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The scaling relationship between leaf dry mass and leaf surface area has important implications for understanding the
ability of plants to harvest sunlight and grow. Whether and how the scaling relationships vary across environmental
gradients are poorly understood. We analyzed the scaling relationships between leaf mass and leaf area of 121 vascular
plant species along an altitudinal gradient in a subtropical monsoon forest. The slopes increased significantly with altitude,
it varied from less than 1 at low altitude to more than 1 at high altitude. This means that plants growing at high altitude
allocate proportionately more biomass to support tissues in larger leaves and less in smaller leaves, whereas the reverse is
true at low altitude. This pattern can be explained by different leaf strategies in response to environmental pressure and
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Introduction

Leaf dry mass (M) and leaf surface area (A) are two important
leaf traits of the vast majority of vascular plants [1]. The relative
changes in these two parameters can be described as a ‘power law’,
mathematically taking the form: M=PA% where B is the
normalization constant and o is the scaling exponent [2], [3].
This formula reveals that SLA, the light-capturing surface built by
the plant per unit investment of dry mass, is size-dependent. Since
SLA=A/M and M =BA” it follows that SLA=(1/B)A"™. The
value of a>1 indicates that larger leaves have lower SLA than
smaller ones, whereas o<l means the opposite. If M scales
isometrically to A (i.e. o=1), then changes in leaf size have no
impact on SLA. Quantifying the scaling relationships between leaf
size and SLA will improve our understanding of how leaves
maintain a positive carbon balance and influence whole plant
fitness.

Ecologists have reported empirical evidences with respect to
SLA and leaf size. Several studies have shown that as leaves
increase in mass, increases in surface area often fail to keep pace
with the increases in mass (i.e. >1) [2], [4], which has been called
“diminishing returns”. Alternatively, it has been noted that SLA
increased with leaf size, which yields “increasing returns” (l.e.
a<<1) [4-6]. Both phenomena probably occur due to different
biomass distribution between productive and support tissues in
large compared to small leaves [7-9]. Additionally, it was also
found that leaf mass scales isometrically to leaf area (i.e. o =1) [4],
[10], this is size-independent and results in a ‘“break even”
relationship.
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Within the leaves, there are at least two components: an
expanded lamina (i.e. productive tissues) and a beam-like petiole
(i.e. support tissues) [11]. Leaf biomass partitioning is an important
driver of whole-plant net carbon gain. Plant growth rate scales
positively with the mass fraction in leaf lamina and is negatively
associated with the fraction of support tissues [7]. Some researches
indicate that leaf size modifies the distribution of leaf biomass
between productive and support tissues [2], [4], which further
leads to the underlying allometric scaling relationships between M
and A (L.e. «>1 or a<l).

Environmental factors may influence the relationship between
M and A. Plant modularity has allowed plant to optimize resource
distribution among different structures [12]. Optimal allocation
theory predicts that plants should invest more biomass to the
compartment that acquires the most limiting resource to adapt to
environmental changes [13]. For example, in some extreme
environments such as strong wind, compared to smaller leaves,
larger leaves may increase the proportion of biomass allocation to
lamina support tissues to provide sufficient mechanical stability
[14]. Plants adapted to such unfavorable environments will exhibit
M-A slopes>1 (i.e. diminishing returns). Furthermore, M-A
slopes would vary with the environmental gradients as leaves
adopt different biomass allocation strategies in response to
environment changes. Prior studies have examined the M-A
scaling relationships among and within species [2], [4], [10], and
whether and how the scaling relationships vary across environ-
mental gradients are still poorly understood.

Along altitudinal gradients, the environment changes rapidly
over short distances. Plants subject to lower temperature, higher
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irradiance and strong wind at higher altitude, while light limits at
lower altitude. Herein we investigated the effects of altitude on the
scaling relationship between M and A in a subtropical monsoon
forest. The specific questions we asked were (i) What are the
relationships between M and A at different altitudes? (i) Whether
the slope of the log M—log A relationship change with increasing
elevation, and if so, how?

Materials and Methods

Ethics Statement
This research was approved by the Administration Bureau of
Mt. Tianmu Nature Reserve in China.

Study Site

This study was conducted in Mt. Tianmu Nature Reserve, the
north subtropical area of eastern China (30° 19.61'-30° 28.90" N,
119° 25.67'-119° 26.41" E). The altitude varies from 350 m to
1506 m. Mean annual precipitation ranges from 1390 mm at
lower elevations to 1870 mm at higher elevations, and mean
annual air temperature decreases from 14.8°C at the foot of the
mountain to 8.8°C at the top. The reserve has obvious vertical
vegetation zones, including evergreen broad-leaved forest (350—
850 m), evergreen and deciduous broad-leaved mixed forest (850—
1100 m), deciduous broad-leaved forest (1100-1380 m), and
dwarf forest (1380-1506 m).

Sampling

Six collection sites were chosen at ca. 200 m elevation intervals
along the elevation in May 2012 (Table 1). A total of 121 vascular
plant species were sampled. At each site, the most abundant plant
species were selected. For each species, leaves were gathered from
at least three different adult individuals which are similar-sized and
not shaded by neighboring plants, and then bulked into a single
sample. Petioles were included in leaf area and mass measure-
ments. The petioles in simple-leaved species were assumed to be
analogous to the sum of petioles, rachises, and petiolules in
compound-leaved species [7]. Leaf area was measured with a leaf
area meter (CI-203, Laser leaf area meter CID, Inc. USA). Dry
mass was determined after oven-drying at 70°C for at least 72 h.

Statistical Analysis

The data for A and M were log-transformed. Since functional
rather than predictive relationships were sought [15], reduced
major axis (RMA, also called standardized major axis) regression
was used to determine the scaling exponent and constant of log—
log linear functions. Differences in the regression slopes among
altitudes were tested by multiple post hoc comparisons. The
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significance level for testing slope heterogeneity and difference
from slope =1 was P<<0.05. All of the analyses were conducted
using SMATR Version 2.0 [16].

Results

There was significant positive relationship between leaf mass
and leaf area at each altitude (Table 1, Fig. 1). The slopes showed
a great degree of variability among altitudes, ranging from 0.859
to 1.299. The slopes were significantly<<I at low altitude (414 m),
whereas significantly>1 at high altitudes (1286 m and 1462 m). In
middle altitudes, the slopes were not significantly different from 1
(620 m, 850 m and 1086 m). The post hoc multiple comparisons of
slopes among altitudes showed that slopes at high altitudes were
significantly higher than those at low altitude (Table 1). Further-
more, there was a highly significant positive relationship between
the estimated slopes and altitude (Fig. 2).

Discussion

The M-A scaling relationship has important implications for
understanding the ability of plants to acclimate to environmental
conditions [17]. In the present study, we found a wide range of
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Figure 1. Leaf mass-area relationship at six sites as estimated
by RMA regression.
doi:10.1371/journal.pone.0076872.g001

Table 1. Scaling exponents () and intercepts (B) of M-A relationship at six altitudes as estimated by RMA regression.

Altitude (m) Latitude (N°) Longitude (E°) a 95% Cl of a B 95% Cl of § R? Sample size
414 119°26.41' 30°19.61' 0.859° 0.780, 0.946 —2.103 —2.249, —1.957 0.823 78

620 119°26.24’ 30°19.90' 0.963% 0.853, 1.088 —2.248 —2.463, —2.033 0.642 97

850 119°26.00’ 30°20.24' 1.000° 0.912, 1.097 —2.374 —2.541, —2.206 0.704 138

1086 119°26.03’ 30°24.49' 1.113% 0.974, 1.273 —2473 —2.541, —2.206 0.640 81

1286 119°25.67' 30°20.64' 1.299° 1.160, 1.455 —2.868 —3.114, —2.623 0.773 72

1462 119°25.51' 30°28.90" 1.258° 1.161, 1.364 —2.821 —2.993, —2.649 0.839 99

doi:10.1371/journal.pone.0076872.t001
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All regressions were significant (P<<0.05). Boldfaced slopes are statistically significant different from 1 at P<<0.05 level. The Post-hoc multiple comparison of slopes were
shown among altitudes, where the slopes sharing the same superscript letters are not significantly different from each other at P<<0.05 level.
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Figure 2. Scaling exponent (a) of the leaf mass-area relation-
ship increases with altitude.
doi:10.1371/journal.pone.0076872.g002

variation in M to A scaling exponents among altitudes (from 0.859
to 1.299) (Fig. 1, 2). This is consistent with results from prior
theoretical and empirical studies in which no constant value was
used to describe the M-A relationships across all leaves [2], [12],
[17]. Environmental controls on specific leaf area induces the
variant leaf allometry [9]. Leaves are subject to strong selective
gradients in aridity, solar radiation, and nutrient availability that
affect their size and shape [12], [18]. Accordingly, the scaling
values are expected to vary across environments as they balance
the need for efficient conductance, net carbon acquisition, and
protection against desiccation.

The scaling of M vs. A affects leaf economy in size-dependent
ways, which has an important implication for leaf size optimiza-
tion [11]. In this study, M scales ‘faster’ than A, and larger leaves
show lower SLA than smaller ones at high altitudes (i.e. a>1)
(Fig. 1, 2). Plant performances are limited by low temperature,
high irradiance and strong wind at high altitudes. Leaf support
structure provides laminas with both mechanical support and a
pathway for water and nutrient transport. Low temperature would
limit the transportation efficiency and thus, leaves may require a
high investment in the transporting structure [11]. High irradiance
and strong wind would increase the proportion of biomass
allocation to leaf support structure [19-21]. In particular, large
leaves require rigid support and mechanic resistance because they
suffer large drag forces and static loads [20], [22]. Therefore, large
leaves tend to have a larger fractional biomass investment in
support structure relative to small ones. Small leaves, on the other
hand, produce smaller wind-induced drag forces and have lower
support needs, and thus a higher fraction of productive tissue. This
diminishing return in the scaling of leaf size with leaf support
mvestment implies that small leaves with greater SLA are more
likely to be favoured at higher altitudes.
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In our study, SLA increases disproportionately with increasing
A at low altitude (ie. a<<l) (Fig. 1, 2). Light is a key limiting
resource for plant growth and survival at low altitude [23]. Plants
grown under low light intensities tend to have low photosynthetic
capacities per unit leaf area [24], [25], thus, plants would evolve to
maximize the biomass allocation to laminas and minimize the
lamina support investment to capture more light. Leaf size has
important consequences for the scale and precision with which
plants forage for light. Large leaves at low light intensities may
intercept a large amount of light due to their more extensive foliar
display, whereas small leaves are better able to exploit fine-grained
environmental heterogeneity by positioning their leaves in light-
rich micro-patches [26]. It has also been reported that leaf shape,
leaf angle and petiole length alter leaf light-interception efficiency
[27]. Small leaves regular their leaf arrangement to fills the gaps
via modifications in petiole length and thus to take advantage of
the penumbra effect. Hence, more investment in petioles may
radically change light-interception capacity of small leaves.
However, efficient light harvesting via supporting structural
modifications may become increasingly expensive with increasing
leaf size [7]. Large leaves may manifest an adaptive modification
towards avoiding enhanced costs for leaf support, and may
consequently construct cheaper and more extensive light-inter-
cepting foliar display than small leaves. Thus, plants may optimise
a pay-off of having large leaves and efficient light intercepting
surface and high SLA with low investment of photosynthesising
tissues per unit area at low altitude. Environmental conditions at
middle altitudes are in between low and high altitude, which thus
lead to the isometric relationship between M and A (i.e. a=1)
(Fig. 1, 2). Our results imply that the differences in size-dependent
SLA may be an adaptive response to limits imposed on plant
growth and survival by environmental conditions.

The scaling relationship reflects the results of an evolutionary
trade-off among many ancestral metabolic, morphological, and
anatomical traits shared by all vascular plants [2]. Our research
here exclusively focused on the altitude gradient, and therefore in-
depth understanding of the developmental mechanisms underlying
allometric strategies across other environmental gradient (e.g.,
aridity) requires further exploration.
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