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Abstract

In lead discovery, libraries of 106 molecules are screened for biological activity. Given the over 

1060 drug-like molecules thought possible, such screens might never succeed. That they do, even 

occasionally, implies a biased selection of library molecules. Here a method is developed to 

quantify the bias in screening libraries towards biogenic molecules. With this approach, we 

consider what is missing from screening libraries and how they can be optimized.

High-throughput screening (HTS) is the dominant method of lead discovery in 

pharmaceutical research and chemical biology. A plurality of the new chemical entities in 

clinical trials may have their origins in this technique, as do at least two drug.1 Whereas 

these screens have been productive against traditional drug targets, such as GPCRs, ligand-

gated ion channels, and kinases, screening libraries of synthetic molecules has been 

problematic for others, such as antimicrobial targets and those identified from genomic 

studies. The reasons for these successes and failures have been widely debated.2-5 From a 

theoretical perspective, however, one might wonder not that screens of 106 molecules 

sometimes fail, but rather that they ever succeed.

Chemical space, i.e. all possible molecules, is estimated to be greater than 1060 molecules 

with 30 or fewer heavy atoms;6 10μg of each would exceed the mass of the observable 

universe. This figure will diminish if criteria for synthetic accessibility and drug-likeness are 

taken into account and increase steeply if up to 35 heavy atoms, about 500 Daltons, are 

allowed. Positing even a modest specificity of proteins for their ligand, the odds of a hit in a 

random selection of 106 molecules from this space seems negligible.

HTS nevertheless does return active molecules for many targets; how does it overcome the 

odds stacked against it? One might hazard two hypotheses. First, molecules that are formally 

chemically different can be degenerate to a target, and many derivatives of a chemotype may 

have little effect on affinity. This behavior, and the polypharmacology of small molecules,

7-9 undoubtedly contributes to screening hit rates. Such chemical degeneracy seems 

unlikely, however, to overcome the long odds against screening. A second explanation is 
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that screening libraries are far from random selections, but rather are biased toward 

molecules likely to be recognized by biological targets. This second hypothesis seems more 

plausible, as many accessible molecules are likely to resemble or derive from metabolites 

and natural products. Some of these will have been synthesized to resemble such biogenic 

molecules, while others will have used biogenic molecules as a starting material. The role of 

bias in screening has been mooted before,10-13 and indeed methods to measure metabolite- 

or natural product-likeness have been reported, permitting the design of these features into 

screening libraries.14,15 How such bias might be quantified relative to what one would 

expect for an unbiased collection, and thus its extent and impact on screening and discovery, 

has remained unexplored.

Quantifying library bias requires three sets of molecules: one that represents all of chemical 

space, one that represents molecules that proteins are intrinsically likely to recognize—

defining the optimal bias, and one that represents screening libraries. The set representing 

chemical space previously seemed inaccessible. Recently, however, Fink and Reymond have 

calculated all of the synthetically accessible molecules with 11 or fewer non-hydrogen 

(heavy) atoms composed of first row elements (C, N, O, and F); there are over 26 million of 

these, not allowing for stereochemistry.16 Whereas these molecules are small compared to 

most biologically interesting compounds, this Generated DataBase (GDB) is comprehensive, 

giving us the full unbiased set within its boundary criteria. For the molecules that proteins 

are likely to bind—defining the bias—several sets are possible, such as those molecules that 

have become drugs. Indeed, several investigators have adopted this approach when asking 

“what is drug-likeness and how can libraries be biased towards it?”17,18 Here, however, we 

ask why one should expect to find any hits from screening, and so need a reference set that 

captures protein recognition in general. For this purpose drugs are imperfect, reflecting 

many other criteria, like bioavailability, and are backward-looking, capturing information 

only on a small number of targets. We therefore chose metabolites and natural products from 

the KEGG (2 018 molecules) and the Dictionary of Natural Products (141 985 molecules) 

databases, respectively. These molecules are recognized by at least one protein in the 

biosphere, often many, and are out-group molecules, uninfluenced by human invention. For 

the set of molecules representing screening libraries we use those molecules that are 

commercially available, reasoning that most HTS libraries, even in the pharmaceutical 

industry, are largely composed of molecules that have been purchased from commercial 

vendors, or closely resemble them (for the MLSMR, the US national screening collection, 

almost all of the ∼300 000 molecules are commercially sourced). To compare the 

commercially available molecules to those of the GDB, we restrict the former by the same 

criteria: only purchasable molecules with 11 or fewer heavy atoms composed of first row 

elements are considered. There are 25 810 such molecules in the ZINC database of 

commercially available molecules (http://zinc.docking.org); we refer to these as the 

purchasable-GDB (Fig. 1).

As we will show, when metabolites are compared to both the purchasable-GDB and the full 

GDB, the purchasable subset is almost 1000-fold more similar to metabolites than the 

overall GDB, our proxy to full chemical space. The same bias is observed when the two sets 

are compared to natural products. The bias grows dramatically with molecular size, 

Hert et al. Page 2

Nat Chem Biol. Author manuscript; available in PMC 2010 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://zinc.docking.org


suggesting that this bias will be greater still among larger “lead-like” or “drug-like” 

molecules in screening. This is consistent with the idea that these libraries are massively and 

productively biased toward biogenic molecules. We leverage this observation to ask what 

scaffolds occur among biogenic molecules but are absent from those commercially 

available. Almost 1300 ring-scaffolds are found among natural products that are missing 

from commercial libraries—these scaffolds provide criteria that could be used to further 

increase the bias in screening libraries toward those molecules that proteins have evolved to 

recognize.

RESULTS

We first compared the 26 million GDB and the 25 810 purchasable-GDB molecules to the 

metabolites and the natural products. With the widely used ECFP_4 topological 

fingerprints19 we calculated the similarity between each biogenic molecule and each GDB 

and purchasable-GDB molecule. We plotted the percentage of GDB and purchasable-GDB 

molecules that had at least one metabolite or, separately, one natural product within a certain 

similarity, expressed as Tanimoto score (where a similarity score of 1 indicates identity 

between the pair of molecules and a similarity score of 0.2 indicates a similarity so low as to 

be essentially meaningless). As expected, almost all GDB and purchasable-GDB molecules 

had a similarity coefficient of 0.2 or greater to at least one metabolite or natural product 

(Fig. 2a,b, and Supplementary Figs. 1a,b, and 2a,b online). After this plateau, the 

percentages decreased rapidly as the similarity threshold became more stringent. Critically, 

it diminished orders of magnitude faster for the GDB than it did for the purchasable subset 

of GDB. Even by a similarity coefficient of 0.32 there were tenfold more molecules from the 

purchasable-GDB, expressed as a percentage, than GDB molecules that resembled at least 

one metabolite. By a similarity coefficient of 0.53 this ratio was 100-fold and by the time 

full identity was reached, considering only exact biogenic molecules in the purchasable 

subset of the GDB, 0.83% (215 compounds) and 10.5% (2703 compounds) of the 25 810 

purchasable GDB molecules were identical to metabolites and natural products, respectively

—an enrichment of 922-fold and 618-fold compared to the full GDB. Since there are 1000-

fold more GDB than purchasable-GDB molecules this ratio implies that most of the natural 

products or metabolites represented in the 26 million compounds of the GDB are captured 

by the 25 810 molecule subset that has actually been synthesized and may be purchased. 

This bias was unaffected by the size of the molecules used in the reference databases, and 

was the same whether we used the full set of metabolites and natural products or only those 

compliant with the GDB rules (Supplementary. Fig 3 online). A bias towards metabolites 

and natural products of similar magnitude was also found among commercially-available 

compound sets specifically designed for screening (Fig. 2c,d), while for the US National 

MLSMR library the molecules subject to the GDB restrictions (MLSMR-GDB) were even 

more biased toward metabolites and natural products (Fig. 2c,d). In all libraries this bias 

increases exponentially with molecular size (Fig 3a,b>) and so we expect that most 

screening collections, made up of larger molecules than considered here, will be even orders 

of magnitude more biased towards biogenic molecules.

We investigated if there were particular chemical features that were most responsible for this 

bias. Whereas we do not pretend to undertake a comprehensive analysis of particular 
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chemotypes here, a preliminary study may interest some investigators. We identified 871 

bits from unfolded fingerprints that occurred in more than 1% of the metabolites or the 

natural products (there were 174 823 different bits among these molecules before folding). 

28 of those bits (functional groups) also occurred in more than 0.5% of the purchasable-

GDB database and in less than 0.05% of the GDB database, representing at least a ten-fold 

bias of the purchasable-GDB relative to the entire GDB. The substructures corresponding to 

these bits illustrate some of the fragments contributing to the observed bias (Supplementary 

Table 1 online). For instance, meta-substituted aryl alcohols, such as 3-methylphenol, occur 

among 1.3% of metabolites, 2.2% of natural products and 0.6% of the purchasable-GDB, 

but only in 0.006% of the entire GDB. As an aside, notwithstanding the much greater 

similarity of the purchasable-GDB to metabolites and natural products than the overall 

GDB, some functional groups were actually under-represented among the purchasable-

GDB. Thus, 38 bits occurred in more than 0.5% of the GDB and more than 1% of 

metabolites or natural products but in less than 0.2% of the purchasable-GDB 

(Supplementary Table 2 online). For instance, 1,2-trisubstituted epoxides occur in 2.6% of 

natural products and 1.7% of the GDB but in only 0.01% of the purchasable-GDB. Were 

such substructures included in future commercial compounds they would increase the 

already substantial bias still further.

If it is true that bias towards biogenic molecules contributes to the success of screening, it 

seems interesting to ask whether this bias might be increased, productively, by adding 

scaffolds present among biogenic molecules that are currently unexplored in our libraries. 

We again turned to the metabolites, natural products, and commercially available molecules, 

this time considering each without limit to molecular size or composition. To find scaffolds 

present among the two biogenic sets but absent from the commercially available molecules, 

we represented the molecules by their core rings (Supplementary Fig. 4 online).20 Each core 

ring scaffold among the biogenic molecules was matched to its counterpart among 

commercially available molecules, when available. There were 173, 15 637 and 29 496 

unique rings among the 2 018 metabolites, 141 985 natural products and 9 131 254 

commercially available molecules, respectively. 34 (20%) of the ring scaffolds among the 

metabolites and 12 977 (83%) of the ring scaffolds among the natural products were 

unrepresented among the commercial molecules. Even if one restricts this set to molecular 

weight ≤350 Da and two or fewer stereocenters, there remain 1 891 ring scaffolds 

represented among natural products that have no counterpart among commercially available 

molecules, and by extension screening libraries.

DISCUSSION

Returning to our motivating question, a major reason why the screening of synthetic 

compounds ever finds interesting hits is that our libraries are biased towards the sort of 

molecules that proteins have evolved to recognize. Thus, there are almost as many 

metabolites and natural products among the 25 810 purchasable GDB molecules as there are 

among the 26 million GDB molecules overall. This bias increases rapidly as molecules grow 

in size (Fig. 3), and the bias among larger “lead-like” and “drug-like” molecules is expected 

to be many orders of magnitude more still than that measured for the very small molecules 
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explored here, where full enumeration16 allowed us to compare to a complete chemical 

space.

From this observation two opposite inferences might be drawn. Since our libraries are 

already biased, then perhaps we should look for new screening molecules that are dissimilar 

to metabolites and natural products. Whereas this will certainly explore new chemotypes and 

ensure novel scaffolds, we do not draw this conclusion. Chemical space is so large that, 

unless proteins are highly promiscuous, the likelihood of finding anything biologically 

interesting is remote. Instead, we suggest that screening libraries may be improved by 

increasing the bias toward biogenic molecules further still, by adding to libraries molecules 

resembling biogenic scaffolds that are now absent from them. After all, the bias in our 

current libraries is largely unintentional, the product of what organic chemists have 

synthesized since the birth of the field with urea in 1828 (though see refs 21-24). This leaves 

room for intentional optimization. Indeed, 83% of the core ring-scaffolds present among 

natural products are simply absent among commercially available molecules, and by 

extension screening libraries.

It is interesting to compare these missing scaffolds with those from earlier studies that 

sought rings most common among drug-like molecules.20,25-27 An example are the six 

rings highlighted as characteristic of drug-like molecules by Ertl and colleagues (Table 1). 

Comparing these to those scaffolds found among natural products but unavailable 

commercially reveals molecules that are so similar to the drug-like rings that their absence 

from screening libraries is startling (a few examples are given in Table 2). Earlier studies 

have suggested that scaffolds characteristic of drug-like molecules be sought when 

purchasing new molecules for screening; here we suggest that molecules containing 

scaffolds present in natural products but absent from commercial collections are places to 

begin expanding the biogenic chemistry available for screening. Biasing future screening 

libraries to fill these systematic absences in our current collections will help address the new 

genomic targets with which we are increasingly confronted, and against which screening has 

had such mixed success.

METHODS

Chemical Space

We used the Generated DataBase (GDB) of Reymond et al. as a proxy for chemical space.

16,28 The GDB was obtained by exhaustively enumerating all the possible topologies for 

molecules composed of only first row elements (C, N, O, and F), taking into account the 

stability, synthetic accessibility, and drug likeness of the resulting molecules. GDB 

contained 26 429 328 unique compounds with no consideration of stereochemistry.

Biogenic Space

We used two databases to approximate the space of molecules that occur in natural 

organisms: the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the 

Dictionary of Natural Products (DNP). The KEGG (Ligand) database contained 11 434 

unique compounds,29 but many of these were xenobiotics such as hexachlorohexane. A 
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xenobiotic-free subset of the KEGG database was generated by only considering primary 

metabolic pathways (Supplementary Table 3). This subset contained 2 018 unique 

compounds and was used as the reference to metabolic space. The CRC Dictionary of 

Natural Products30 (DNP version 16.2) contained 141 985 unique structures and was used 

as the source of natural products.

Screening library space

ZINC31 contains 9 131 254 unique, commercially available compounds after adding the 

latest vendor catalogs and discarding some of the physical property filters normally used for 

docking purposes, such as molecular weight. ZINC was used as an approximation to a 

general-purpose screening library. To compare commercial compounds to the GDB, we 

filtered ZINC for molecules that conformed to the same rules as those used to generate the 

GDB. ZINC contained 25 810 compounds with 11 or less C, N, O, or F atoms, the 

“purchasable-GDB.”

The National Institute of Health (NIH) Molecular Libraries Small Molecule Repository 

(MLSMR) contained 298 794 unique compounds (downloaded from http://

pubchem.ncbi.nlm.nih.gov on 2008/06/18). The MLSMR contained 866 compounds with 11 

or less C, N, O, and F heavy atoms, i.e. subject to the same restrictions as GDB. This subset 

was referred to as MLSMR-GDB.

Comparison of the chemical and screening space to the biogenic spaces

Each molecule of the GDB and purchasable-GDB databases was, in turn, compared to each 

molecule in the KEGG and DNP databases. Compounds were represented by their Scitegic 

Extended Connectivity FingerPrints32 (ECFP_4) which encodes the presence or absence of 

topological fragments (with no stereochemistry consideration) in the form of an extended 

connectivity string centered on a specific atom and calculated using a modification of the 

Morgan Algorithm.33 The initial code assigned to each molecule's atom is based on the 

number of connections, the element type, and the mass. This code is hashed to produce the 

next order code, which is mapped into an address space of size 232 and the process iterates 

twice to describe features up to four bonds in diameter.34 The resulting fingerprint was 

further folded into a bit-string of length 1 024 bits. The similarity between two molecules 

was measured by comparing their respective ECFP_4 bit-string with the Tanimoto 

coefficient. If a denotes the number of bits set to “on” for molecule A, b the number of bits 

set to “on” for molecule B, and c the number of bits set to “on” in both molecules, the 

Tanimoto similarity between these two molecules is:

Analysis of the bit frequencies

Each bit's exact substructure was exported as a SMARTS pattern (before folding) using the 

built-in function of the standard molecular fingerprint component of Scitegic Pipeline Pilot.

32 There were cases where a single bit corresponded to more than one substructure; often 

these substructures were related. For the frequency calculations or even for illustration 
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purposes (see Supplementary Tables 1 and 2 online), one of these substructure was chosen 

arbitrarily.

Generation of the core ring scaffolds

Several approaches to extract the scaffold of a molecule are available;20,26,35 here we use 

the approach of Bemis & Murcko.20 Each molecule in the KEGG, DNP, and ZINC 

databases was decomposed into its core ring scaffold using Pipeline Pilot.32 Core ring 

scaffolds consist of individual contiguous ring systems keeping atom types, bond orders, 

aromaticity information, and exocyclic double bonds but discarding stereochemistry and 

charges (see Supplementary. Fig. 4 online). A canonical SMILES string was generated for 

each resulting core ring structure. The presence (or absence) of a particular KEGG or DNP 

scaffold was evaluated by matching its SMILES string to those obtained from the ZINC 

database.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overlap between commercially available molecules and the GDB gives the purchasable 

GDB.
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Figure 2. Compounds in screening libraries are biased toward biogenic molecules
Percentage of the GDB and purchasable-GDB databases as a function of the Tanimoto 

similarity to their nearest neighbor in [a] the KEGG and [b] the Dictionary of Natural 

Compound databases. Percentage of the GDB, the purchasable-GDB, Asinex (360 042 

compounds − 815 GDB compliant compounds), Chembridge (473 745 compounds − 389 

GDB compliant compounds); IBS (424 806 compounds − 884 GDB compliant compounds), 

Life Chemicals (285 581 compounds − 172 GDB compliant compounds), Otava (121 657 

compounds − 287 GDB compliant compounds) databases as a function of the Tanimoto 

similarity to their nearest neighbor to the [c] KEGG and the [d] Dictionary of Natural 

Products databases.
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Figure 3. 
Ratio of the percentage of compounds in the purchasable-GDB and GDB databases that had 

a similarity ≥ 0.75 to their nearest neighbor in [a] the KEGG and [b] the Dictionary of 

Natural Products databases versus the number of heavy atoms up to which the database 

compound (in purchasable-GDB and GDB) are considered.
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Table 1

Core ring structures common among drugs and related molecules.25
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Table 2

Characteristic scaffolds present among natural products but missing from commercially available molecules. 

The core ring scaffold is shown in green for the natural products.
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