and weighted dcor performed close to the
‘true’ model using the log(OR), with the LOO method performing
slightly better. Based on these results, we can conclude that the per-
formance of the LOO-based follow-up method to rank the contribu-
tion of the individual cell types is satisfactory and should be
preferred over the weighted dcor method.

Fig. 5. Comparison of statistical power for binary predictor. The black dashed line in the first plot shows the nominal level a and the gray dashed line shows two times a. Only the

methods with reasonable control of type-I error are shown in the other three plots. The power for the LRT-permutation is shown for one choice of a due to the high computation time
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3.4 Real data
In order to study the performance of CODAK on real data we
applied it on the SLE data from Section 1.1.1. SLE is a systemic in-
flammatory disease in which multiple immunological derrangements
have been described—Toll-like receptor signaling defects, over acti-
vation of neutrophil subsets, decreased regulatory T cell frequency
due to T cell tolerance defects, excessive type-I interferon down-
stream activation, and autoantibody production by pathogenic B-
cells, to name a few (Crow, 2014; Zharkova et al., 2017).
Therefore, one should expect that study of a single or a couple
immune cell subsets in isolation would not fully depict the

immunopathology. Recent publications have supported the multiim-
mune component etiology of the disease, and in fact, different dis-
ease phenotypes may be correlated with specific immune profiles
that encompass the integrated immunological picture (Nehar-Belaid
et al., 2020). Therefore, our work analyzing multiple immune cell
subsets and their downstream cytokine production, as a composite
integrated approach, most accurately addresses the basic science and
clinical questions.

Each of the datasets described in Section 1.1 were generated via
Fluidigm mass cytometer instruments. Resultant FCS files were bead
normalized to account for instrument calibration. The final cell-type

Fig. 6. Comparison of statistical power for binary predictor adjusting for a binary covariate with repeated measures. The black dashed line in the first plot shows the nominal

level a and the gray dashed line shows two times a. Only the methods with reasonable control of type-I error are shown in the other three plots
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abundance proportion matrix after the data filtering steps (debar-
coding, bead normalization, batch adjustment/normalization) had
28 rows and 12 columns, where each row corresponded to an obser-
vation PðiÞ 2 S

12 and each column to a cell type. These different cell
types were CD4þ T-cells, CD8þ T-cells, CD27-hi B-cells, CD27-lo
B-cells, Basophils, CD14-hi monocytes, CD16-hi monocytes,
CD56-hi NK-cells, CD56-mid NK-cells, cDCs, pDCs and other
cells. The predictor of interest was the disease status (SLE or
healthy control), and a potential covariate was the stimulation
condition (T0 or T6). Applying the CODAK test on the full data-
set with 106 permutations resulted in a distance correlation
0.6966 and a P-value < 10�6. When adjusted for the covariate
stimulation condition (using CODAK-sk), the distance correl-
ation was 0.7974 and the P-value < 10�6. However, one needs
to be cautious due to the fact that the study contains two
repeated measures on each individual subject which leads to the
violation of the independence assumption. Separate testing for
conditions T0 and T6 still resulted in statistically significant
results (P¼0.0006 for both T0 and T6).

We also obtained the dcorLOO statistic for every cell type. The
results are shown in Figure 7. The top three contributors for both
conditions were CD27-lo B-cells, conventional dendritic cells
(cDCs) and CD16-hi monocytes. These results are consistent with
previously published literature (O’Gorman et al., 2015, 2017;
Rodr�ıguez-Bayona et al., 2010). Pathogenic B-cells have long
been implicated in the pathogenesis of SLE, including expansion
of CD21-lo B-cells, which are also most often CD27-lo (Dörner
et al., 2011). Monocytes and dendritic cells constitute key ele-
ments of a proinflammatory innate immune response and they are
significantly influenced by the circulating cytokine environment.
In the study group shown, patients demonstrated significantly

increased proinflammatory serum cytokines (data not shown),
which likely accounts for the expanded CD16-hi monocytes and
cDCs subpopulations (Steinbach et al., 2000).

Please see Supplementary Section S5 for a second data analysis
example containing a continuous predictor (Section 1.1.2).

4 Discussion

We proposed an appropriate kernel to quantify similarities in the
cell-type abundance profiles for mass cytometry data using the AD.
The proposed kernel has the desirable properties of the AD, and also
performs well for both simulated and real datasets. Unlike some
existing methods, our framework CODAK can also adjust for cova-
riates, both categorical and continuous.

One common issue for testing cell-type abundance for CyTOF is
that the number of cell types can often be large and the sample sizes
are often small. Many statistical tests, e.g. the tests for the GLMM,
are asymptotic tests that do not perform well for such small sample
scenarios. In particular, these tests are often anticonservative while
resampling versions of these tests can be computationally intensive.
We have shown that other tests not specifically requiring large sam-
ples in theory can also be anticonservative. Our simulation studies
demonstrate that CODAK has far superior type-I error control and
competitive power when compared to the state-of-the-art methods.
CODAK is also non-parametric in nature, and therefore expected to
be more robust compared to existing parametric models against
model violations such as violation of distributional assumptions. In
one example, we even show that the CODAK-sk method is some-
what robust against violation of the independence assumption and
can be used, with caution, for repeated measures data if the repeated
measures are expected to be only mildly correlated.

Fig. 7. The values of the dcorLOO statistic for testing the difference in cell type abundance when comparing SLE versus healthy controls at T0 and T6
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Another important feature of CODAK is that it tests for the glo-
bal null hypothesis of association of the predictors with the full com-
positional profile of the cell types, and therefore does not suffer
from the burden of multiple testing. Such gain is most significant
when a number of cell types are associated with the predictor vari-
able. Figure 4 provides an insight into when this approach is most
advantageous compared to univariate testing using GLMM or
diffcyt-voom. CODAK is also able to test association for continuous
predictors while some other methods (e.g. diffcyt) do not provide an
easy way to do so.

In this article, we have shown the ability of kernel machines to
have high power for testing for compositional associations with clin-
ical outcomes, which mirrors its success in other settings (e.g. Rudra
et al., 2018; Wu et al., 2011). Nevertheless, because the method-
ology operates at the level of samples and not individual features,
one criticism is its interpretability. As suggested in Section 2.3, one
can follow up using existing component-level tests and use gatekeep-
er type methods to adjust for multiple comparisons. We also sug-
gested two kernel-based approaches to rank the individual features
in order of their contribution to the overall association. Another
finding is that the proposed method is powerful when there are small
differences in the abundance of several cell types. By contrast, if
only a small subset of cell types has a difference, the simulations
show that our method loses power. However, in immunological dis-
ease processes, most pathology affects multiple immune cell subsets
and different downstream functional effects (Galbraith et al., 2021;
Waugh et al., 2019).

Although we have developed the CODAK framework with
CyTOF data in mind, it can potentially be applied more generally
for other single-cell platforms such as single-cell RNASeq data.
However, it requires more exploration to ensure that the approach
performs well for these other data types for which the nature of
overdispersion, zero-inflation and data dimensionality might be dif-
ferent compared to CyTOF data. We plan to explore it separately in
the future.

Finally, CODAK using the AD kernel cannot handle zero pro-
portions. In our experience, it is uncommon to have zeros in the
CyTOF cell-type abundance data compared to some other data
types such as microbiome data. However, it is not impossible to
have a small number of zeros in the compositional cell-type
abundance data from CyTOF. In such situations the user can ei-
ther use (i) the BC kernel (ii) an existing zero-imputation method
to replace the zeros before analysis. Since the performance of the
BC kernel was not satisfactory, we suggest using the zero-
imputation strategy. Several methods of zero-imputation for
compositional data exist in the literature [Mart�ın-Fernández
et al. (2003, 2012), see Mart�ın-Fernandez et al. (2011) and
Pawlowsky-Glahn and Buccianti (2011) for a detailed discus-
sion]. The simplest method in the literature is to add a pseudo-
count, i.e. a small number, often 1, to a zero count (Mandal
et al., 2015; Xia et al., 2013). We have performed a simulation
study to explore the performance of CODAK after adding a pseu-
docount, and we found that it controls the type-I error and loses
only a small amount of power compared to the situation with no
zeros (Supplementary Fig. S9). We believe that more complicated
kernel-based approaches modeling the probabilities of zeros is
beyond the scope of this paper.

5 Conclusion

We have developed a statistical framework based on kernel distance
covariance to test association between compositional profiles of cell
type abundance with important predictors for mass cytometry data.
Our framework can scale up well for high-dimensions and performs
well even in small samples. We also proposed methods for covariate
adjustment as well as follow-up methods for finding the top cell
types contributing to the association. Using extensive simulation
studies, the method has been shown to perform well compared to
the existing methods under many scenarios. We also demonstrated
the performance of the method in real mass cytometry datasets. The
approach has further potential to find application for more complex

applications such as immunogenomics for multidimensional predic-
tors. With rising applications of CyTOF, our framework provides
an important contribution toward the analysis of high-dimensional

cell-type abundance data.
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