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Representations in the brain are encoded as patterns of activity of large populations of
neurons. The science of population encoded representations, also known as parallel
distributed processing (PDP), achieves neurological verisimilitude and has been able
to account for a large number of cognitive phenomena in normal people, including
reaction times (and reading latencies), stimulus recognition, the effect of stimulus
salience on attention, perceptual invariance, simultaneous egocentric and allocentric
visual processing, top-down/bottom-up processing, language errors, the effect of
statistical regularities of experience, frequency, and age of acquisition, instantiation
of rules and symbols, content addressable memory and the capacity for pattern
completion, preservation of function in the face of noisy or distorted input, inference,
parallel constraint satisfaction, the binding problem and gamma coherence, principles
of hippocampal function, the location of knowledge in the brain, limitations in the
scope and depth of knowledge acquired through experience, and Piagetian stages of
cognitive development. PDP studies have been able to provide a coherent account
for impairment in a variety of language functions resulting from stroke or dementia in
a large number of languages and the phenomenon of graceful degradation observed
in such studies. They have also made important contributions to our understanding of
attention (including hemispatial neglect), emotional function, executive function, motor
planning, visual processing, decision making, and neuroeconomics. The relationship of
neural network population dynamics to electroencephalographic rhythms is starting to
emerge. Nevertheless, PDP approaches have scarcely penetrated major areas of study
of cognition, including neuropsychology and cognitive neuropsychology, as well as much
of cognitive psychology. This article attempts to provide an overview of PDP principles
and applications that addresses a broader audience.

Keywords: parallel distributed processing, cognitive function, knowledge, memory, language, attention, executive
function, emotional function

INTRODUCTION

In 1980, it was not possible to imagine how a brain composed of 100 billion highly
interconnected, lipid-encased, reticular electrochemical devices could possibly support
complex neural functions like language, memory, visuospatial, emotional and executive
function. However, thanks to the epochal two-volume work of McClelland et al. (1986) on
parallel distributed processing (PDP; McClelland et al., 1986), the vast outpouring of research
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they have conducted and inspired since then on population
encoded (distributed) representations (reviewed on 25th
anniversary of PDP by Rogers and McClelland, 2014), and the
parallel advances in our understanding of the corresponding
processes at the neural level (Rolls, 2016), we now have a
remarkably detailed understanding of the relationships between
neural structure and higher neural functions. We understand
that the brain provides the essential network scaffold for
cognitive processing but that the substance of that processing
is acquired through a lifetime of learning and that the rules
governing that processing are implicit and emergent and reflect
the statistical properties of experience (Elman et al., 1996; Plaut
and Vande Velde, 2017). The precise details of the scaffold
may differ from person to person, perhaps reflecting, in part,
individual differences in cytoarchitectonic maps (Rajkowska
and Goldman-Rakic, 1995) and white matter connectivity (most
conspicuous in synesthesia), as well as underlying genetic and
evolving epigenetic influences, but the general features are likely
common to all human brains.

Here, I review the major insights that PDP research has
provided into the neural basis of cognitive function. Much
of this science is now fairly mature but, as with any good
theory, domains of uncertainty benefit from the coherence
of the theoretical components that have emerged and the
extensive empirical validation of PDP theory. PDP theory can
now account for an enormous spectrum of psychophysical
and behavioral phenomena without the benefit of ad hoc or
algorithmic devices. Maturity, coherence, empirical validation,
and neural verisimilitude inspire confidence that the account to
be elaborated here is basically correct. In the interests of clarity,
the story will be related with little qualification and reliance on
the reader to know that this remains a theory.

Even now, nearly 35 years after the publication of McClelland
et al. (1986), neither the importance of the neural verisimilitude
of PDP models nor their enormous implicit explanatory power
for cognitive and behavioral function in health and brain disease
have been widely recognized beyond the PDP community.
In the conclusion to this article, I will consider why this
might be so.

THE STRUCTURE OF POPULATION
ENCODING NETWORKS

It has been known for some time that representations in
the central nervous system (CNS) are population encoded,
that is, encoded as patterns of activity involving very large
numbers of highly interconnected neurons in one or more neural
networks extending over large expanses of the brain (O’Keefe
and Nadel, 1979; Georgopoulos et al., 1982; Churchland and
Sejnowski, 1992; Rolls and Treves, 1998; Zhang et al., 1998;
Zhang and Sejnowski, 1999; Rolls and Deco, 2002; Behrmann
and Plaut, 2013; Rolls, 2016; Lebedev and Nicolelis, 2017).
The properties of population encoding networks have been
extensively explored in simulations. Most of these involve
fairly simple mathematics: unit activations between 0 and
1 defined as a sigmoid (i.e., logistic) function (

∫
), reflecting

existing activation levels and input from all afferent units, each

afferent unit input multiplied by the weight of its connection
(corresponding roughly to synaptic strengths in the brain),
and output defined as a nonlinear function of unit activation,
often incorporating a ‘‘firing’’ threshold. To one degree or
another, units are highly and reciprocally interconnected (hence
the term ‘‘connectionist model’’), as in the brain (Felleman
and Van Essen, 1991), and activity is understood to flow
between units throughout a network and all connected networks.
Knowledge is represented in connection strengths and learning
consists of alterations of connection strengths. These simple
mathematics obviously do not do justice to all the subtleties of
actual neural processing but they do capture the most essential
properties of neural activity and interactivity. For this reason,
they have given us powerful insights into brain function and they
have been extraordinarily successful in predicting behavior in
normal and brain-damaged individuals. The implicit properties
of networks employing these mathematics, to be detailed below,
provide an orderly explanation for a host of brain functions
and dysfunctions.

For computational models employing population encoding to
provide useful insights into brain function, they must represent
hypotheses that transparently respect neural verisimilitude. Ad
hoc structures or algorithmic appendages will likely detract from
such verisimilitude. Query of the internal processes of the model,
e.g., assessment of hidden unit activity in particular model states,
can elucidate processes that may be occurring in the brain.

Two major types of networks have been defined:
auto-associator and pattern associator. In auto-associator
networks, units are substantially interconnected with each
other, giving the networks attractor properties: the capacity
for settling within an attractor basin into an attractor state
that is optimal, or at least quasi-optimal (more about this
later), given the pattern of inputs to the network. Pattern
associator networks translate patterns of activity in one
representational domain (e.g., orthographic input) into another
representational domain (e.g., semantic representations or
articulatory representations). Pattern associator networks
commonly incorporate ‘‘hidden units’’ between the input and
output layers. Hidden units, combined with the nonlinear
properties of all units in the network, enable such things as
translation between largely orthogonal domains (e.g., between
word meaning and word sound) and the incorporation of
sequence knowledge. Hidden units support representations
that are not directly definable in behavioral terms. The
entire brain can be viewed as a vast ensemble of hidden
units and only at the inputs (e.g., retinal ganglion cells) and
outputs (motor neurons), can the unit activity be directly
mapped to the environment or to observable behavior.
The function of hidden units must be inferred from their
connectivity patterns, observable subject behaviors, and
computer simulations.

We can give these abstract principles substance with an
illustration from semantics. Our knowledge of the world and the
objects within it is encoded in association cortices throughout
the brain. A semantic representation, e.g., of a dog, corresponds
to a locus in an N-dimensional neural activity feature space.
Figure 1 illustrates the results of a thought experiment that
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FIGURE 1 | The topography of the semantic network energy function in the vicinity of the mammal attractor basin. Each point corresponds to an energy level of all
features in an N-dimensional feature hyperspace. The point of maximal typicality is represented by the centroid of a basin/sub-basin. Distance from the centroid
reflects the degree of atypicality. The value of θ defines the manner in which atypicality is defined. For example, whales and platypuses are both atypical but in very
different ways. From Nadeau (2012), with permission.

involves taking a 3-dimensional slice of the corresponding
energy landscape, a slab in the vicinity of mammal knowledge.
The central, lowest ‘‘energy’’ point—the ‘‘centroid’’ of mammal
knowledge—corresponds to the representation of a creature that
best defines our sense of mammalness. Within the mammal
basin, there are innumerable attractor sub-basins corresponding
to specific mammals. A sub-basin is defined by the addition
of features (additional neural connectivity) to exemplars of the
domain to which it belongs. For example, distinguishing a dog
from other mammals, or a Labrador from other dogs requires
some additional feature knowledge. Very close to the centroid
are sub-basins corresponding to mammals likely to be very
close to the centroid representation, e.g., dogs, cats, cows, and
horses. Distance from the centroid is defined by the degree
of atypicality, which reflects feature and feature combination
frequency within the mammal domain. Highly atypical animals,
such as whales and platypuses, are represented near the periphery
of this mammal attractor basin. Within any given sub-basin,
theremay be sub-sub-basins, for example, corresponding to types
of dogs. The depth of the mammal basin and its sub-basins
(the z-axis in Figure 1) is determined by the depth of the
encoding of knowledge in neural connectivity. This, in turn,
is determined by the degree to which a given exemplar shares
features with other exemplars in the domain (corresponding
to regularities and defining the depth of the ‘‘parent’’ basin or

sub-basin), the number of unique features (defining the depth
of the ‘‘daughter’’ sub-basin or sub-sub-basin), the frequency
of the exemplar in the individual’s experience, and the age
of knowledge acquisition. The network’s settled activity state
is most strongly influenced by the specific input, which in
most circumstances will absolutely define an attractor state
within the sub-basin or sub-sub-basin into which the network
settles, all the other factors exerting their major influence either
on response latencies or the occasional production of errors.
Errors will consist of slips into nearby sub-basins or settling
into the larger parent basin. With network damage, focal or
diffuse—hence loss of neural connections defining more specific
features—deep basins will become shallower and sub-basins,
particularly those that are shallower and more distant from
the centroid—corresponding to more atypical exemplars—will
disappear. As sub-basins become shallow or disappear, responses
will reflect the settling of the network into surviving neighbors
located nearer the centroid—neighbors of higher typicality
(yielding coordinate errors, e.g., horse in lieu of donkey), the
parent basin (yielding superordinate errors, e.g., animal in
lieu of donkey), or failure to settle at all, yielding omission
errors. This is precisely what has been observed in patients
with semantic dementia (Woollams et al., 2008) and in PDP
simulations of semantic dementia (Rogers andMcClelland, 2004;
Rogers et al., 2004).
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We can extend the general idea of attractor basins generated
by auto-associator networks to attractor trenches generated by
pattern associator networks. An attractor trench is a translation
pathway between two auto-associator domains (Nadeau, 2012,
2014). Thus, in the orthographic-phonologic network that
supports reading aloud and incorporates knowledge of the
relationships between sequences of letters and sequences of
articulated phonemes, there is an attractor trench corresponding
to ‘‘ust’’ words (must, bust, trust, lust, etc.; Seidenberg and
McClelland, 1989; Plaut et al., 1996). There is also an attractor
trench corresponding to ‘‘int’’ words. However, it has two sub-
trenches, one corresponding to /Int/, e.g., mint, tint, flint, and
lint, the other to the single /int/ word, pint. Our understanding of
the attractor trench landscape of phonologic sequence knowledge
has also recently advanced in corresponding ways (Vitevitch and
Castro, 2015; Vitevitch and Luce, 2016).

Any given entity may be represented in a number of different,
linked, neural networks that only, in aggregate, support the
N-dimensional manifold described above and in Figure 1. This
general idea dates back to Lissauer (1988) and Wernicke (Eggert,
1977). It has recently been captured by the term neural ensembles
(Pulvermüller, 2010). Thus, the concept of a dog has a visual
representational component in visual association cortices (what
dogs in general or particular dogs look like), a somatosensory
component (soft fur, cold nose), a limbic component (what
we feel about dogs in general or our own pets), an acoustic
component, an olfactory component, a predicative component
(what dogs commonly do or have done to them; how objects
can be manipulated), and linguistic components (Nadeau, 2012;
Figure 2). Thus, a stable cerebral representation of dog actually
corresponds to an entire constellation of attractor states in
interconnected attractor basins. In this view, much of the
cortical surface will be engaged by a concept representation.
Damage to limited regions of the brain will be reflected in
deficits in particular components of meaning. For example,
English speaking patients with posterior left temporal lesions
retain a reasonable ability to use verbs (Breedin et al., 1994;
Breedin and Martin, 1996; Marshall et al., 1996; Nadeau, 2012).
However, they have difficulty distinguishing between words like
walk, trudge, saunter, strut, march, sashay, stroll and pace,
reflecting loss of knowledge of the manner component of
verb meaning.

If a domain of concepts is particularly dependent upon one
neural network in an ensemble, damage to that network may
produce differential impairment. For example, damage to the
visual association cortex, e.g., by herpes simplex encephalitis,

results in category-specific deficits in naming and recognition
for living things because the visual component of living things
constitutes an indispensable component of our knowledge of
them (Warrington and Shallice, 1984; Forde and Humphreys,
1999). Farah and McClelland (1991), in a PDP simulation,
inquired into the essential nature of the interrelationship between
components of a neural ensemble comprised of two domains,
visual (providing the principal contribution to knowledge
of living things) and functional (providing the principal
contribution to knowledge of nonliving things, e.g., tools).

A large number of components of neural ensembles
have implications for multi-tasking because it creates a high
probability (higher than typically considered Feng et al., 2014)
that two different ensemble representations will engage the same
region of cortex, thus competing. For example, language tasks
involving movement verbs interfere with movement because
both engage precentral gyrus (see Nadeau, 2012). Multi-tasking
may also be constrained by limited ability to simultaneously
maintain two volitional plan representations.

FUNCTIONAL IMPLICATIONS OF
POPULATION ENCODING NETWORKS

Neural networks incorporating these simple characteristics have
a number of implicit properties that are directly relevant to brain-
behavior relationships. Understanding these properties enables
one to understand essentially any domain of a cognitive function
in entirely new and very productive ways even without doing
computer simulations.

1. Processing occurs and knowledge (long-term memories)
is stored (as synaptic strengths) in exactly the same network.
For example, visual association cortices both process visual
input and store visual knowledge. Dominant (and to a lesser
and variable extent, non-dominant) perisylvian cortex stores
knowledge of phonological sequences and supports phonological
processing. The fact that networks encoding knowledge
also support processing enables such things as stimulus
recognition (or sense of familiarity) and reactive attention
driven by stimulus salience, familiarity, or context (Spratling
and Johnson, 2004). Concurrent encoding of knowledge and
support for processing also enables simultaneous visual viewer-
centered (egocentric and stimulus-derived) and object-centered
(allocentric and knowledge derived) processing of visual stimuli
(Mozer, 2002).

Working memory and attention are subserved by essentially
the same process of selective engagement: the bringing on

FIGURE 2 | The multifocal distributed representation of a sentence. The multi-regional distribution of noun knowledge (a neural ensemble) is discussed in the
section on the structure of population encoding networks. Verbs have an analogous multi-regional distributed representation, including frontal components involved
in the incorporation of thematic role(s), post-central components instantiating verb flavor (manner, path, and limbic representation), an implementational component
in motor cortex instantiating movement, and a nominal component corresponding to linked noun representations. From Nadeau (2012), with permission.
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line of selected representations in selected neural networks by
eliciting alterations in the pattern of neural activity, alterations
in the likelihood of neural firing, or selection of inputs that
induce neural firing (Moran and Desimone, 1985; Desimone and
Duncan, 1995; Nadeau and Crosson, 1997). Working memory
and attention appear to correspond to deepening of attractor
basins (alterations in population patterns of firing) elicited by
either salient sensory input (reactive attention to particularly
salient stimuli), input from prefrontal cortex corresponding to
volitional attention (Rolls andDeco, 2015), or input from parietal
cortex prioritizing objects at particular locations (Spratling
and Johnson, 2004; Rolls, 2016). This might be accomplished
through the achievement of greater synchronicity between
gamma frequencies (greater coherence) in the post-central neural
networks encompassed by the attractor basins (Fries, 2015;
see below).

2. Capacity for settling into attractor states. The mathematical
properties of neurons and the networks to which they belong
assure that they will naturally settle into attractor states.
As perhaps first suggested by Plaut et al. (1996), the time
to settle corresponds to reaction time. The large extent of
cortex engaged in these states has been nicely demonstrated
in magnetoencephalographic studies (Boulenger et al., 2012;
Carreiras et al., 2015; Miozzo et al., 2015; Hultén et al., 2019).
Porter and Lemon (1993) were possibly the first to recognize the
neural instantiation of settling in their studies of the corticospinal
system. Studies of nonhuman primates had demonstrated that,
whereas a cortical Betz cell could be driven to fire an anterior
horn cell with a latency of about 5 ms, with naturally occurring
movement, the time from Betz cell firing to anterior horn cell
firing was about 100 ms. Thus, 95% of the anterior horn cell
firing latency was taken up by a settling process involving linked
cortical networks, the basal ganglia, the cerebellum, pontine,
medullary and vestibulospinal systems, and the segmental pool
of anterior horn cells. In the cerebrum, the conduction velocity
of myelinated axons is likely on the order of 50 m/s. It would take
an action potential about 2 ms to travel from a frontal pole to
the posterior temporal or parietal cortex. Behavioral responses
generated by the cerebrum take on the order of hundreds of
ms. Thus, the full cerebral settling process, even if it involves
distant neural networks, must subsume hundreds of back-and-
forth transmissions.

PDP models are sometimes criticized for the enormous
number of epochs required to train them using such standard
training algorithms as backpropagation, a purely heuristic
technique, as well as on their seeming dependence on the
backpropagation algorithm. A typical night of sleep could afford
on the order of 105 volleys between any two regions (assuming
entrainment to theta frequencies). If we can also assume that
each volley is associated with a minor adjustment of neural
connectivity in the process of memory consolidation (see below),
then the scale of synaptic tweaking is comparable to that
employed in PDPmodeling. Backpropagation is an algorithm for
network training in which the actual output is compared with
the target output and then each connection is adjusted to the
extent that it is contributing to error. While backpropagation
as conventionally employed in PDP modeling is not biologically

plausible, learning based on local rules, e.g., Hebbian learning
reflects not only bottom-up input patterns but also the top-down
influences of connected networks.

The full representation of a complex cerebrally instantiated
entity, e.g., ‘‘dog,’’ requires parallel settling into the constellation
of linked attractor basins constituting a neural ensemble. Settling
within even one attractor basin requires the reconciliation of
competing influences on the pattern of neural activity and the
ultimate state of the network reflects the process of parallel
constraint satisfaction (McClelland et al., 2014). Simultaneous
settling within a constellation of attractor basins takes parallel
constraint satisfaction to an entirely new level and it is
possible that it is only achieved by stages. Parallel constraint
satisfaction does not assure that all constraints are fully met.
Thus, the ultimately settled state is often quasi-optimal, rather
than optimal. Hence our propensity for making syntactic gaffs,
occasional semantic paraphasias, phonological slips, and even
anomia, the latter reflecting an inability to settle into any
phonological attractor state. These problems are magnified in the
context of brain damage.

The settling process subsumes bottom-up/top-down
processing. Because of bottom-up/top-down processing, what
we perceive actually corresponds to the outcome of a negotiation
between networks that are the direct recipient of sensory input
and networks supporting our knowledge of the world and what
we plan to do with it (Carreiras et al., 2014). Hence the editor’s
curse: we overlook typographical errors because we ‘‘see’’ what
was intended, not what was actually written.

3. Capacity for incorporating statistical regularities of
experience, frequency, and age of acquisition effects (Kumaran
et al., 2016). Each addition of knowledge or skill to the brain
is coded as an adjustment of neural connection strengths.
Population encoding networks have been shown to be highly
proficient at capturing statistical regularities in these experiences.
For example, the English verbs that form a regular past tense
are individually infrequent but, because they all share the
same pattern of past tense formation, they avail themselves of
the implicit regular past tense rule that has been instantiated
in morphologic sequence connectivity through accumulated
experience (Nadeau, 2012). In contrast, the past tense ‘‘rule’’ for
irregular past tense verbs (e.g., swim—swam; hit—hit; go—went)
is only somewhat reflective of regularities in morphologic
sequence knowledge (because few verbs share these regularities),
and knowledge of these forms is substantially reliant on the
impact of frequency effects on the encoding of this type of verb
past tense form. The 160 verbs with an irregular past tense
are among the most frequently used in the English language.
Knowledge gained early in life is more resistant to degradation in
the face of brain injury than knowledge acquired later in life—the
age of acquisition (AOA) effect (Rogers et al., 2004).

The AOA effect appears to be related to the gradual evolution
of neural connection strengths from a normal distribution to
one of extremes (high or low), an evolution that progressively
limits the magnitude of further synaptic modification that can
occur in association with the acquisition of new knowledge
(Ellis and Lambon Ralph, 2000; Lambon Ralph and Ehsan,
2006). The mechanism of the AOA effect is counteracted
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by mechanisms underlying synaptic homeostasis (Tononi and
Cirelli, 2014). Learning during wakefulness corresponds to
increases or decreases in synaptic strengths within neural systems
implicated in learning experiences. Eventually, this will lead
to saturation of neural connectivity as, over time, synaptic
strengths are driven to maximal or minimal values (Ellis and
Lambon Ralph, 2000; Lambon Ralph and Ehsan, 2006). Not
only does this steadily reduce learning capacity but it also
decreases the ability to selectively encode more important
memories. The synaptic homeostasis hypothesis is that during
wakefulness, there is, in aggregate, an overall strengthening of
synaptic connectivity, while during non-REM sleep, there occurs
a ‘‘normalization’’ of synaptic connectivity characterized by
comprehensive downgrading of synaptic connections strengths,
constrained by a ‘‘survival of the fittest’’ process in which
neural connectivity that is most implicated in the day’s
knowledge acquisition and implicated in existing long-term
memory will be least weakened, or even strengthened, while
neural connectivity that does not share these attributes will
be differentially weakened. Thus, both the capacity for further
learning (neuroplasticity) and capacity for prioritization of
knowledge to be retained are preserved.

The capacity to incorporate statistical regularities of
experiences differs considerably between knowledge domains.
It is high in the domain of semantic knowledge, albeit greater
for living things than for artifacts. It is also high in pattern
associator networks in which there is a high degree of
correspondence between representations in one domain
and representations in the other, for example, orthographic
sequence knowledge and phonologic sequence knowledge.
It is low in pattern associator networks linking substantially
orthogonal domains, e.g., semantic knowledge and phonological
sequence knowledge (there is generally little relationship
between word meaning and word sound). The representation
of low-frequency entities in highly regular domains is strongly
supported by the features they share with other members of
the domain. Exemplars in domains marked by few regularities
must rely on frequency and age of acquisition for the strength
of representation. Age of acquisition effects tends to be
extinguished as regularities are instantiated so they are only
apparent in irregular domains or in regions of irregularity in
domains largely characterized by regularity (Lambon Ralph
and Ehsan, 2006). Domain regularity is particularly relevant to
rehabilitation because it provides a basis for generalization of
gains achieved during training to performance on untrained
material (Nadeau, 2015).

4. Rules and symbols. Neural architectures supporting
population encoding have been criticized over the years for a
perceived inability to instantiate rules and symbols. However,
it should now be clear that, because the nonlinear properties of
neurons and neural networks provide a basis for settling into
states, whether in attractor basins or attractor trenches, this
criticism is not well-founded. The creature you just saw was
either a cat or a dog, not some blend of the two. The past tense of
regular English verbs is formed according to an implicit rule: add
/t/ (dip/dipt), /d/ (film/filmed), or /ed/ (abscond/absconded), one
that corresponds to a regularity in phonologic and morphologic

sequence knowledge. A rule is a sign of an attractor trench and a
symbol a sign of an attractor basin.

5. Content addressable memory. Because knowledge is
distributed throughout feature space, engagement of individual
features can elicit entire concept representations (i.e., pattern
completion). For example, the perception of a feather can elicit
a population encoded representation of birds. The capacity for
pattern completion is essential to perceptual invariance, the
ability to recognize an object from different points of view
(Mozer, 2002; Prevete et al., 2008). The same fundamental
mechanism, operating instead in the dorsal ‘‘where’’ visual
system, may provide the basis for relating retinotopic space to
egocentric space. The facility for content addressable memory
enables the elicitation of correct representations by corrupted
input (Tang et al., 2018)—an essential capacity given the
frequency with which an organism operates under conditions of
degraded perception. A novel input may elicit recall of a similar
pattern from memory, thereby instantiating generalization
(Haberly, 2001).

6. Graceful degradation. Because knowledge is represented
as synaptic connection strengths throughout a network,
degradation of connections in the network will not halt function.
Rather, network output will become more errorful, yielding
near-miss errors or even non-responses when the network is
intermittently incapable of eliciting a particular representation in
an output network productive of behavior. Residual productivity
will be proportionate to the strength of encoding of particular
knowledge in neural network connectivity. The same principle
will generally apply when there is focal damage to a network.
However, because networks are not isolated and, as they merge
into each other, there tends to be a gradation of function,
the effects of focal and diffuse damage may not be quite
the same. The behavior of population encoding networks is
intrinsically stochastic; this is another contributor to the quasi-
optimality of attractor states as well as to the production of
fluctuating responses.

There is an additional contributor to graceful degradation.
Because a concept or concept component corresponds to a
pattern of activity across a multi-component, multifocal neural
ensemble, there may be substantial preservation of function
despite damage to one or more constituents of that ensemble,
hence some preservation of comprehension of tools in the face
of severe damage to visual association cortex in herpes simplex
encephalitis (Farah and McClelland, 1991). It is because of
graceful degradation that detailed studies of cognition in the
context of brain damage can be so revealing about fundamental
network properties and processes.

7. Inference. Networks may make small inferential errors
when the states into which they settle are not optimal. They
may make larger inferential errors if deprived of important
contextual information. Thus, one might infer that the presence
of a stove, refrigerator, and dishwasher signals a kitchen if
unaware that the context is a department store. However, the
capacity for inference that is intrinsic to population encoding
networks, further empowered by the vast constellation of linked
networks in the brain, confers some very powerful capabilities.
It enables us to make sense of fragmentary perceptual input.
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It enables us to do thought experiments, arbitrarily selecting
one or more features and ascertaining what sorts of distributed
representations they elicit—the essence of a hypothesis. It enables
us to establish constructive relationships between seemingly
orthogonal constructions, for example, the N-dimensional
mathematics of semantic feature hyperspace, a visual surface in
3-dimensions, and the signs of semantic dementia, as discussed
in the foregoing.

These considerations, in aggregate, depict a picture of brain
function that is substantially at odds with conceptualizations that
are common these days.

First, although innumerable focal processes can be identified,
generally defined by the somewhat opaque neurodynamics
defined by hidden unit processing and settling into attractor
basins and trenches, even seemingly simple processes like
naming a picture engage much of the brain.

Second, the order that emerges is a chaotic order (Gleick,
1987), the order that emerges from the activity of billions of
heavily interactive units, each expressing a limited spectrum of
functional parameters.

Third, brain states defining observable behavior reflect a
settling process involving hundreds of back and forth volleys
between participating neural networks.

Fourth, a great deal of processing occurs automatically in
this settling process with its reconciliation of activity patterns in
different autoassociator networks via pattern associator networks
(parallel constraint satisfaction).

What is not automatic is largely the province of the
frontal lobes: volitional planning, volitional decision making,
the volitional engagement of select neural networks that defines
the processes of working memory and volitional attention,
and the volitional sequencing and modification of distributed
concept representations in the processes of thinking and
speaking (syntax; Nadeau, 2012). Automatic and volition
processes correspond, respectively, to the ‘‘fast’’ and ‘‘slow’’
of Daniel Kahneman’s landmark book, ‘‘Thinking: Fast and
Slow’’ (Kahneman, 2011). Kahneman’s work, which takes into
account a vast psychological literature, explores at length the
intrinsic strengths, weaknesses, and proclivities of the two
processes, the fluctuating balance between the two that occurs
in natural behavioral contexts, not always to advantage, and
the ways in which that balance can be manipulated under
experimental control. Reactive processes, based predominantly
in postcentral cortices, bring to bear the powerful associational
and inferential capabilities born of PDP. However, they are
prone to error when the knowledge base for inference is too
small, based on stereotypes, or inherently unpredictable, or the
correct thought, decision or action requires the application of
algorithmic processes, particularly those taking into account
such statistical phenomena as base rate effects, regression to the
mean, and the inverse association between variance and sampled
population size. In this conceptualization, creativity (Heilman
et al., 2003; Heilman, 2005) is based on an iterative dialogue
between reactive and volitional systems.

Much has been written about the binding problem: the
capacity for linking neural representations in various parts of
the brain. Population encoding networks with the properties

described should solve the binding problem through their
capacity for settling into constellations of attractor states, in
the process achieving parallel constraint satisfaction. However,
for this to happen, the hundreds of back and forth volleys of
neural transmission comprising the settling process must be
precisely synchronized, else they will only contribute noise.
This has been the focus of intense study and this field, still
rapidly emerging, has proven to be very complex (Fries, 2015).
For effective transmission to occur between neurons in any
two post-central networks, their gamma frequency (30–90 Hz)
oscillations must be similar (i.e., there must be coherence).
In this way, transmissions from one network will arrive at
the other during the optimal temporal point of neuronal
excitation, rather than during the period of post-excitatory
inhibition, when they will have less if any, effect. Gamma-
synchronization is modulated by frontal input in the alpha-beta
(8–20 Hz) frequency range. Thus, frontal input serves to
achieve relatively greater coherence in networks engaged in
the processing of attended stimuli. In this conceptualization,
control is by 8–20 Hz frequencies emanating from frontal and
parietal regions while implementation is achieved through
coherence of post-central 30–90 Hz frequencies shared by
engaged post-central networks. On the other hand, attentional
mechanisms are entrained to sample stimuli competing
for attention at 7–8 Hz theta rhythms. Working memory
impairment observed in elderly subjects correlates with theta
phase/gamma amplitude de-coupling between the dorsolateral
prefrontal cortex and the lateral temporal cortex and can
be normalized by individualized theta rhythm transcranial
alternating current stimulation of these areas (Reinhart and
Nguyen, 2019). It is possible that the different rates of oscillations
observed in the cerebral cortex (e.g., alpha, theta, beta, gamma),
and their fluctuations over time, reflect the distinctive properties
of the neural networks in the regions involved, and serve
to synchronize or desynchronize connectivity within and
between different portions of the cortex according to cerebral
processing demands.

One very important implication of these discoveries on the
neural mechanisms of binding is that functional connectivity
derived from functional imaging studies is state-specific.
Anatomically connected networks with high gamma coherence
will exhibit high functional connectivity and those with low
gamma coherence low functional connectivity. This has long
been suspected. For example, the motor cortex can be engaged in
performing movements or by the implementational component
of the neural representation of movement verbs (Figure 2),
depending on the circumstances (Nadeau, 2012).

Before our brief review of PDP studies of cognitive
functions in all their diversity, four essential questions need to
be addressed.

First, the dense patterns of cortical interconnectivity
that are responsible for many of the most powerful
attributes of cortical function and that support extensively
overlapping representations (reviewed above) are fundamentally
incompatible with the process of rapid acquisition of new
declarative knowledge as episodic memories. Most critically,
rapidly acquired new knowledge in such networks will replace
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existing knowledge, a phenomenon known as catastrophic
interference (McCloskey and Cohen, 1989; McClelland et al.,
1995). In addition, new knowledge must be linked to established
cortical knowledge relevant to the specific experience to be
remembered and not to larger, more general domains of
cortical knowledge. If one learns something new about one’s
own dog, they would not want this knowledge linked to all
dogs. The hippocampal system is able to achieve essentially
all at once learning without incurring either catastrophic
interference or inappropriate, excessively general modification
of existing knowledge. It does so by rendering dense connection
patterns sparse, thereby substantially eliminating overlapping
of representations. The marriage between the cortex and the
hippocampus thus enables the brain to achieve the best of both
worlds: dense connectivity in the cortex supports overlapping
representations and is capable of capturing the statistical
structure of experience but at a cost of poor ability to rapidly
acquire new declarative knowledge; sparse connectivity in the
hippocampus yields minimal overlap of representations and
little capacity for capturing the statistical structure of experience
but with the enormous benefit of ability to rapidly acquire
new declarative knowledge. The orderly interface between
cortical and hippocampal systems, originally anticipated byMarr
(1971), is now fairly well understood (Rolls, 2016). In turn, the
reconciliation of cortical and hippocampal systems in PDP terms
provides strong validation of the PDP concept.

Second, we need to briefly inquire as to the constraints that
the brain places on where knowledge is stored.

Third, it is worth asking how knowledge is acquired in the first
place, what impact this acquisition process has on the scope of the
knowledge stored, and how processes of memory consolidation
further shape this stored knowledge.

Fourth, the major focus of our discussion of semantic
knowledge has been on a system (mammals) that is intrinsically
highly hierarchical. However, there are many domains of
knowledge that are substantially non-hierarchical. Some
discussion of these is essential.

Episodic Memory Acquisition:
Transcending Limitations of Cortical
Network Operations
The substantially serial anatomy of the hippocampal system,
beginning and ending with the cerebral cortex (cerebral cortex
(‘‘what system’’/‘‘where system’’)→ perirhinal/parahippocampal
cortex→ entorhinal cortex→ dentate gyrus→ cornu amonis
(CA) 3→ CA1→ subiculum→ entorhinal cortex→ cerebral
cortex) reminds us that the hippocampal system stores episodic
memories in the form of links between cerebral cortical regions.
The approximately 20 million dentate granule cells receive
extensive projections from the entorhinal cortex via the perforant
pathway (Rolls, 2016). This input reflects the extensively
overlapping representations supported by the cerebral cortex,
almost the entirety of which projects to the entorhinal cortex
via the perirhinal and parahippocampal cortices. Very rapid
competitive processing within the dentate involving inhibitory
collateral projections (Gutiérrez, 2003) serves to markedly

reduce input overlap and achieve pattern separation. Ongoing
neurogenesis in the dentate appears to be essential to the
maintenance of this capacity for pattern separation (Spalding
et al., 2013; Rolls, 2016). The cerebral cortex, with its extensive
autoassociator networks and a high degree of interconnectivity
within networks (providing the basis for what are termed
dense representations), is a highly effective instrument for
detecting commonalities between representations. In contrast,
processing by the dentate achieves the sparse (non-overlapping,
orthogonal) representations needed for pattern separation. This
sparseness is further enhanced by the very limited but powerful
excitatory projections (via the mossy fibers) from any given
granule cell to a small number of CA3 pyramidal neurons,
and by the fact that CA3 pyramidal neurons respond only to
the strongest inputs from the dentate. This ingenious system
serves a foundational purpose. In the cortex, the overlap
between representations is essential to our capacity for building
up general (semantic) knowledge from a series of individual
experiences, the hierarchical organization of semantic domains,
and content addressable memory. However, for learning to
be specific to particular semantic exemplars, characteristics
of exemplars, or individual experiences, the overlaps between
representations supported by cortical knowledge must be
minimalized so that what is learned does not apply to
entire semantic domains. Furthermore, the overlap must
be minimalized so that new knowledge can be acquired
without replacing old knowledge, i.e., catastrophic interference
(McCloskey and Cohen, 1989; McClelland et al., 1995).
The dentate-CA3 system substantially (although not always
completely (Norman, 2010) eliminates the overlaps and achieves
pattern separation (Brickman et al., 2014; O’Reilly et al., 2014;
Rolls, 2016).

The CA3 field is characterized by an extensive recurrent
collateral system that spans its length, creating a single
autoassociator network with all the properties discussed above
(Rolls, 2016). The attractor state into which this ultimately
settles represents the point in CA3 activity hyperspace that
best reflects the conjunction of the strongest features of
the myriad cortical representations engaged at that moment
(those that survived the dentate-CA3 gauntlet). These reflect
not just the semantic information that is at play in what
is to be learned, but also the effects of attention, intention,
and the influence of subjective value mediated by input
from the orbitofrontal limbic system, as well as the specific
and general learning contexts, including time and place
(Glenberg, 1979; Glenberg and Lehmann, 1980). CA1 or
CA3-CA1 connectivity appears to play a particular role in
the encoding of temporal sequences, which are population
encoded (Eichenbaum, 2013; Ranganath and Hsieh, 2016). The
acquisition of new episodic memories is achieved through very
rapid alterations in the synapses of recurrent CA3 collaterals.
Entorhinal to CA3 connectivity enables recollection and, because
CA3 functions as a single autoassociator network, full memory
retrieval can be achieved from a partial cue. In the process of
memory consolidation, hippocampally stored episodic memories
are gradually transferred to the cerebral cortex to the extent
that they share features with knowledge stored in cortical
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networks (McClelland et al., 1995;Winocur et al., 2010; Kumaran
et al., 2016). This gradual interleaving of hippocampal input
with repeated input from other cortical regions in the course
of routine mental processing (and especially during sleep)
serves to avoid catastrophic interference (the replacement of
old knowledge with new (McClelland et al., 1995). However, it
has recently been shown that, if feature sharing between newly
learned items and cortically instantiated knowledge structures
is extensive, transferral to cortex can occur very rapidly (within
48 h; Tse et al., 2007, 2011) without catastrophic interference
(McClelland, 2013).

The gradual transfer of knowledge dependent on
hippocampal connectivity to cerebral cortical connectivity,
instantiated in the process of interleaved learning, accounts
for the phenomenon of temporally graded retrograde amnesia
(McClelland et al., 1995). Hippocampal knowledge that cannot
be cortically encoded at all remains hippocampally dependent
indefinitely and is lost with hippocampal lesions, the most
dramatic example being the loss of autobiographical memory
with anoxic injury (Vargha-Khadem et al., 1997).

This understanding of hippocampal function reveals how
the neurodynamical operations of the heavily interconnected
cerebral cortex (intrinsic to which are all of the powerful
properties discussed in the foregoing) are transformed into a
fundamentally different mathematical form in order to meet
several very specific goals while avoiding limitations of and
consequences for its operations if such a transformation did
not occur. These include (1) sparcification of representations
by the dentate-CA3 process so that new episodic memories are
highly specific to certain cortical representations and are not
mistakenly generalized to large domains, e.g., animals in lieu of
my pet cat; (2) capacity for formation of arbitrary associations
between objects, times and places by the CA3 autoassociator
network; (3) retention of knowledge as long-loop cortico-
cortical connectivity until, to the extent that features are shared,
it can gradually be integrated into cortical connectivity in
the process of memory consolidation while not obliterating
old knowledge in the process; (4) the critical facility for
full retrieval of a hippocampally dependent memory given
only a cue, and (5) the facility for lifetime retention of
episodic memories that cannot be integrated into cerebral
cortical connectivity.

The Location of Stored Knowledge: The
Connectivity Principle
Knowledge is acquired one experience at a time and patterns
of cerebral connectivity determine where this knowledge is
stored. This can be illustrated with some examples. The
daily business of neurons in auditory association cortices is
the processing of acoustic input. In the left hemisphere, to
a greater extent than in the right, the daily business of
neurons in Broca’s area is to translate input into spoken
words. The network of connections between auditory association
cortex and Broca’s area, including Wernicke’s area and the
supramarginal gyrus, in the course of language learning,
acquires knowledge of the orderly relationships between acoustic
phonological sequences and spoken articulatory sequences (Plaut

et al., 1996; Roth et al., 2006; Nadeau, 2012). Unimodal
and polymodal association cortices acquire knowledge of
the world and the objects within it through the repeated
sensory input that underlies perception. Connectivity between
both unimodal and polymodal association cortices and the
perisylvian phonological cortex entrains phonological processing
to semantic knowledge. Analogous principles of cortical
connectivity apply to all components of language function,
including syntax and grammatical morphology.

The connectivity principle extends to other regions of the
brain. The major inputs to the frontal lobes are sensory
(relayed from postcentral association cortices to dorsolateral
frontal cortex) and limbic (relayed from limbic structures to the
orbitofrontal cortex). The major output of the frontal lobes is
to the motor cortex. Thus, the prefrontal cortex is predestined
by its connectivity patterns to acquire information that enables
the orderly translation of sensory and limbic input into orderly
plans for action. The connectivity principle was well understood
by Norman Geschwind (1965). The fact that frontal-postcentral
connectivity is bidirectional conveys additional capacities for
working memory and volitional attention and intention that
are essential to the optimization of information processing and
to thinking. The connectivity principle constrains the function
of auto-associator networks via connections between individual
networks within neural ensembles (e.g., the different domains
of dog knowledge) and the pattern associator networks that
translate representations in one domain into representations
in another domain, e.g., word meaning into a sequence
of phonemes.

The specific nature of the knowledge encoded in the
connectivity within any given neural network depends upon;
(1) the structure of the knowledge in the domains linked by
the connections; and (2) as yet poorly defined hemispheric
advantages in processing certain types of data. An example of
#1 is provided by networks supporting reading. Orthographic-
phonologic connectivity captures the extensive regularities
in the relationships between letter strings and phoneme
strings. On the other hand, orthographic-semantic-phonologic
connectivity involves largely orthogonal knowledge domains
and the resilience of knowledge in these domains is almost
exclusively dependent on familiarity (the individual counterpart
to frequency) and AOA. An example of #2 is provided by
word reading and facial recognition. There is evidence that
both the fusiform face area and the visual word form area
in the right and left inferior temporal lobes, respectively, are
involved in both reading and facial recognition (Behrmann and
Plaut, 2013), as would be expected given that both processes
require analysis of certain visual features held in common.
However, as the ability to read develops, thereby instantiating
ever more orthographic-phonologic sequence knowledge in
the left hemisphere, there is increasing lateralization of face
recognition, in many respects a more Gestalt process, to the
right hemisphere (Behrmann and Plaut, 2013). However, because
reading by the whole word route, in essence, treats words as
pictures that elicit corresponding semantic representations, one
would predict persistence of some Gestalt processing capacity in
the left temporal lobe, hence some capacity for contribution to
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face recognition; this is borne out by the fact that prosopagnosia
tends to be worse with bilateral than with unilateral right
inferior temporal lesions. The evolution of hemispheric patterns
of superiority in encoding certain types of knowledge may
have to do with general hemispheric patterns of white matter
connectivity that favor acquisition of sequence knowledge by
the left hemisphere (favoring reading by the phonologic route)
and acquisition of Gestalt knowledge by the right hemisphere
(favoring face recognition; Nadeau, 2010).

Limitations in the Scope and Depth of
Knowledge Acquired Through Experience
We tend to harbor the conceit that our personal knowledge
is veridical. I will forego a discussion of the vicissitudes of
perception and the impact of attentional processes on the
quality of knowledge that was acquired in the first place.
Once factual knowledge is acquired by the hippocampal system,
it is susceptible to modification by processes of memory
consolidation through which hippocampally-dependent facts are
gradually encoded in cerebral cortex to the extent that they share
features with cortical knowledge (Squire and Zola-Morgan, 1991;
Alvarez and Squire, 1994; McClelland et al., 1995; Rolls, 2016). In
this process, information on situational context (relation to other
stimuli present at the time of acquisition) and general context
(time, place, life circumstances, mood, background events of
that day, etc.), which were also encoded at the moment of the
experience, tends to be lost. Whereas mechanisms of synaptic
homeostasis (Tononi and Cirelli, 2014), to the extent that we
understand them, appear to work to preserve both knowledge
of what is most important and the capacity for further tweaking
of neural connectivity to store new knowledge, it is likely
that some potentially important knowledge is degraded. This
might be most evident to people who have made major career
changes, in which case knowledge relevant to a prior career
or career phase may be disproportionately lost because it is
seldom revisited.

The relatively recent discoveries that memory can be quite
rapidly consolidated provided that the new knowledge shares
extensive features with existing, cortically instantiated knowledge
structures (Tse et al., 2007, 2011; McClelland, 2013), also
have implications for what we ultimately know. If cortically
compatible episodic memories are rapidly cortically encoded
whereas fundamentally new knowledge is subject to the
vicissitudes of memory consolidation extending over months
to years, it seems likely that our brains will be biased toward
learning things that are consistent with what we already know
(Tse et al., 2007).

Because knowledge is acquired one experience at a time, what
we know is defined by the range of our individual experience
and statistical regularities in the stimuli we are exposed to (Plaut
and Vande Velde, 2017). This principle might help to account for
the diversity of conclusions that different people draw from what
is assumed, incorrectly, to be the same knowledge base. It also
provides a plausible account for a host of studies on magnitude
estimation (Stevens, 1957, 1970). For many types of stimuli in
a variety of modalities, humans tend to underestimate the size
of high magnitude stimuli (e.g., high pitch, loud sounds, and

long lines or, by implication, long edges) and overestimate the
size of low magnitude stimuli (e.g., low pitch, quiet sounds, and
very short lines; Nadeau, 2014). Because magnitude estimation
is always relative to our own life-time experience with a given
type of stimulus in particular contexts, stimuli of sizes beyond our
experience, high or low, will tend to be under- or overestimated,
respectively. In neurodynamical terms, extreme stimuli are so
atypical that they fall beyond the outer limits of the attractor
basins that correspond to the domains of relevant knowledge and
our estimation of them is based upon the extent of the attractor
basins that correspond to what we know, or at least know with
some measure of confidence.

These principles can also provide a neurally based explanation
for the phenomenon of hemispatial neglect that is most
dramatic after the right hemisphere strokes (Nadeau, 2014).
The realization of a stimulus as a pattern of neural activity
does not occur in the absence of attention to it. This was
elegantly demonstrated by Moran and Desimone (1985): red
light-responsive neurons in themacaque inferior temporal cortex
did not respond to red stimuli when the monkey had learned that
only responses to green stimuli yielded a reward. Hemispatial
neglect usually reflects, at least in part, impairment in attentional
systems. In this setting, attractor basins will become shallower
(Rolls and Deco, 2015), no less than in semantic dementia,
and representations of atypical stimuli, e.g., very long and
very short lines, will be lost. On line bisection tasks, patients
with hemispatial neglect bisect to the right of the midline,
apparently perceiving the attentionally attenuated left side of
the line to be exactly as long as the right side of the line.
The magnitude estimation literature, and the hypothesis I have
proposed to account for it, would lead one to expect that
patients with hemispatial neglect would also overestimate small
magnitudes in the left hemispace. This is precisely what has been
demonstrated in the line-bisection literature in the well-known
‘‘cross-over’’ effect (Tegnér and Levander, 1991; Mennemeier
et al., 2005): when the lines to be bisected are sufficiently short,
these patients will err by placing the bisection mark to the left
of midline.

The acquisition of knowledge one experience at a time and the
evolution of the corpus of cerebrally instantiated knowledge over
the lifetime yield operational characteristics understood through
the lens of PDP that provide a logical explanation for the stages
of cognitive development first mapped by Piaget (1936) and
considerably elaborated since (Munakata et al., 1997; Rogers and
McClelland, 2008; Schapiro and McClelland, 2009).

Much knowledge in population encoding neural networks
is intrinsically hierarchical. We saw this in our discussion of
what happens to semantic networks in semantic dementia.
The intrinsically hierarchical nature of knowledge is a direct
manifestation of the fact that increasing the specificity of an
exemplar requires the addition of features (compare Pekingese
with dog), and of the capacity of population encoding networks
to capture statistical regularities in their learning experience
and instantiate them in neural network connectivity (Nadeau,
2014). This knowledge hierarchy needs no spatial explanation,
e.g., that the temporal pole plays an essential role in semantic
function (Lambon Ralph et al., 2017). Rather, the particular roles
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of the temporal pole, e.g., in proper noun knowledge (Miceli
et al., 2000), should be sought in the connectivity principle: the
particular connectivity of the temporal pole to the amygdala,
perirhinal cortex, and orbitofrontal cortex—as well as visual and
auditory association cortices. Clearly, the temporal pole is best
viewed as a polymodal cortex.

The idea of a special role for the temporal pole in semantics
has been inspired by the results of morphologic imaging studies
in patients with semantic dementia, bolstered by a computational
model that posited an amodal (rather than polymodal) semantic
network located in the temporal pole (Rogers et al., 2004). In
anatomic studies, the particularly severe atrophy of the temporal
pole represents the most readily detectable tip of the iceberg of
temporal lobe damage. Anatomic and functional imaging studies
actually provide compelling evidence of pathology involving
the lateral and inferior temporal cortices through much of
their extent (Diehl et al., 2004; Grossman and Ash, 2004;
Desgranges et al., 2007), usually sparing the most posterior
portions of temporal cortex (Lambon Ralph et al., 1999), which
are associated with object gnosis, visual perceptual processes,
and perceptual invariance (Hovius et al., 2003; Rogers et al.,
2006). This becomes particularly clear when one realizes that
the loss of the manner component of verb meaning by patients
with semantic dementia (Breedin et al., 1994; Breedin and
Martin, 1996; Marshall et al., 1996) likely reflects damage to the
human counterpart of area MT located far more posteriorly, at
the temporo-parieto-occipital junction, an area that has been
implicated inmovement perception (Gilmour et al., 1994), action
recognition (Kalénine et al., 2010), and action naming (Tranel
et al., 2008) and that is engaged by motion verbs in functional
imaging studies (Kemmerer et al., 2008). Semantic impairment
does occur following left anterior temporal lobe resection but it is
not of the severity seen with semantic dementia (Lambon Ralph
et al., 2012).

Non-hierarchical Modes of Knowledge
Storage
There are forms of semantic knowledge that reflect associative
links between networks rather than hierarchical relationships
within networks. This is the case in the relationships between
the different component networks of neural ensembles discussed
above. Associative relationships between networks also provide
the basis for: (1) knowledge underlying abstract words; (2) the
relationship between verb knowledge and noun knowledge;
(3) contextual knowledge; (4) knowledge of the components of
concrete entities; (5) the fact that meaning is often dependent
upon circumstance (a knife can be used to cut butter or as a
murder weapon) and in the case of homonyms (e.g., the two
meanings of ‘‘bark’’); and (6) the fact that there exist many
arbitrary associations borne of experience or metaphor.

The neural representation of abstract words remains a
contentious topic. However, a plausible argument can be made
that abstract words derive their meaning from contextual
associations with concrete and abstract entities. For example, we
understand the word ‘‘intellectual’’ in terms of its association
with various things like academic institutions, books, esoteric
discourse, and smart people, as well as other abstract entities like

thinking. Abstract words are related to each other and to concrete
words to the extent that they share contextual association (e.g.,
gamble, casino, poker, chance, luck; Crutch and Warrington,
2005, 2007; Crutch et al., 2009) whereas concrete words are
related to each other to the extent that they share semantic
features (e.g., yacht, dinghy, canoe, ferry, and barge).

Nouns prime the verbs that they are most often associated
withMcRae et al. (2005) and verbs prime the nouns that are most
often associated with them, either as an agent, object, or indirect
object (Ferretti et al., 2001). This priming reflects the associative
links that have been formed between the knowledge substrates
for multifocal noun representational ensembles and multifocal
verb representational ensembles (Figure 2).

Contextual knowledge is commonly probed with such tasks as
the Pyramids and Palm Trees Test. Given a triad of a pyramid,
a palm tree and a conifer, the two more closely associated
entities are readily apparent even though they share no semantic
features. Viewed in a different way, pyramids and palm trees
are semantic features of a concrete entity called Egypt that, in a
way, is an abstraction. Because the relationships here are entirely
associative (resembling abstract words in this respect) but involve
concrete entities, I will refer to this as constract knowledge. Much
of what we know about locations and times may be viewed as
constract knowledge and is highly idiosyncratic. For example,
the most prominent components of my personal knowledge of
Los Angeles consist of one of my daughters, a dear friend in
Encino, Norton Simon Museum, Rodin, Nat’n Al Delicatessen,
the 405, Huntington Gardens, cacti, a working meeting at the
University of Southern California, and many movies. People’s
memories of the assassination of John F. Kennedy and 9/11 are
substantially comprised of what they were doing at the time of
these events. Because such place- and time-specific memories
are so idiosyncratic, they are likely to remain substantially
hippocampally dependent indefinitely.

The components of concrete entities generally do not share
features with the entities themselves. For example, dogs are
composed of visceral organs whose functions and cellular
processes share no features with dogs. The knowledge linking
dogs with hearts, lungs, kidneys, and brain is associative in
nature, not hierarchical. Thus, this knowledge is similar in nature
to that underlying constract words. However, by and large, it
is not idiosyncratic. Further, while this type of knowledge does
not represent regularities that have emerged in a population-
encoding network, it may represent a domain of knowledge that
is deeply coded in neural connectivity by virtue of being shared
by so many entities (all animals in this example).

The fact that meaning is often dependent on circumstance
reflects another type of associative knowledge (tree bark vs. dog
bark; knife on a butter platter vs. knife in ‘‘Psycho’’).

Some associations are borne of juxtapositions in experience
or in metaphor. ‘‘Cat’’ and ‘‘dog’’ are taxonomically distinct but
are commonly collocated in a home and maybe metaphorically
related, e.g., ‘‘fight like cats and dogs.’’ So too ‘‘hot and cold’’ and
‘‘black and white.’’

Associational relationships that provide the basis for
components of concrete entities, abstract concepts, noun-verb
interdependence, and constract words, as well as meanings
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that are circumstance-specific or reflect frequent juxtaposition
or metaphor, are presumably supported by long white matter
pathways that link relevant portions of the brain. Because the
knowledge of these relationships does not reflect emergent
statistical regularities, it must depend primarily on frequency
and AOA effects on neural connectivity.

PDP AND THE SIX-LAYERED CEREBRAL
CORTEX

The evidence of the power conferred by PDP in understanding
cortical function enables us to ask some questions about
a statement made early in this manuscript: ‘‘these simple
mathematics obviously do not do justice to all the subtleties
of actual neural processing.’’ It is customary to think of the
cerebral cortex as a vast assemblage of 6-layer microprocessors.
Is this thinking correct and, if not, to what extent has
it inhibited our thinking about the mechanisms of cortical
function? Could the cortex be better viewed as fundamentally
two 3-layer processors, one centered on layers 2/3, largely
responsible for cortico-cortical computation, and the other on
layers 5/6, largely responsible for cortical output processes?
Rolls has suggested a variation on this theme (Rolls, 2016).
There is evidence in mice that the cells of layers 2, 3, and
4 have a different neuroglial origin than the cells of layers
5 and 6 and in birds, the two groups of cells are physically
separated (Karten, 2015). The principal operational layer at
any one moment could be determined by the noradrenergic
system (Devilbiss andWaterhouse, 2000; Devilbiss and Berridge,
2008). Could the layering be, to some extent, merely an
adaptive way of efficiently providing vast input to the dendritic
arborizations of pyramidal cells in the two levels, as observed
with Purkinje cells in the cerebellum? Are the inputs from
one layer to another, e.g., from layer 4 of one region to
layer 3 of another, data-transformative, as with the entorhinal
cortex-dentate nucleus-CA3 pathway, or are they merely the
means of linking different auto-associator and pattern-associator
networks? In short, are PDP models really as simplistic as they
are often thought to be?

DOMAINS OF SPECIALIZED KNOWLEDGE
AND PROCESSING

In this section I briefly review a number of domains of cortical
function for which investigations predicated upon the concept of
population encoding networks have enabled deeper insights into
neural mechanisms underlying higher neural functions.

Language
Language represents our largest window into human cerebral
function and it has been the most studied of all higher neural
functions. Language function is based upon a number of
domains of knowledge, including semantic, phonological
sequence, morphological sequence, acoustic-semantic,
orthographic-phonologic, orthographic semantic, semantic-
phonologic and semantic-morphologic (lexical knowledge:
the means by which we translate meaning into articulatory

sequences), and acquired knowledge of language-specific habits
of ordering and modifying concept representations, the basis
for syntax (Nadeau, 2012). We now have a fairly granular
understanding of these domains of knowledge supporting
language function (McClelland et al., 2014; Seidenberg and
Plaut, 2014; Joanisse and McClelland, 2015) and the ways
that they interact in a substantial number of languages,
particularly as revealed in studies of aphasia (English, Dutch,
Italian, German, Spanish, Catalan, Serbo-Croatian, Hungarian,
Turkish, Chinese, and Swahili, among others; Nadeau, 2012,
2019; Rogers and McClelland, 2014). The principles implicit
in population encoding networks also provide an orderly
account for language deficits seen in bilinguals and polyglots
with aphasia (Nadeau, 2019). In all of these languages,
despite their enormous differences, the attributes of aphasia
are readily explained in terms of the unique grammatical
structure of the language affected, instantiated in population
encoding networks, and the effects of regional damage to
the brain mitigated by graceful degradation. PDP principles
have also been of value in devising new treatments for
aphasia following stroke (Plaut, 1996; Kendall et al., 2008;
Edmonds et al., 2009; Kendall et al., 2015; Nadeau, 2015;
Nadeau, 2019).

There is evidence that the way we learn and refine our own
individual ways of speaking a language, e.g., English, across our
lives, reflects not just the evolving chaotic order in our own brains
as we acquire new language knowledge from experience, but
the language itself, which reflects the chaotic order that evolved
among populations of English speakers across the centuries,
driven by the various external linguistic forces that buffeted the
English language during this time (Hare and Elman, 1992). None
of this needs to be logical in any conventional sense, although,
as Hare and Elman have shown, the underlying dynamics can
be understood logically in PDP terms. Analogous processes may
occur in other domains, e.g., in the evolution from homo sapiens
perceptualis of Neolithic times, for whom acute perception of the
subtlest features of the environment was of survival advantage,
to homo sapiens conceptualis of modern times, for whom a
conceptual understanding of the world we live in and the vast
store of semantic knowledge underlying it, is more important.

Attention
Computational models employing population encoding have
been developed that emulate volitional attention in both the
‘‘what’’ and ‘‘where’’ visual pathways as reflected in single-unit
studies in monkeys and functional magnetic resonance imaging
(fMRI) studies in humans (Corchs and Deco, 2002; more about
the ‘‘what’’ and ‘‘where’’ pathways below in the ‘‘Conclusion’’
section). Simpler computational models have successfully
simulated processes involved in reactive attention driven by
stimulus salience, familiarity, or context (Spratling and Johnson,
2004). A population encoding neurodynamical model has
been developed that accurately simulates the neurophysiological
behavior of V2 and V4 neurons and quantitatively replicates the
interaction between volitional attentional effects and stimulus
salience effects that have been observed in neurophysiological
studies in nonhuman primates (Deco and Rolls, 2005).
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Population encoding computational models have also been
developed that provide a logical, mechanistic and granular
account for the effect of focal lesions on attentional systems,
producing phenomena such as hemispatial neglect (Mozer, 2002;
Rolls and Deco, 2002; Monaghan and Shillcock, 2004) and
neglect dyslexia (Moser and Behrmann, 1990).

Emotional Function
Simulations involving population encoding models have
explored fear conditioning (Armony et al., 1997); discrimination
of emotional faces (Armony et al., 1997); inference of facial
emotional expression from neutral facial features as a function
of the gender and race of faces (Zebrowitz et al., 2010); and the
enhancement of the Stroop interference effect by emotion words
in the context of generalized anxiety disorder, post-traumatic
stress disorder, and phobias (Mathews and Harley, 1996). The
interaction of anxiety level and threat in influencing visual
attentional bias has been explored in a non-population encoding
connectionist model (Frewen et al., 2008).

Executive Function
The Stroop interference effect (processing costs associated with
responding ‘‘red’’ when ‘‘blue’’ is written in red ink) has
received particular attention. Though beguilingly simple, this
test pits the most fundamental of brain processes against each
other: volitional attention and volitional intention (voluntary
direction of attention to a particular stimulus or stimulus
attribute and voluntary formulation of an action plan) against
reactive attention and reactive intention (attention to a particular
stimulus because of its salience and automatic formulation and
execution of the implicit plan)—thinking slow against thinking
fast. This dialectic has often been posed as controlled vs.
automatic processing. PDP simulations have been particularly
informative about what drives stimulus salience (which drives
reactive attention). Early studies suggested that mere greater
experience (more training reading words than colors) sufficed
to emulate human behavior (Cohen et al., 1990, 1992, 1998).
However, it subsequently became evident that salience might
also be influenced by the nature of the processing, e.g., that
reading could occur by a direct orthographic-articulatory route
that did not require the generation of semantic representations,
whereas color naming has to engage potentially competing
semantic representations (Kanne et al., 1998). Other models
have attempted to account for intentional components of Stroop
performance, most notably the observation that response latency
is more prolonged after a switch from color naming to word
naming than it is after a switch from word naming to color
naming (Gilbert and Shallice, 2002). This phenomenon may
reflect the varied nature of persistent distributed response
representations (a working memory).

A population encoding model has also been successfully
employed to account for performance on the traveling
salesperson problem by normal human participants and
participants with executive dysfunction (Cutini et al., 2008). This
problem requires the selection of the shortest travel route from
an initial to a final ‘‘city’’ within a multi-city spatial array.

Motor Planning
Studies of motor planning and execution have included
investigation of the ability to acquire knowledge required
to assume specific body postures through imitation and the
capacity to generalize from this knowledge to untrained postures
and untrained sources of visual input (Chaminade et al.,
2008); investigation of action sequence knowledge and the
breakdown of sequential performance reflected in action slips
in normal people and the action disorganization syndrome in
individuals with brain damage (Botvinick and Plaut, 2004);
investigation of action selection and object naming from
orthographic or visual object input in normal and brain-damaged
individuals (e.g., with optic aphasia or visual apraxia; Yoon
et al., 2002); and view-independent grip aperture computation
(Prevete et al., 2008).

Visual Processing
Studies of visual function have addressed prosopagnosia and
general neural mechanisms underlying differences in overt
and covert recognition performance (Farah et al., 1993); facial
recognition (Luckman et al., 1995); visual agnosia (Barbeau and
Giusiano, 2003); and the interaction between the dorsal ‘‘where’’
visual system and the ventral ‘‘what’’ visual system and the
basis for simultanagnosia and illusory conjunctions (erroneous
combinations of features of multiple stimuli; Henderson and
McClelland, 2011).

Other
Population encoding model simulations have been employed
to study other topics, faithfully recapitulating human behavior
and providing new insights into fundamental parameters of
that behavior, including olfaction (Haberly, 2001) and creative
problem solving (Hélie and Sun, 2010).

There may be additional, so far untapped and perhaps
unexpected domains in which PDP approaches can relate
observed behavior to neural mechanisms. One example of
particularly broad significance is human decision making
in the face of uncertainty, a topic at the intersection of
psychology, economics, and neuroeconomics. People can, of
course, volitionally behave like coldly rational economists and
calculate the expected value as the actual value of an outcome
multiplied by the probability of its achievement (a volitional
intentional process). However, it seems that, in general, they
actually arrive at the expected value by relying on their reactive
‘‘sense’’ of probabilities, which is based upon knowledge acquired
through experience, however inadequate that might be. This
sense follows the familiar pattern of magnitude estimation
with the overweighting of low probabilities and underweighting
of high probabilities (Kahneman, 2011), which, as discussed
above, can be related to the topography of attractor basins
(Nadeau, 2014). The consequences are very different for
behavior in the linked loss and gain attractor basins (basins
corresponding to negative and positive emotional states), loss
aversion being far more motivating than gain acquisitiveness.
In addition, the attractor basins are shaped by one’s particular
circumstances at decision time, the nature and value/disvalue
of the outcomes, and the ways in which they are defined
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(Kahneman, 2011), as with attractor basins in general (Nadeau,
2014). In general, faced with a low probability of a loss
(e.g., a 5% chance of losing $10,000), people are risk-averse,
inclined to settle for a certain loss considerably greater than
the expected negative value (0.05 × 10,000 = 500)—hence
insurance. On the other hand, faced with a low probability of
gain, people are inclined to be risk-seeking, gambling amounts
greater than the expected value (e.g., betting $5 for a one in
a million chance to win $1 million)—hence lotteries. Faced
with a high probability (or certainty) of a loss, people are
nevertheless risking seeking, being willing to gamble excessive
amounts if there is a chance of avoiding a certain negative
settlement—hence the behavior of the desperate gambler.
Faced with a high probability of gain, people are risk-averse,
likely to settle for an amount considerably less than the
expected value rather than endure a small risk of losing it all
(Kahneman, 2011). These examples inspire confidence that even
the most complex of human behaviors can be explained in
neurodynamical terms.

CONCLUSION

Overview
We have seen that PDP approaches are able to account,
without contrivance or algorithmic devices, for an extraordinary
variety of well-studied cognitive and behavioral phenomena
in normal and brain-injured individuals and to contribute
usefully to the scientific dialogue in many domains. It is often
worthwhile to consider seemingly incomprehensible cognitive
phenomena in PDP terms; even without the use of computer
simulations, ‘‘PDP thinking’’ can often render such problems
tractable. Population encoding PDP models emulate neural
network structure and thus have neural plausibility. In the
course of learning, they are able to capture the effects of
frequency, age of acquisition, and statistical regularities of
experience demonstrated by the brain; herein lies their greatest
power. Their most important intrinsic weakness, the inability
to rapidly acquire new declarative knowledge as episodic
memories, is handily addressed through the unique structure
of the hippocampal system. Because of the property of graceful
degradation that is intrinsic to PDP models and apparently
to the brain, it is possible to ‘‘reverse engineer’’ the normal
brain through analysis of the performance of individuals with
brain damage.

The Long View: Way-Stations, Multiservice
Function, and Computational Mechanisms
PDP models were originally developed with the goal of
understanding how knowledge is represented in the brain
and how representations in one domain can be translated
into representations in another domain. The employment of
simple nonlinear mathematics provided the basis for settling
of network activity into attractor states within attractor basins
in an energy landscape supported by attractor networks. Prior
to the development of PDP, patterns of aberrant behavior
associated with brain lesions could only be understood in
terms of the destruction of essential neural substrates and

disconnection between domains of knowledge as revealed in
structural imaging studies. The exact reasons for behavioral
phenomena resulting from brain damage, whether it be the
destruction of knowledge domains or connections between
domains, remained a matter of speculation. Our understanding
of PDP has now gone a long way to enabling us to understand the
how and why of the degradations of cognitive function observed
with brain damage.

However, the science of PDP invites us to extend
the fundamental principles much further. Both cognitive
neuroscientists and basic neuroscientists tend to study particular
regions or structures within the brain in isolation, drawing
inferences from the stimuli and the environmental contexts that
appear to engage these regions or structures and the resultant
behaviors. The science of PDP, however, leads us to understand
particular regions or structures as way-stations in multiservice
cognitive processing and as components of computational
structures. Some examples will help to convey these ideas.

Mishkin et al. (1983) articulated the concept of two visual
systems, a ventral ‘‘what’’ system and a dorsal ‘‘where’’
system. The ‘‘what’’ system, supported by the inferior temporal
cortex, is fundamentally a single object recognition system.
It supports the processing of the detailed color, form, and
textural information that instantiates our perception of objects
as objects and our visual semantic knowledge of objects. The
‘‘where’’ system supports our perception of the location of
objects in egocentric space. The what/where dichotomy was
actually presaged by the discovery by Lissauer in 1890 (Lissauer,
1988) of agnosia following ventral occipitotemporal lesions and
the discovery by Balint (1909) of optic apraxia, optic ataxia,
and simultanagnosia following dorsal occipitoparietal lesions,
Nevertheless, the Mishkin et al. (1983) explication was a tour
de force and continues to provide the fundament of our
understanding of visual processing by the brain.

In 1992, Goodale and Milner (Goodale and Milner, 1992),
in a superb analysis still well-worth reading, challenged the
characterization of the dorsal system as ‘‘where’’ and suggested
a reformulation as ‘‘what’’ and ‘‘how’’ systems, citing, in
particular, the influence of occipitoparietal input to frontal
systems on grip aperture and alignment in the course of task
performance (see also Milner and Goodale, 2008). A great deal
of research has followed, refining this idea (Freud et al., 2016).
Unfortunately, the ‘‘how’’ characterization seems somewhat
inapt. The occipitoparietal cortex enables translation from
retinotopic coordinates to spatiotopic coordinates (Wurtz, 2008).
It supports our knowledge of the location of objects in space
(Brodt et al., 2016). By virtue of binocular vision, it provides the
capacity for depth perception. By virtue of connectivity between
the occipitoparietal cortex and the inferotemporal cortex
(Milner, 2017), we have the illusion of photographic perception
despite the fact that the ‘‘what’’ system is a single object
processing system. Parieto-occipital lesions, presumably by
disrupting this connectivity, yield simultanagnosia, which may
reflect a disorder of parietally mediated attention (Dalrymple
et al., 2013) or a disorder of occipitoparietal-inferior temporal
interaction (Spratling and Johnson, 2004; Coslett and Lie, 2008;
Rolls, 2016). The dorsal system supports reactive attention
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drawn by the occurrence of salient stimuli at particular locations
in space and volitional attention to particular regions of
space driven by frontal input. In short, the occipitoparietal
cortex is a multiservice structure subserving multiple ‘‘where’’
functions. However, by dint of the extensive projections from
postcentral cortices to frontal cortex first discovered by Chavis
and Pandya (1976), post-central structures are well suited to
influencing the formulation and execution of frontally based
plans for action. Objects in egocentric space subtend a visual
arc, defined by edges and textural contrasts. These provide
the basis for the influence of the occipitoparietal cortex on
grip aperture and orientation (Goodale and Milner, 1992).
In this particular function, the occipitoparietal cortex serves
as a way-station (an interposed hidden unit pool) to frontal
motor function.

While there is general agreement as to the function of the
inferotemporal ‘‘what’’ system, it too serves as a way-station.
The perception of a dog elicits a detailed population encoded
representation of a dog. However, it also elicits representations
corresponding to dog knowledge in general. It may engage the
hippocampal system (‘‘I think this is the dog I saw over at
Johnson’s house the other day’’). It is likely to engage the limbic
system, either positively or negatively. If the dog appears friendly,
expectant and is wagging its tail, it elicits warmth and happiness
and it may elicit approach behavior in frontal systems pursuant to
petting. If the dog is rigid, trembling, teeth bared, and snarling,
it may elicit a feeling of terror and the engagement of frontally
based plans to flee. Thus, the ‘‘what’’ system also serves as a
way-station to limbic and frontal processing.

For some 50 years, the basal ganglia have been intensively
studied, in good part because of the consequences of their
dysfunction evident in Parkinson’s disease. The overwhelming
preponderance of the evidence is that the sensorimotor basal
ganglia serve a motor function, as yet not well understood.
However, recent studies from PDP and evolutionary perspectives
suggest that the basal ganglia have nothing to do with
motor function per se (Fiore et al., 2015; Nadeau, 2020).
Rather, in creatures ranging from arthropods (yes, bugs have
basal ganglia) to primates, the basal ganglia system (cortex,
striatum, globus pallidus interna and externa, subthalamic
nucleus, thalamus, cortex) serves as a computational device
for dimensionality reduction. The sensorimotor basal ganglia
take a vast multidimensional polymodal array of sensory
input and translate it, through settling into particular attractor
trenches, into a limited number of optimal, mutually compatible
movements selected from a limited motor repertoire. In simple
animals, e.g., lampreys, the sensory input is as vast and complex
as in humans but the motor repertoire is extremely limited (Fiore
et al., 2015). In humans, with their vast behavioral repertoire
and their mechanisms for selectively engaging sensory cortices
(attention and working memory), there is reason to question the
utility of the sensorimotor basal ganglia; this argument receives
support from the results of pallidotomy used to treat Parkinson’s
disease, which, in perfectly treated patients, may yield apparently
normal function (Nadeau, 2020). Most importantly, any one
structure in the basal ganglia system, e.g., the striatum, serves
only as a way-station.

Even relatively simple PDP networks perform computational
functions. Attractor networks enable settling into attractor basins
and ultimately attractor states depending on the configuration
of input. Pattern associator networks provide an orderly
translation of representations in one knowledge domain, e.g.,
semantics, into another knowledge domain, e.g., phonology.
Other systems perform more complex computational functions.
As already discussed, the hippocampal system subserves a
complex computational function that makes possible the
encoding of episodic and long-term declarative memory and
the basal ganglia system subserve a computational process of
dimensionality reduction that provides the major basis, at least in
lower animals, for reactive intention. The occipitoparietal cortex
appears to support a computational process that enables the
detection of edges, changes in texture, and changes in internal
configuration (Zachariou et al., 2015, 2017; Freud et al., 2016),
much like the mathematical function of a Gabor filter1.

Possible Reasons for Lack of Penetration
of PDP Concepts Into Cognitive
Psychology, Cognitive Neuropsychology,
and Neuropsychology
A number of reasons can be identified. Some are related to PDP
science itself. Population encoding models are still commonly
viewed as just one more heuristic approach and a difficult
one at that because of their mathematical instantiation, their
development in computer simulations, and their sometimes
opaque or counterintuitive characteristics. As I have sought to
show in this article, PDP is anything but a heuristic approach.
Even models incorporating the very simple mathematics
discussed in the first section provide a unitary explanation for a
vast array of well-established properties of brain systems. Against
expectation, PDP constitutes something of an Occam’s razor.
Furthermore, PDP concepts can be applied in the absence of
mathematical skills or computer simulations. PDP has often
been rejected out of hand on the basis of limitations in the
design of specific models (often intended), the flaws of specific
models, or the weakness of the scientific data that were employed
to test particular models. Because PDP simulations generate
voluminous data and very specific predictions for behavior, they
are particularly susceptible to detailed criticism, in contrast to the
often rather general and underspecified arguments that may be
leveled at PDP in general. It is not always recognized that any
specific PDP model constitutes a very explicit hypothesis.

Advances in this field have been hindered by the still
ubiquitous problems of communication across scientific
disciplines. Most notably, PDP scientists have made only a
modest number of forays into the science of broken brains
(Farah and McClelland, 1991; Plaut and Shallice, 1991, 1993a,b;
Farah et al., 1993; Plaut, 1996; Plaut et al., 1996; Rogers
and McClelland, 2004; Cutini et al., 2008; Henderson and
McClelland, 2011; Rogers et al., 2015). The result is that PDP
concepts are largely foreign to the fields of neuropsychology
and cognitive neuropsychology (the latter arguably the single

1https://cvtuts.wordpress.com/2014/04/27/gabor-filters-a-practical-overview/
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greatest contributor to our current understanding of how
the brain supports cognitive function), as well as much of
cognitive psychology. There have been many PDP simulations
seeking to account for behavior, usually in normal people,
many quite successful, but these have been largely proof of
concept studies that have not ascertained the value of the
powerful and fundamentally statistical intrinsic properties
of population encoded representations—the central focus of
this article.

Some domains of cognitive neuroscience have been
dominated by competing models, the most conspicuous
example being Chomskian linguistics in the case of language
(despite its utter lack of neural plausibility).

Arguably the most serious impediment to acceptance of PDP
has been the dominance of cognitive neuroscience by functional
imaging over the past 25 years. The appeal of ‘‘seeing the
brain think,’’ the notion that functional imaging results are
necessary to validate conclusions borne of careful, hypothesis-
driven psychological studies, the rapid development of very
sophisticated image acquisition and processing methodologies,
the ubiquity of magnetic resonance imaging (MRI) devices,
and the dominance of study sections by ‘‘imagers’’ have all
played a role. However, functional imaging is fraught with
serious problems. First and most fundamentally, whereas, as we
have seen, representations in the brain are highly distributed
as patterns of activity involving large areas of the brain and
involving billions of neurons, the statistical parametric mapping
(SPM) algorithm that underlies fMRI processing is hyper-
localizing in that, by design, it seeks to identify localized regions
of brain associated with particular functions. This problem is
compounded by the limited sensitivity of the method. The
net result is that what is actually imaged represents the tip
of an iceberg of synaptic activity (incentivizing the concept of
functional‘‘nodes’’). Entire cerebral functions are often linked to
these tips—conclusionsmarkedly at odds with the understanding
that has emerged from PDP that the brain is a mass of
hidden units engaged in processes and computations. Second,
fMRI signal (e.g., blood oxygen level-dependent, BOLD) is
predominantly generated by neural synaptic activity, which is
the major source of neural energy consumption (Schwartz et al.,
1979; Mata et al., 1980). This means that, at least in the cortex,
areas of increased signal indicate areas of increased afferent input
rather than increased neuronal activity per se. This renders the
interpretation of these imaging findings more difficult.

fMRI also suffers from serious problems of experimental
control, for at least five reasons. First, while the average
participant no doubt strives to correctly perform the assigned
task, the processes occurring in their brain remain a matter of
some speculation and may vary from participant to participant,
session to session, and within a session. Second, regions of
activation correspond to regions of maximal synaptic activity;
what exact role these regions might play in multi-stage,
multifocal cerebral processes is not defined. Third, it is seldom
possible to distinguish regions of synaptic activity that are
essential to a given function from those that are incidental.
Fourth, despite the enormous technological sophistication of
current functional imaging methods, we still routinely see areas

of ‘‘activation’’ located within the cerebrospinal fluid of the
ventricles or within white matter, which has no synapses. Fifth,
the statistics of SPM are largely the statistics of voxels, not human
populations. For this reason, it is rarely possible to determine
to what extent the findings of a functional imaging study are
idiosyncratic to the group of participants studied.

The results of resting-state fMRI studies have proven
remarkably reproducible, even as this approach implicitly
gives up on experimental control entirely. Resting-state
studies have provided the major setting for studies of
functional connectivity. However, they ignore the fact that
functional connectivity is state-specific (e.g., the competition
of movement representations and motion verb representations
for motor cortex discussed above). Furthermore, functional
connectivity might be substantially defined by processes, such
as electroencephalographic rhythms, that provide the basis for
correlations between synaptic activity in different regions of the
brain but have only an indirect relationship to discrete functions.

Finally, functional imaging has generally sought to answer
‘‘where’’ questions, even as most ‘‘where’’ questions can be
answered on the basis of the connectivity principle (bolstered by
results of diffusion tensor tractographic studies) and have been
addressed by lesion studies. Prosopagnosia was differentially
linked to lesions of the right posterior inferior temporal region
by Bodamer (1947) long before the ‘‘fusiform face area’’ was
described. Alexia was differentially linked to lesions of the
left posterior inferior temporal region by Dejerine (1892) long
before the ‘‘visual word form area’’ was ‘‘discovered.’’ However,
‘‘where?’’ studies may be of value if hypothesis-driven (see
examples in the next paragraph).

fMRI is extremely complex and themethodological challenges
almost certainly will never be fully addressed. Nevertheless,
there have been many functional imaging studies that have
made important contributions to cognitive neuroscience. The
major distinguishing feature of these studies is that they have
been hypothesis-driven (see also Coltheart, 2006, 2013; Tressoldi
et al., 2012). This has meant often extraordinary efforts to
achieve experimental control together with analyses focused on
specific regions of interest. fMRI studies that advance science
also tend to ask ‘‘what,’’ ‘‘how,’’ ‘‘why,’’ and ‘‘in what way’’
questions rather than ‘‘where’’ questions. What we know of
the answers to such questions derives predominantly from
‘‘low tech’’ cognitive neuropsychological studies. Because of the
principle of graceful degradation, related to the distribution of
knowledge within networks and across the networks of a neural
ensemble, the unique contributions of particular brain regions,
as well as regularity, frequency, and age of acquisition effects
are often unmasked. For this reason, precise, tightly controlled,
hypothesis-driven cognitive neuropsychological studies carried
out over extended periods of time and in many participants can
be particularly revealing about the how and the why, particularly
when viewed through the lens of population encoding principles.
fMRI can contribute to this what/how/why/in-what-way query
but only through carefully designed hypothesis-driven studies
that achieve sufficient experimental control. There aremany such
studies but I will cite four in particular by way of example. Work
by Kemmerer et al. (2008) has contributed to our understanding
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of the different components of verb representations. Studies
have confirmed that the implementational component of verb
representations is somatotopic (Kemmerer et al., 2008; Raposo
et al., 2009; Kemmerer and Gonzalez-Castillo, 2010). Wu et al.
(2008) demonstrated that cerebral instantiation of manner and
path (key components of verb representations) was consistent
with our understanding of the representation of intrinsic
movement in the human homolog of area MT (the occipital-
temporal-parietal junction) and the representation of movement
in egocentric space in parietal cortex. Two studies have strongly
implicated the supragenual anterior cingulate region in motor
plan gating (Iadarola et al., 1998; Peyron et al., 1999). While
these studies likely do not meet Coltheart’s standards (Coltheart,
2006, 2013; Tressoldi et al., 2012), they have nevertheless
advanced our understanding of the cerebral underpinnings of
cognitive function.

In closing, I note that, although study sections, editors
and reviewers consistently demand motivating hypotheses, what
often passes for a hypothesis is merely a prediction, hardly more
than wishful thinking. A hypothesis is useful only to the extent
that it is mechanistically based. Cognitive neuropsychology has

flourished using hypotheses based upon information processing
models, their limitations notwithstanding. Innumerable articles
on language function that have been motivated by Chomskian
theory have yielded very important insights, despite the lack
of neural plausibility of the model, because a priori hypotheses
led to tight experimental control. PDP provides a powerful
mechanistic basis for hypothesis generation.
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