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Abstract: In this paper we studied the influence of micromachining parameters on processed surface
quality. Usually in discussions about micro-cutting or micromachining, the grinding or diamond
turning processes are considered. Cutting tools used in the mentioned processes do not have regular
constructive geometry and, in this case, it is difficult to use constructive geometric parameters such
as clearance angle α or rake angle γ to optimize the quality of the machined surface. In order to
determine the influence of the cutting tool’s constructive geometry on the hardness of the machined
material, we used a fractional factorial design of a centered and rotatable type 26−1. A mathematical
model based on five independent cutting parameters was created that allowed optimization of surface
quality based on obtained roughness. The results can be applied in micromilling or microturning.

Keywords: regular constructive geometry; micro-cutting; surface quality; optimization; fractional
factorial design

1. Introduction

The increasing complexity of new products and the increasing demand for obtaining
high precision in conditions of productivity has imposed new technology and optimized
cutting tools [1,2]. Rapid advances in technology have enabled the possibilities for superior
accuracies in machine tools to unlock the potentials of ultraprecision machining with
an accuracy tolerance band between 5 and 50 nm [3].While a wide variety of material
removal processes exists like the abrasive jet process, in finishing processes, mechanical
cutting (i.e., milling, turning, etc.) remains one of the favored processes in manufacturing
lines, especially in the aerospace and automotive industries [4,5]. The graphic presented
in Figure 1 establishes the limits that define three types of cutting: macro-, meso-, and
micro-cutting.
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Micro-cutting, as suggested by the terminology, involves uncut chip thicknesses,
product dimensions, and tool geometry at the micrometric scale (≤100 µm), although the
definition can vary up to 1000 µm [7].

Micro-cutting is mostly used in finishing and superfinishing processes which represent
one of the most important steps in the manufacturing of a product because during this step,
final conditions are obtained, imposed by the project and the utility of the product. The
tolerance and quality of the manufactured surface becomes important. Micro-cutting con-
siderations as shown in Figure 2 extend beyond the typical assessment of cutting conditions,
machine tool vibrations, and tool wear [8]. At this level of machining, several micro-effects
exhibit considerable influence on machining performance such as the transition in material
deformation modes from ploughing to rubbing at a lower tool-edge sharpness to produce
superior surface finishing on magnesium [9], aluminum, and copper alloys [10].
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As seen in Figure 2, the cutting process is complex and there are a large number of
parameters that can influence the results [11]. This can be an impediment to optimizing the
quality of the obtained surface. Furthermore, if the process of micro-cutting is obtained by
using abrasive particles, the process is even more difficult to optimize because geometry
varies from one particle to another and it is difficult to establish a relationship between
cutting parameters and the roughness of the machined surface [12,13].

The micro-cutting process is influenced also by the depth of cut values with respect
to the cutting edge radius. With respect to the depth of cut values, we can have different
cutting mechanisms as shown in Figure 3 [14–16]. If the value of cut depth is larger than
the cutting edge radius value, a shearing mechanism appears in chip formation (Figure 3a).
If the cut depth value is comparable to the cutting edge radius, there is a mechanism of
chip formation based on extrusion (Figure 3b). If the cut depth value is much lower than
the cutting edge radius, practically no cutting process occurs and it is replaced by a process
of hardening of the top surface layer (Figure 3c). We can also observe that the rake angle
varies with cut depth value while the cutting edge radius is constant, increasing in absolute
value with decreasing depth of cut.

Alongside the cutting parameters, to achieve high quality machined surfaces, the im-
pact of various correction factors in Computer Aided Manufacturing (CAM) programming
must be also considered [17]. Various probabilistic techniques such as simulated annealing
for approximating the global optimum of a given function can be used in the modeling and
optimization of surface roughness [18].

The above studies have shown the complexity of a micro-cutting-process study. There
are many machining parameters together with cutting tool geometry that can influence the
quality of the machined surface. Therefore, we investigated the cutting performance of
milling cutters with regular constructive geometry on surface roughness using experimental
verification, and established a rotatable, centered, and fractional test in order to analyze
the influence of different parameters such as clearance and inclination angles and the
workpiece hardness on the roughness of the machined surface. Finally, we obtained the
optimal parameter combination for the micro-textured ball-end milling cutter with a blunt
round edge. This study aimed to provide the foundation for improving the efficiency of
machining of alloyed steel using a regular constructive geometry cutter.
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2. Materials and Methods

In order to determine the parameters of the micro-cutting process, we used an experi-
mental stand that contained a clamping fixture for the workpiece mounted on a KISTLER
9257 A dynamometer, which can measure the cutting force in three directions. The whole
assembly was mounted on the table of the TOS KURIM FNK 25 milling machine. This
machine is equipped with a head that can be operated as a mortising machine with 5 speed
steps: 50, 70, 100, 140, and 200 double stroke per minute or as a milling machine. The
following measurement chain was used to acquire the data: KISTLER coaxial cables type
1610 B10 and KISTLER 5008 type amplifier, both for each measuring channel, analog-to-
digital converter mounted on a PC computer, program data acquisition that could read
process data from two channels with force on the direction of the Mz axis (main cutting
force) and on the direction of the Mx axis (cutting force on the direction of the working
feed). The experimental stand is presented in Figure 4 [19].
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In order to measure the cutting edge radius of the insert that was obtained by sharpen-
ing the insert, Talysurf 120L was used, as presented in Figure 5.
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Figure 5. Cutting edge radius measuring device: (a) Talysurf 120L apparatus and (b) calibers—a steel
ball with a diameter of 22 mm (1), a steel wire of 204.01 mm (2), two pieces of rubber of 198.71 mm
(3), a piece of steel with a dihedral angle of 120 (4), and two steel bars (5).

Using this device, we measured the cutting edge radius of the insert. The results are
presented in Figure 6.
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Five tests were performed at different points on the cutting edge of the same cutting
tool, and the measured values of the cutting edge radius were between 9 and 18 µm.

In order to confirm the measured values, we used the double microscope Linnik–
Schmaltz as a second equipment and performed indirect measuring. In Figure 7, we
present why this method was indirect. The microscope has a light source D that illuminates
the insert at the radius level. The ocular of the microscope M is inclined with the value of
the clearance angle α and it is moved from point B to C. The radius was calculated with the
following equation:

$ =
BC

1 + sin(α+ γ)
(1)

The obtained values were between 9 and 12 µm.
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Figure 7. Double microscope Linnik–Schmaltz cutting edge radius measuring, where: α—clearance
angle; γ—rake angle; $—cutting edge radius; β—sharpening angle; M—objective lens; and D—light
source.

The third method used to establish the values of the radius obtained by sharpening
was a direct method. We made a cross-section through the insert and measured the radius
on an image obtained from the microscope. The image was enhanced 400× (Figure 8).
The equation for obtaining the cutting edge radius was established using the geometric
construction presented in Figure 9.
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The measured value was 12 µm.
The cutting edge radius was measured in order to define the influence of this radius

on surface quality and the processed surface layer.
In order to determine the influence of the cutting process parameters on surface quality,

we chose to use a fractional factorial design for the experiment that is centered and rotatable,
namely type 26−1. This experimental design implied 32 experiments.

Micromachines 2021, 12, x FOR PEER REVIEW 6 of 22 
 

 

dius on an image obtained from the microscope. The image was enhanced 400× (Figure 

8). The equation for obtaining the cutting edge radius was established using the geomet-

ric construction presented in Figure 9. 

 

Figure 8. Cross-section image from the cutting insert. 

 

Figure 9. Geometric schematic for radius calculus. 

The equation for cutting edge radius determination was: 

ρ = X∙tg (
β

2
) (2) 

The measured value was 12 µm. 

The cutting edge radius was measured in order to define the influence of this radius 

on surface quality and the processed surface layer. 

In order to determine the influence of the cutting process parameters on surface 

quality, we chose to use a fractional factorial design for the experiment that is centered 

and rotatable, namely type 26−1. This experimental design implied 32 experiments. 

The objective function that was optimized was surface roughness Ra. The optimiza-

tion factors were: 

• v—cutting speed, m/min; 

• Fp—radial force, N; 

• α—clearance angle, rad; 

• λ—inclination angle, rad; and 

• δHB—workpiece hardness, N/mm2. 

Five values with a fix step Δp (−2, −1, 0, 1, and 2) were proposed for each variable 

parameter. 

Considering the optimization factor, the equation for the objective function became: 

HB543P21

a

δaλaαaFalgVa
Ra eeeeeCR =  (3) 

Figure 9. Geometric schematic for radius calculus.

The objective function that was optimized was surface roughness Ra. The optimization
factors were:

• v—cutting speed, m/min;
• Fp—radial force, N;
• α—clearance angle, rad;
• λ—inclination angle, rad; and
• δHB—workpiece hardness, N/mm2.

Five values with a fix step ∆p (−2, −1, 0, 1, and 2) were proposed for each variable
parameter.

Considering the optimization factor, the equation for the objective function became:

Ra = CRaea1lgVea2FP ea3αea4λea5δHB (3)

Assuming the following notations: Y1 = lnRa; x1 = FP; x2 = log v; x3 = α; x4 = λs;
x5 = δH; and b0 = ln CRa in Equation (3), we obtained:

Y1 = b0 +
i=5

∑
i=1

bixi (4)

In (4), the coefficients of bi are regarded as constants, which limits from the beginning
the degree of approximation of the Yi functions.

To increase the accuracy of objective function approximations, the literature [3] rec-
ommends developing functions in Taylor series around a convenient point (center of the
experiment) and truncating them to a convenient number of terms, so that the approxima-
tion relationship becomes:

Y∗1 = b∗0 +
i=5

∑
i=1

b∗i xi +
i=4;j=5

∑
i=1;i<j

bijxixj +
i=5

∑
i=1

biix2
i (5)

In order to determine the coefficients in (5), the technique of designing experiments was
used [20] which has the following advantages over other techniques of experimentation:

• Minimum number of experiences;
• High precision of the obtained mathematical model; and
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• Equal and uniform distribution of experiences throughout the experimental field, so
that the objective function obtained is defined throughout the studied field.

Given that the range of variation of the independent variables in (5) cannot be de-
scribed by means of linear approximation (interaction effects cannot be highlighted), a
composite (order of 2) experimental plan was used.

The necessary steps to implement such a program were as follows:

• Sorting variables that can significantly influence the results of the experiment (it is
preferable to retain as many variables as possible because the insignificant variables
are eliminated by subsequent statistical evaluation, and experiences in which those
variables have changed are used to increase the accuracy of the answer);

• Selection of technologically allowed variation intervals for each variable;
• Choosing intervals of discrete points (called levels or experimental points) for evalua-

tion of the variables, which form the experimental program (also called programming
matrix);

• Determining the size of experimental error;
• Performing specified experiments from the program in a random order;
• Measuring the response of each experience;
• Statistical analysis of the collected data; and
• Interpretation of the technological meaning of the results of statistical analysis.

This type of program is obtained from a complete factorial program in order to estimate
all coefficients of first-order terms and second-order interactions. This program is then
supplemented with points that allow the estimation of square terms.

Not knowing the orientation of the response surface to the coordinates, a composite,
centered, and rotatable experimental program was chosen with the property of equal stan-
dard deviation for all points at equal distances from the center of the experimental region.

For each independent variable, we considered five values where −1 and 1 were
the limits of the considered interval, 0 was the center of the interval (this value must be
considered because there are 6 experiments using these values using a centered factorial
program), and −2 and 2 were outside the interval in order to verify if the determined
interaction of the independent variables remain the same outside the considered intervals.

Variation intervals of the independent variables which characterize parameters of the
working regime were established in accordance with the adopted experimentation strategy.
In this sense, quantities have been provided by specialized literature for the extreme values
of speed v, inclination angles λ, clearance angle α, and radial force Fp, which place them at
the limits (or even outside) of the recommended optimal range.

The values of the independent variables are presented in Table 1.

Table 1. The intervals of the independent variables.

Variables −2 −1 0 1 2 ∆p

x1 = Fp [N] 8 12 16 20 24 +4

n (c.d./min) 50 70 100 140 200 -
v (m/min) 1 1.4 2 2.8 4 -
x2 = log v 0 0.1461 0.3010 0.4471 0.602 0.1461

Clearance angle α [◦] 12 16 20 24 28 -
x3 = α [rad] 0.20943 0.27925 0.34906 0.4188 0.48869 0.0698

Inclination angle λ [◦] 5 10 15 20 25 -
x4 = λ [rad] 0.08726 0.17453 0.26179 0.34906 0.43633 0.08726

x5 = δHB 200 250 300 350 400 +50

When establishing the hardness variation interval δHB, the aim was to impose harsher
working conditions than usual by using an alloy steel of type 40 Cr 10 [19], printed by
applying heat treatments corresponding to five hardnesses. The experimental samples are
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presented in the form of bars with a rectangular section 12 mm × 10 mm, with a length of
200 mm.

The solutions for the system resulting from this experimental program (which rep-
resent the coefficients of the equation for estimating the response area for each objective
function in coded coordinates) are given by (6) [20].

b0 = 0.159091
n=32

∑
n=1

Y∗n −
n=32

∑
n=1

((
i=5
∑

i=1
x2

ic

)
Y∗n

)
bi = 0.041667

i=5;n=32
∑

i=1;n=1
xicY∗n

bij = 0.0625
i=5;n=32

∑
i = 1; n = 1

i < j

xicxjcY∗n

bii = 0.03125
i=5;n=32

∑
i=1;n=1

x2
icY∗n + 0.002841

n=32
∑

n=1

((
i=5
∑

i=1
x2

ic

)
Y∗n

)
− 0.034091

n=32
∑

n=1
Y∗n

(6)

3. Results

In the following section, we present the topography of the processed surface, measured
in several directions.

Measurements were made on a perpendicular direction to the machining marks. The
results are shown in Figure 10, noting that the scales on the coordinate axes are different.
We observed a periodicity of the profile which can be explained by the fact that the cutting
inserts enter in the workpiece periodically and also by the dynamics of the cutting process.
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Figure 10. The topography of the manufactured surface, measured on Talysurf 120 L.

In Figure 11, we present a cross-section made in a longitudinal section of the sample
with hardness HB = 300. The root of a chip and the deep entrance of the insert in the
workpiece can be observed. Again, this can be explained by considering the dynamics of
the cutting process.

Figure 12 shows the appearance of the surface resulting from machining with a cutting
tool having regular constructive geometry. It is clear that the first case of processing
involves pure cutting while the second case involves multiple scratching (scraping) of the
surface to be processed which has the effect of removing material. The vertical lines in
Figure 12b represent traces of the cutting tool insert. Again in Figure 12, the chip root left by
the cutting tooth can be observed by its dark color. Figure 12c shows the surface resulting
from a manufacturing material with hardness HB = 400. In this case, the cutting process
was unstable, with strong vibrations being introduced into the system. These vibrations
led to a severely affected surface, with dark spots highlighting areas of impact between the
teeth of the cutting tool and the blank.

Additionally as mentioned, a study was performed on the surface layer that focused
on measuring the depth of hardening. In this case, a comparative study was performed
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which led to the conclusion that in the case of processing with the considered type of tool,
the depth of the affected layer is reduced by 30–80% (Figure 13). Figure 13c shows the
surface layer for the sample with hardness HB = 400, with its study demonstrating through
strong non-uniformity a strong level of vibrations and that the cutting tool did not work in
optimal conditions.
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Figure 12. The topography of the manufactured surface: (a) workpiece hardness HB = 300; (b)
workpiece hardness HB = 400; and (c) workpiece hardness HB = 200.

In the following section, we present the mathematical model obtained by using the
design of fractional factorial design of experiments 26−1.

To increase the accuracy of the deduced mathematical model, all the coefficients
were taken into account when establishing the regression functions, regardless of their
significance level.



Micromachines 2022, 13, 422 10 of 20

Consequently, the mathematical models of the objective functions resulting from the
regression have the following form in coded coordinates:

Y1* = 0.370932 + 0.0577727 x1 − 0.0405179 x2 + 0.0864213 x3 − 0.052443 x4
− 0.0310602 x5 + 0.169519 x1 x2 − 0.0962358 x1 x3 − 0.166504 x1 x4

+ 0.0728489 x1 x5 + 0.0930828 x2 x3 + 0.0921178 x2 x4 − 0.129986 x2 x5
− 0.148616 x3 x4 − 0.0997985 x3 x5− 0.204017 x4 x5 + 0.0290287 x2

1
− 0.0982925 x2

2 − 00238559 x2
3 − 0.163527 x2

4 − 0.158981 x2
5

(7)
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Figure 13. Depth of the surface layer: (a) machined workpiece—hardness HB = 200; (b) machined
workpiece—hardness HB = 300; (c) machined workpiece—hardness HB = 350; and (d) machined
workpiece—hardness HB = 400.

In order to determine the regression equations of the objective functions in natural
coordinates, a coordinate transformation was performed based on (6) and Table 1, according
to the following relationships:

x1 = 0.25 FP − 4
x2 = 6.8433154 log v− 2.0600364
x3 = 14.32394489 α− 5
x4 = 11.45915493 λ− 2.99999977
x5 = 0.02 δHB − 6

(8)

Replacing (8) in (7), the mathematical models of the objective functions in natural coordi-
nates take the form:

ln Ra = −16.8241 + 0.00498102 FP − 1.88512 log v + 19.3102 α + 38.6419 λ + 0.059282 δHB − 0.344619 FP α

+ 0.290018 FP log v − 0.476997 FPλ + 0.000364245 FPδHB + 9.12428 αlogv + 7.22375 λ log v − 0.0177908 δHB log v
− 24.3939 αλ − 0.0285902 α δHB − 0.0467572 δHB λ + 0.00181429 FP

2

− 4.60313 log v2 − 0.489465 α2 − 21.4731 λ2 − 0.0000635924 δHB
2

(9)
In Equation (9), the independent variables are considered in the units of measurement

presented in Table 1.
In order to determine the final form of the objective functions, of the constants and

coefficients of (3), Equation (9) was used in which the terms were conveniently grouped.
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After performing the necessary calculations, the respective coefficients, and constants took
the form shown in Table 2.

Table 2. Expression of the objective function coefficients.

Objective Function Exponent Expression

a1 −1.83 + 9.13 α + 0.29 Fp − 0.02 δHB + 7.23 λ − 4.6 log v

Ra a2 0.01 − 0.35 α + 0.01 Fp + 0.0004 δHB − 0.48 λ

CRa = e−16.83 a3 19.31 − 0.49 α − 24.34 λ

a4 38.64 − 21.47 λ

a5 0.06 − 0.03 α − 0.0007 HB − 0.047 λ

In order to validate the mathematical model, several tests were performed. Gruber
test for identification of aberrant data was performed. The results for the proposed mathe-
matical model in Equations (7) and (9) have values v1 = 1.27808 and v2 = 1.54715 that are
inferior to critical values of v = 3.21, resulting in a 95% confidence level.

A second Shapiro–Wilk (S–W) test was performed in order to verify the normality
of the experimental data string. The calculated value W = 1.39187 was compared to the
tabular value of W = 0.788 for the S–W test, indicating with a 95% confidence level the
acceptance of the normality of the data string hypothesis.

A Fischer (F) test was performed in order to verify the adequacy of the mathematical
model. The calculated value F of the test must be less than the critical value FT indicated
by the literature. The calculated value was 3.39199 which is lower than the value 4.95;
therefore, the condition was fulfilled for an alpha coefficient of 0.05, i.e., the confidence
level of the results was 95%.

4. Discussion

In the following section, we present dependencies of the objective function in relation
to each optimization factor (Figure 14).

From graphs presented in Figure 14, one can conclude that the optimization factor
“cutting speed” complex influences the roughness of the processed surface, and we observe
a slight decrease in this parameter with increase in the cutting speed. However, at low
speeds, there is a tendency to form adhesions to the edge which leads to the increase in
roughness in the first phase, given that roughness decreases with the increase in cutting
speed. In the case of the optimization factor “clearance angle α”, a pronounced increase
in roughness was observed with the increase of this angle. This can be explained by the
fact that there is a close connection between the clearance angle α and the back rake angle
γ, so the increase of the clearance angle leads to high negative values for the back rake
angle. This leads to high stresses required for cutting (complex cutting) and vibrations
in the system. The optimization factor “inclination angle λ” also has an influence with a
higher degree of complexity. In the first phase, a decrease in roughness is observed with
an increase of this angle, but once it reaches a certain value, there is improvement. The
first part of the graph is explained by an increase in the cutting effort, although a proper
evacuation of the chips is ensured. Once the angles reaches a certain value, there is a
decrease in roughness, and all these factors are determined by an increase of the contact
length between the total active edge of the cutting tool and the blank along with an increase
of the angle of inclination of the blade. For the same radial force Fp, at a distribution of
this force on a longer contact length, there is a decrease in specific pressure; from a certain
angle, an exit process for the cutting teeth and a strong friction phenomenon between the
cutting tool and the resulting roughness takes place. The optimization factor “radial force
Fp” also is complex in the way of variation of the roughness. Thus, with the increase in
radial force, there is an insignificant decrease, although from a certain value it acquires a
strong ascending character. This can be explained by the fact that this radial force directly
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determines the depth of cut, which in turn causes an increase in roughness as radial force
increases. In the first phase, the optimization factor “HB hardness” leads to an increase in
roughness motivated by the increase in cutting efforts and implicitly in vibrations in the
system. Over a certain threshold a decrease in roughness is observed and, with the increase
in hardness, the specific radial force necessary for processing can no longer be supplied by
radial force FP; this results in a friction phenomenon instead of a cutting type, and leads to
an improvement in roughness but has a negative effect on the whole processing.

Starting from the determination and explanation of some influences between the
optimization factors and the objective function “roughness”, these dependencies were pro-
cessed in a two-dimensional space. We move onto the complex influence of the optimization
factors in the three-dimensional space. As previously indicated, three optimization factors
were kept constant, assigning the values from the center of the experiment field, and the
other two factors were varied in the intervals established in the programming matrix of
the factorial experiment. By the established method, we obtained a series of 10 graphs
presented in Figures 15–24.
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Figure 14. Influence of the optimization factors on objective function “roughness Ra”: (a) speed
influence on roughness (µm); (b) afla influence on roughness (µm); (c) lambda influence on roughness
(µm); (d) Fp influence on roughness (µm); and (e) hardness influence on roughness (µm).

These graphs are designed to have both a spatial view of the results and their two-
dimensional presentation by means of isohypses or constant level curves, made by the
intersection of graphs with planes parallel to the basic plane. This way of representation
was possible by using the programming packages in mathematical language Mathematica
ver.8, and the program necessary for this representation is attached to the doctoral thesis in
the appendix.
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Figure 15 shows the variation of the objective roughness function in relation to the
cutting speed and the radial force Fp. From this graph, it can be seen that the radial force
has a greater influence on changing the way of variation of the roughness depending on the
cutting speed and for high values of the radial force. The explanation of this phenomenon
is that higher values of the cutting speed and the radial force induce a substantial increase
in the cutting force with the corresponding consequences.
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Figure 15. Influence of the cutting speed v and radial force Fp on roughness Ra.

In Figure 16, the value of the roughness function in relation to the cutting speed is
decreased for the whole surface, with the specification that roughness worsens for high
values of the clearance angle α and low values of the cutting speed. At these values of the
laying angle, we observed pronounced negative values of the clearance angle α, indicating
high efforts and the possibility of vibrations with negative consequences on the quality of
the processed surface.
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Figure 17 shows the variation of the roughness function as a function of the variation
of the cutting speed and the inclination angle λ. In this case, the cutting speed practically
only amplified the influence of the angle of inclination at its low values and attenuated
this influence for high values. The angle of inclination retained its influence as noted in
Figure 15.
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Figure 17. Influence of the inclination angle and cutting speed v on roughness Ra.

It should be noted in Figure 18 the same type of conjugate influence in which the
cutting speed amplifies the phenomena to its small values. However, at high hardness of
the blank, we observed that the cutting speed constantly decreased without the slightly
increasing threshold shown in Figure 14. The increase in roughness continuing up to a
certain hardness value can be explained by the increase in cutting efforts followed by an
amplification of the vibratory phenomena. After a certain hardness value, there was a slight
improvement of the roughness, explained by the fact that the specific force manifested in
the cutting area increases while the friction phenomena amplified and thus led to better
roughness.

A conclusion that can be deduced from the presented graphs is that the amplification
of variation of roughness dependent on the optimizing factors (for all optimization factors)
manifested in low cutting speeds.

Figure 19 presents the influence of optimization factors in which the main role is
held by the radial force Fp. This graph shows the combined influence of the optimization
factors “contact force Fp” and “clearance angle α”. We observed that at high values of the
radial force and low values of the clearance angle the roughness worsened, explained by
the fact that the cutting force increases as cutting depth increases; therefore, the efforts
in the system increase along implicitly with vibrations and inconstant cutting. There is a
possibility that the teeth of the cutting tool can penetrate the semi-finished product at one
part and exit the cutting in another area). At high values of the laying angle and low values
of the cutting force, we observed the worsening of the objective roughness function as a
result of a dependency between the clearance angle α and the back rake angle γ that led to
pronounced negative values for the clearance angle at high values of the seating angle. A
decrease of the values in the objective roughness function results from the negative effects
of negative geometry (complex cutting) which are counteracted by a higher specific radial
force that maintains constancy of the cutting process with positive consequences.
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Figure 19. Influence of the clearance angle and radial force on roughness Ra.

Figure 20 presents the combined influence exerted by the optimization factors “Fp
contact force” and “inclination angle λ”. In this graph, we can see the character of the
variations presented in Figure 14 for both small values of the radial force and the angle of
inclination of the edge. For high values of both optimization factors, there was a pronounced
decrease of the values in the objective roughness function explained by the fact that the
inclination angle increases as the contact length between the active and semi-finished edge
increases and it also increases the specific force with positive effects on the cutting process
in terms of its constant character.
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Figure 20. Influence of the inclination angle and radial force on roughness Ra.

Figure 21 presents the combined influence of the optimization factors “radial force”
and “HB hardness” on the material to be processed. We observed that for low hardness
of the material, the increase in radial force led to a slight decrease of the values of the
objective function as a result of the vibratory phenomena in the system. As the hardness
of the material increased, the repelling phenomenon of the material intensified, which
led to a worsening of the roughness. At high values of material hardness (400 HB), we
observed practically no machining for small radial forces but only friction and amplified
vibrational phenomena in the system with increasing radial force, demonstrated in practice
by increased acoustic phenomena and an intense dynamism of the measured cutting force.
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Figure 21. Influence of the hardness and contact force on roughness Ra.

Figure 22 shows the influence of the optimization factors “clearance angle α” and
“inclination angle λ”. In this case, both optimization factors retained their influence on
the roughness objective function, their entire range of variation, and on that presented in
Figure 14. However, we observed that for small values of the seating angle, the maximum
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value of the influence of the inclination angle λ changed to higher values. This can be
explained by the fact that at low values of the clearance angle, we obtained small negative
values of the back rake angle, making the cutting efforts smaller and the specific radial
force required for cutting lower. Then, with the increase of the contact length between the
cutting tool and the semi-finished product that was modified by increasing the angle of
inclination of the cutting edge, a maximum of this specific force could be reached for a
higher value of the contact length, implying a greater angle of inclination of the edge.
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Figure 22. Influence of the clearance angle and inclination angle on roughness Ra.

Figure 23 shows the combined influence of the optimization factors “clearance angle
α” and “hardness HB”. The influence of the seating angle was dictated both by the
frictional forces in the system and by the back rake angle γ with which it is directly
interdependent. With the increase of the setting angle and increase in hardness, the
objective roughness function acquired high values given that roughness decreases from a
certain value of hardness, in which case the cutting tool does not work, producing only a
friction phenomenon.
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Figure 24 shows the combined influence of the optimization factors “inclination angle
λ” and “HB hardness”. The evolution of the variations of the objective roughness function
is approximately the same as the one from the previous point. However, the explanation is
modified, this time discussing the change in the active length between the cutting edge and
the semi-finished product. It should be noted that as the hardness of the blank increases,
the specific radial force required for cutting increases. In summary, the cutting process is
inconsistent for the increases manifested on the two optimization factors. However, the
Fp contact force is no longer enough from a certain hardness value with the cutting teeth
gradually coming out of the cutting, which leads to the phenomenon of friction between
the cutting tool and semi-finished product with a positive effect on the roughness value
but a negative effect on other parameters.
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Based on the above discussion, we determined an optimal solution which is repre-
sented by the intervals of variation of the optimization factors that can ensure the satisfac-
tion of a high level of the main objective function and, at the same time, obtain possible
minimum values of the secondary functions (Table 3).

Table 3. Optimized intervals of parameters.

Objective Function Parameters Fp [N] Clearance Angle α [rad] Inclination Angle λ [rad] Hardness HB

Roughness
Ra

Ra→Fp, V [120 ÷ 250] - - -

Ra→V, α - [0.15 ÷ 0.4] - -

Ra→V, λ - [0.1 ÷ 0.45] - -

Ra→V, HB - - - [225 ÷ 370]

Ra→Fp, α [110 ÷ 140] [0.15 ÷ 0.45] - -

Ra→Fp, λ [120 ÷ 240] - [0.2 ÷ 0.4]

Ra→Fp, HB [100 ÷ 225] - - [220 ÷ 350]

Ra→α, HB - [0.35 ÷ 0.5] - [200 ÷ 350]

Ra→λ, HB - - [0.2 ÷ 0.5] [200 ÷ 350]

Optimized domain of working conditions [120 ÷ 140] [0.35 ÷ 0.4] [0.2 ÷ 0.4] [225 ÷ 350]
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5. Conclusions

The analysis of the two-dimensional sections of the response surfaces highlighted
the following:

- The response surfaces of the functions “roughness Ra” have complex forms due to the
important and sometimes contradictory influences of the independent variables on
the objective functions;

- The response surfaces of the “roughness Ra” function have the shape of “elliptical
hills”, at which the minimum points are not always within the considered range.
Moreover, it is difficult to detect the minimum area of the cutting forces for which the
cutting tool works properly, given that the cutting process easily becomes unstable
when micro-cutting due to the high specific forces manifested in the working area,
which can lead to the exit of the cutting tool from the cutting; and

- The contradictory influence of the independent variables makes it impossible to locate
their domain that would satisfy to a maximum or minimum all the objective functions.

The adopted multicriteria optimization method was adapted to the shapes of the
determined response areas and was based on the following strategy:

• Considering that the shape of the response surfaces of the main objective function
(roughness or productivity) allows the identification of intervals of variation of the
optimization factors in which it remains constant, it was determined at the beginning
the experimental field which ensured the satisfaction of this criterion at a certain level;

• The limits of this field (within which the optimal global solution is located) were used
to condition the values of the other objective functions; the conditioning was done
both from the perspective of the intervals of definition for the independent variables
and the extreme values that these functions can take.
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