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Gastric Cancer (GC) is a lethal malignancy, with urgent need for the discovery of novel biomarkers 
for its early detection. I previously showed that Transposable Elements (TEs) become activated 
in early GC (EGC), suggesting a role in gene expression. Here, I follow-up on that evidence using 
single-cell data from gastritis to EGC, and show that TEs are expressed and follow the disease 
progression, with 2,430 of them being cell populations markers. Pseudotemporal trajectory modeling 
revealed 111 TEs associated with the origination of cancer cells. Analysis of spatial data from GC also 
confirms TE expression, with 204 TEs being spatially enriched in the tumor regions and the tumor 
microenvironment, hinting at a role of TEs in tumorigenesis. Finally, a network of TE-mediated gene 
regulation was modeled, indicating that ~ 2,000 genes could be modulated by TEs, with ~ 500 of 
them already implicated in cancer. These results suggest that TEs might play a functional role in GC 
progression, and highlights them as potential biomarker for its early detection.

Gastric Cancer (GC) is one of the leading causes of cancer death, with an estimated 800,000 demises per year1,2. 
Although it has a global incidence, it is now considered an endemic malignancy in South America and some 
parts of Asia and Europe1,3. The 5-year survival rate of advanced stages GC is ~ 5%, while for early GC is > 70%2,4, 
highlighting the importance of detecting this malignancy in a timely manner3. Persistent inflammation to the 
stomach is one of the main factors associated with the origin of GC. Particularly, chronic gastritis and Intestinal 
Metaplasia (IM) are precursor lesions, and the overall cascade progression of the disease can be recapitulated 
from Chronic Non-Atrophic Gastritis (NAG), Chronic Atrophic Gastritis (CAG), IM, early GC (EGC) and 
GC1,4–6. Taking this into account, several groups have studied this progression using different modalities of 
RNA-Sequencing (RNA-Seq) to profile the changes in genome-wide gene expression6–8.

RNA-Seq has remained the gold standard in gene expression studies due to its large-scale throughput, and 
nucleotide-level profiling of gene expression9,10. Traditional RNA-Seq is also known as “bulk”, because it captures 
a homogenized portrait of gene expression11. Although this has allowed for many advances in our knowledge, it 
has been somewhat limited for studying cancer due to intratumor heterogeneity12. In turn, recent works using 
higher-resolution modalities of RNA-Seq, such as single-cell (scRNA-Seq) and spatially-resolved (srRNA-Seq), 
have been published6,13,14. In addition to the identification of tumor subpopulations, scRNA-Seq allows for the 
reconstruction of cell trajectories through Trajectory Inference (TI) methods. TI corresponds to the modeling 
of dynamic cellular processes through the pseudotemporal arrangement of cells based on their transcriptional 
similarity15. This methodology has been successfully studied to understand cancer evolution6,13,16,17 and how 
different cancer subpopulations respond to treatment18. In addition, by using this methodology, gene expression 
changes involved in cell fate decisions can also be studied, which can help understand what drives the changes 
in cell subpopulations towards a malignant genotype18–20. Despite the many breakthroughs of scRNA-Seq, one 
drawback is that tissue topology and organization is lost. In cancer studies, this makes it difficult to understand 
the interactions between tumor and its microenvironment. In this regard, srRNA-Seq preserves the two-
dimensional spatial architecture and allows the profiling of in situ expression across a tissue section21. This 
technique has accelerated our understanding of cancer by allowing the study of gene expression in the tumor and 
surrounding microenvironment, and has been applied to GC14and other types of cancer21.

Transposable Elements (TEs) are genetic agents with the ability to move and increase their copy number22. 
They are present in every eukaryotic genome known to date, and in humans they occupy about 50% of the 
genome23,24. Broadly, they can be classified into retrotransposons, which transpose via an RNA intermediate, 
and into DNA transposons, which transpose via a DNA intermediate. Retrotransposons are further subdivided 
into Long Terminal Repeats (LTRs), Long Interspersed Nuclear Elements (LINEs) and Short Interspersed 
Nuclear Elements (SINEs), while DNA transposons are subdivided into DNA and Rolling-Circle (RC) TEs22,25. 
Although most TEs are now genetically fixed, they can still become transcriptionally active, which can impact 

Centro de Genómica Avanzada de Talca, Talca, Chile. email: bvaldebenitom@gmail.com

OPEN

Scientific Reports |        (2024) 14:22727 1| https://doi.org/10.1038/s41598-024-73744-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


gene regulation26. Current evidence supports their role as regulatory elements in health and disease27–29. In 
particular, there are many examples of their global derepression and subsequent activation in a wide array 
of cancer types (reviewed in30). Despite this, there are scarce works studying them using either single-cell or 
spatially-resolved methods. For example, only recently a group profiled gallbladder cancer using scRNA-Seq 
and applied TI to reveal that human endogenous retroviruses (HERVs, a type of LTR TEs) are associated with 
the transition of epithelial cells to the malignant status, and that they might act as regulators of gene expression 
in cancer cells13.

Previously, I hinted at a regulatory role of TEs in EGC29. An outstanding question in that study was whether 
TEs were expressed in previous timepoints, and whether their expression continues during GC. Moreover, it is 
unclear if TEs are expressed in the GC tumor microenvironment. Here, by leveraging single-cell and spatially-
resolved RNA-Seq data, I provide an extended analysis of the role of TEs in GC (Fig. 1). In this work, using the 
single-cell data, I show that TEs become up-regulated during the progression from gastritis to EGC, and their 
expression is associated with the acquisition of malignancy. Then, using the spatially-resolved transcriptomes, I 
provide evidence of TE activation in both the tumor and its microenvironment. Additionally, network analysis 
suggests that they might be involved in the regulation of genes, highlighting a functional role in the GC cascade. 
Overall, these findings propose TEs as potential biomarkers for the detection of GC at its early stages.

Results
TE expression during the progression of gastritis to early GC
The single-cell raw sequencing data generated at the NAG (3 samples), CAG (3 samples), IM (3 samples, one 
wild and 2 severe) and EGC (1 sample) stages was aligned to the human genome. Afterwards, the resulting BAM 
alignment files were processed using SoloTE29 to get matrices containing gene and TE expression per each cell. 
In order to get a preliminary overview on TE expression across the early GC cascade, a Principal Component 
Analysis (PCA) was carried out using a pseudobulk approach in which total expression was summarized at the 
sample level. This procedure was done 3 times, by using a matrix subsetted only to genes, another subsetted only 
to TEs, and one containing gene and TE expression (Fig. 2a). This analysis illustrates that gene expression alone 
recapitulates the differences between each time point, with the exception of the IM-Wild sample, which seems 
closer to the CAG samples. This suggests that only subtle changes occur during the IM-Wild timepoint. Using 
only TE expression, a similar distinction between timepoints can be seen. Although less variance is explained, 
the samples are still reasonably grouped in terms of their stage. As expected, the analysis using the complete 
Gene + TE matrix shows a result consistent with the ones done independently.

Next, to understand the influence of TEs at the cellular level, t-distributed stochastic neighbor embedding 
(tSNE) dimensional reduction analysis was carried out similarly, using the gene expression matrix, the TE 
expression matrix and the combined gene and TE expression matrix (Fig. 2b). The full Gene + TE matrix was 
processed first to generate a cell type annotation, resulting in 10 epithelial types, and 7 non-epithelial types. 
The epithelial population is comprised by Pit Mucous Cells (PMC), Neck-like, Gland Mucous Cells (GMC), 
Proliferative Cells (PC), Enteroendocrine, Chief, Enterocytes, Goblet, Metaplastic Stem-like Cells (MSCs) and 
Cancer cells. On the other hand, the non-epithelial population is comprised by T cells, B cells, Endothelial, 
Macrophages, Mast cells, Smooth Muscle Cells (SMC) and Fibroblasts. This cell type annotation was later 
transferred to the single-cell analyses done on genes and on TEs independently. In contrast to result obtained 
at the Gene level, the tSNE dimensional reduction of TE expression depicts more heterogeneity between cell 
types, in which PMCs, GMCs and MSCs seem to be more spread-out. It was previously shown that PMCs 
decrease and MSCs increase along the early GC cascade, and that there are transcriptional similarities between 
PMCs with both GMCs and MSCs, and between MSCs and Cancer cells6. Indeed, comparison of the cell type 
annotations with the unbiased clustering shows that some TE clusters are comprised by different populations 
(Supplementary Fig. 1). For example, cluster 0 is comprised by PMCs and GMCs, while cluster 1 and 2 span 
several types from PMCs, GMCs up to MSCs and Cancer cells. It has been proposed that mixed cells in the 
single-cell projection could be predictive of intermediate cell states31, and thus, it can be hypothesized that TE 
expression could represent such states. Interestingly, the opposite can be seen in some non-epithelial subtypes, 
such as T cells and B cells. These cells exhibit a well-defined clustering pattern, hinting at a differential activation 
of a subset of TEs that might be modulating gene expression32, with potential implications in T cell exhaustion33.

Overall, these results show that although there is some variability in TE expression at the single-cell level, 
they are globally expressed throughout the progression from gastritis to EGC and recapitulate changes in each 
timepoint similar to those observed at the gene level.

The single-cell expression of TEs in early GC
Given the global TE expression revealed by the previous analyses, I investigated what TEs could exhibit consistent 
or increasing expression from the premalignant gastritis status to EGC, and in what cell populations they might 
be enriched. To this end, the pseudobulked matrix was used, and a series of differential expression (DE) analyses 
were carried out with DESeq234, using NAG as the baseline condition. Then, TEs significantly up-regulated 
(having log2(Fold Change) > 0 and adjusted P-value ≤ 0.05) in CAG, IMW, IMS and EGC timepoints were 
selected. This resulted in a total of 2,581 TEs (Supplementary data 1, Supplementary Fig. 2). Although the EGC 
DE analysis might be statistically underpowered due to only having one sample, it still recapitulates changes 
reported in previous works (Supplementary Fig. 3). To also consider TEs that might already be activated in 
NAG, and whose expression remains constant throughout the EGC cascade (and thus, not appearing in the DE 
analysis), the TEs in the top 5% of highest expression across all stages were also selected (Supplementary data 1). 
This added 14,566 TEs to the set, resulting in a total of 17,147 TEs potentially associated with EGC progression 
(Fig. 3a). Furthermore, there is a consistent percentage of TE expression across the single-cell transcriptomes: 
NAG—37.822%, CAG—41.247%, IMW—50.282%, IMS—41.989%, EGC—40.931% (Fig. 3b).
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Marker analysis revealed that out of the TEs selected in the previous step, 2,430 have increased expression 
in the different cell populations (Table 1). Some of the TE markers appear as enriched in more than one cell 
population, as evidenced in the numbers after de-duplication (Table 1, “Unique marker TEs”). Interestingly, a 
high proportion of these markers have locus resolution, which is essential to analyze their potential influence 
in gene regulation. Additionally, marker TE distribution per timepoint indicates that for most part they are 

Fig. 1.  Overview of the analysis protocol used in this study. In the first row, the studied datasets are depicted: 
the single-cell RNA-Seq data collected from 7 patients, spanning the progression from gastritis to cancer 
(Non-atrophic gastritis—NAG, Chronic atrophic gastritis—CAG, Intestinal metaplasia—IM and Early Gastric 
Cancer—EGC), and the spatial RNA-Seq data collected from 4 patients with Gastric Cancer. The second 
row shows the main analysis steps: for single-cell, “Clustering” was carried out to annotate cell types and 
then, by using this result, TEs enriched in cell populations were identified. “Trajectory Inference” was later 
performed to predict the pseudotemporal progression of the cells along the EGC cascade. Malignancy scores 
were calculated to validate the inferred trajectory. Afterwards, the impact of TE expression on the acquisition 
of the malignant status was assessed. For spatial data, by taking advantage of the pathologist annotations, TEs 
with increased expression in tumor regions and the tumor microenvironment were identified and labeled as 
“Spatially enriched TEs”. Finally, the TEs identified from both analyses were used to build the TE regulatory 
network, where TEs were characterized according to their potential regulatory impact. Genes associated 
with TEs were labeled as “Cancer genes” in the network if they have been previously implicated in cancer. 
Schematics were drawn with Inkscape 1.3.2 (https://inkscape.org), and the plots produced with ggplot2.
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equally distributed (Fig. 3c), suggesting that once their expression is increased in a cell type, it remains stable 
throughout the early GC progression. In Chief cells, a predominance at the CAG stage is observed, while 
Proliferative cells, Enterocytes, and Metaplastic Stem-like Cells seem to be predominantly expressed at the IMS 
stage, consistent with the emergence of these cell types during IM6. Analysis of the major TE types revealed 
that they are all present to varying degrees in the set of markers (Fig. 3d), with a clear predominance of SINEs. 
Although previous works have pointed out a role of LINE L1 and LTR HERV TEs in cancer30, there is evidence 
showing that SINE and DNA TEs are also involved by driving oncogene activation35. This is also consistent with 
a recent work in colorectal cancer in which TEs were found to modulate gene expression and that SINEs were 
predominantly expressed36.

A caveat here is that the 10X single-cell data has a 3’ bias, and thus usually the terminal region of transcripts 
is captured and sequenced. Amongst TEs, the Alu family, part of the SINE group, has been reported to lead 
to truncated isoforms by acting as alternative transcription end sites37,38. In turn, out of the 927 marker SINE 
TEs, 875 (94.4%) were part of the Alu family, suggesting that in EGC these TEs could be effectively acting as 
premature transcription end sites. It has been proposed that the impact of these events could be associated 
with disease progression37,38, and indeed there is an example of such events in liver cancer, where Alu TEs were 
identified as the major TE becoming a terminal exon39. Alternatively, the predominance of Alu TEs could be 
explained by their genetic structure: these elements harbor both a linker and a terminal A-stretch40, which in 
turn could be causing internal poly-A priming during 10X 3’ single-cell sequencing.

Marker TEs, which are defined as TEs with high expression, and expressed in a high proportion of the cells 
of a specific type (labeled as “pct.1”), could be classified in 2 groups based on their percentage expressed in the 
remaining cell types (labeled as “pct.2”): group 1—high pct.2; group 2—low pct.2. For example, some of the top 

Fig. 2.  Dimensional reduction analyses of the progression from gastritis to early gastric cancer. (a) Principal 
Component Analysis of the pseudobulked scRNA-Seq data, using gene expression only (first panel), TE 
expression only (second panel), and gene and TE expression (third panel). Each sample is color-coded 
according to the condition to which they belong. (b) Dimensional reduction plots using the t-distributed 
stochastic neighbor embedding (tSNE). Similarly, the first panel shows the tSNE plot using gene expression 
only, the second using TE expression only, and the third using gene and TE expression. The plots are color-
coded according to the cell types identified.
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PMC, MSCs, Cancer, Chief and Neck-like markers belong to group 1, while the top T cells and B cells markers 
belong to group 2 (Fig. 3e, Supplementary Fig. 4, Supplementary data 2). In turn, group 1 would define markers 
that have a gradient of expression, and in some cases, might be statistically enriched in more than one cell type 
(Table 1, Supplementary Data 2). As mentioned earlier, in the original work, it was observed that MSCs have 
a high transcriptional similarity to Cancer cells6. Here, I also noted that in terms of enriched TEs, there is also 
transcriptional similarity between these cell types, as indicated by the number of shared markers between them 
(29 common marker TEs, Supplementary Data 2). Similarly, it has been previously indicated that neck cells 
differentiate into chief cells6, and marker expression seem to coincide with this: the top neck cell markers are 
broadly expressed, while the top chief cells markers seem a bit more specific. To further illustrate these results, 
tSNE dimensional reduction expression is depicted for 3 examples (Fig. 3f): AluSx1, located in chr8:118,090,496-
118,090,808; L1MEc, located in chr18:9,678,049-9,678,172; and AluSc8 located in chr9:75,994,376-75,994,721. 
AluSx1 can be classified to group 1 considering that it is expressed in a high number of cells, but enriched in 

Fig. 3.  The single-cell profile of TEs across EGC progression. (a) Pseudobulked log2-normalized expression 
of TEs that were either differentially up-regulated at any time point with respect to NAG, or that were in 
the upper 5% of normalized expression at all time points. (b) tSNE plots showing the per-cell expression 
percentage of genes (first row) or TEs (second row) across all timepoints. The horizontal bars show the 
percentage of the transcriptome at each timepoint corresponding to genes (blue) or TEs (red). (c) Distribution 
of marker TEs across stages. (d) Class distribution of marker TEs of each cell type. (e) Dot plot depicting the 
top 5 marker TEs of each cell type. In bold, TEs selected to show as example in the following tSNE plots. (f) 
tSNE plots of selected TEs.
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MSCs. The same argument applies to L1MEc with high expression in Cancer cells, but expressed at lower levels 
in other cells. Finally, AluSc8, also appearing as a Cancer marker, shows expression restricted to the region 
comprised by Cancer, MSCs and Enterocytes. It is worth noting that the expression of these TEs was measured 
with locus resolution (i.e., having only uniquely mapped reads), making unlikely that the observed expression 
heterogeneity could be attributed to ambiguity in read assignment. As suggested earlier, such gradient of TE 
expression spanning from PMC, GMC to MSC and then Cancer could suggest intermediate status between these 
cell types that could be mediated by TEs. It has been reported that as EGC progresses, PMCs decrease and MSCs 
increase, and that they have some transcriptional similarity6, though it is unclear whether some PMC cells might 
be undergoing a malignant transformation to MSCs. If this is the case, these results would suggest that TEs are 
playing a role in that event.

Altogether, the evidence presented shows that TEs are expressed throughout the progression from gastritis 
to GC, and that their expression characterizes the different cell types, potentially highlighting intermediate 
status. In addition, the high proportion of TEs identified with locus resolution suggest that TEs becoming 
transcriptionally active in EGC have accumulated discriminative mutations, allowing the unambiguous 
assignment of sequencing reads. In turn, this would support the idea that TEs are playing a role in EGC 
progression via epigenetic polymorphisms, where changes in the transcriptional activity of fixed TE copies 
characterize cellular differences30.

TE expression is associated with the origin of cancer cells
After getting a global overview of TE expression, and assessing their cellular profile, I then asked if their 
expression is associated with the origin of cancer cells. To this end, I applied Trajectory Inference (TI) to model 
the pseudotemporal progression of cells from the normal to the malignant status using the dynverse R package15. 
Briefly, this package evaluates more than 50 TI methods and identifies the one most suitable to the dataset, which 
in this case was PAGA-Tree41. Then, dynverse represents the trajectory topology in a network of milestones 
where the cells are placed. The resulting trajectory was rooted at the milestone containing the highest number of 
NAG cells, and further analyzed (Fig. 4a).

The trajectory broadly recapitulates the progression from NAG to EGC: the majority of cancer cells appear in 
a lineage that originates from IMS cells, which in turn, originates from CAG cells. Notably, there are 2 milestones 
with a high number of IMS cells, with one of them continuing directly to the Cancer milestone. To add support 
to the trajectory in the context of cancer evolution, I also applied inferCNV42 to generate per-cell scores of 
copy number variations (CNVs), which has been used as proxy of malignancy development13. The inferCNV 
scores projected in the trajectory are also in concordance with the progression of CAG to IM, and subsequently 
to EGC (Fig. 4b). Cell type and marker gene analysis of the trajectory shows that the two branches with the 
highest inferCNV scores depict the transitions between different cell types (Supplementary Figs. 5 and 6). 
The first branch reveals a transition from Enterocytes, to MSCs and Cancer, while the second branch reveals a 
transition from a milestone comprised by PMCs and some Enterocytes to one comprised by MSCs and Goblet 
cells. Although these cell types share a link on the basis of their transcriptional similarity6, it is unclear whether 
they represent the actual cell evolution in EGC. In cancer, plasticity allows tumor cells to change between cell 
status43. Thus, these observations might be indicative of cellular plasticity occurring during EGC, which would 
explain the cell type diversity in some branches with a malignant profile as revealed by their high CNV scores.

Cluster Total marker TEs Locus-specific marker TEs Unique marker TEs Unique Locus-specific marker TEs

Pit mucous cells 61 55 (90.164%) 45 44 (97.778%)

Gland mucous cells 92 73 (79.348%) 38 31 (81.579%)

Enteroendocrine 174 115 (66.092%) 105 85 (80.952%)

Neck-like 79 61 (77.215%) 29 22 (75.862%)

Chief 45 39 (86.667%) 23 19 (82.609%)

Proliferative cells 25 22 (88.000%) 4 4 (100.000%)

Goblet 55 53 (96.364%) 21 21 (100.000%)

Enterocytes 133 126 (94.737%) 114 110 (96.491%)

Metaplastic stem-like Cells 82 69 (84.146%) 33 28 (84.848%)

Cancer 59 53 (89.831%) 26 25 (96.154%)

T cells 356 312 (87.640%) 270 249 (92.222%)

B cells 227 209 (92.070%) 146 131 (89.726%)

Endothelial 214 158 (73.832%) 105 94 (89.524%)

Macrophages 163 135 (82.822%) 76 66 (86.842%)

Mast 163 158 (96.933%) 121 119 (98.347%)

Smooth muscle cells 146 129 (88.356%) 55 55 (100.000%)

Fibroblasts 356 278 (78.090%) 198 156 (78.788%)

Total 2430 2045 (84.156%) 1409 1259 (89.354%)

Table 1.  Marker TEs per cell cluster. For each cluster, the number of total or unique marker TEs is shown, 
along with the number, and the respective proportion of locus-specific marker TEs.
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To better understand the impact of TE expression in the EGC cascade, the enrichment of TEs in the 
malignant milestones was assessed. TE expression seems to occur throughout the entire trajectory, and 111 
were TI-selected TEs (Fig. 4c, Supplementary Fig. 7), with 50 of them corresponding to markers of different 
cell populations and the remaining 61 without significant cell type specific expression (Supplementary data 
3). Broadly speaking, three types of expression patterns throughout the trajectory were revealed by this 
analysis: 1. TE showing high and consistent expression (Fig. 4d, “LTR37-int”), 2. TE showing moderate levels of 
expression (Fig. 4d, “MSTA” located in chr14:98,972,560-98,972,796) and 3. TE expression mostly restricted to 
the malignant milestone (Fig. 4d, “L1MEc”, located in chr18:9,678,049-9,678,172). For example, “L1MEc” also 
appeared in the marker analysis as a Cancer cells-enriched TE (depicted in Fig. 3d), indicating some agreement 

Fig. 4.  The single-cell trajectory of EGC. (a) Inferred pseudotemporal trajectory of the EGC dataset colored 
by condition: NAG in orange, CAG in yellow, IMW in cyan, IMS in light blue and EGC in purple. (b) 
Pseudotemporal trajectory colored by inferCNV score: minimum values in light yellow, and maximum values 
in dark purple. (c) Heatmap showing the expression of TEs associated with the increase in cell malignancy 
as measured by inferCNV scores. Colored dots above the heatmap correspond to a one-dimensional 
representation of the trajectory. Highlighted in red are the cells that go from the beginning of the trajectory 
to the Cancer milestone (d) Example of TEs that are expressed in the malignant (i.e., high inferCNV score) 
branches of the trajectory.
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between the 2 analyses. Notably, the 50 TEs that are also cell population markers all have locus resolution, 
while none of the other 61 have. The lack of locus resolution is usually indicative of expression of TE copies 
with a negligible number of discriminative mutations (i.e., evolutionary younger copies), hence the difficulty 
on accurately assigning reads to specific instances in the genome26. In this line, a possible scenario is that many 
of these copies become transcriptionally activated concurrently, pointing out to a pattern of global activation. 
For example, the widespread expression of “LTR37-in”, a TE belonging to the group of retroviruses, would be in 
agreement with evidence indicating that HERVs undergo global activation in cancer44.

Collectively, this analysis showed that by leveraging TI methods, TEs are potentially contributing to the 
evolution of cancer cells and to the transition and interplay between cell status during EGC progression. In turn, 
the detection of TEs in the premalignant milestones might be informative to their role as biomarkers for the 
early detection of GC.

The spatial portrait of TE expression in GC
The single-cell findings indicate that TEs are expressed in early pre-malignant GC stages, and that their 
expression occurs in the different cell types, hinting at a role of TEs in the tumor microenvironment. However, 
two outstanding questions from these results are (1) is TE expression also occurring in the malignant GC? 
and (2) are TEs expressed in the tumor microenvironment? To address them, I studied 4 spatially-resolved 
transcriptomes from GC sections14. In the original study, the tumor and surrounding regions in these sections 
were annotated by pathologists. By leveraging the annotations, I assessed if TE expression is associated with the 
tumor. To calculate TE expression, I processed the dataset with SoloTE, and the resulting gene + TE expression 
matrices were further analyzed with STutility45. With STutility, I characterized the in situ expression of TEs and 
contrasted it with the pathologist-annotated tumor and normal epithelium regions. First, I studied global TE 
expression across all tissue sections to assess the extent of TE activation in GC.

All 4 samples exhibit TE expression that is higher in the tumor regions and lower in the normal epithelium, 
indicating that enhanced TE expression is a hallmark of GC (Fig.  5a, “All TEs”). Furthermore, activation of 
TEs in the tumor region suggests that these elements could be involved in tumorigenesis. When observing the 
expression at the major TE type level, subtle patterns can be seen. For example, a clear enrichment of LTRs in 
tumors is revealed (Fig. 5, “LTR”), with LINEs and SINEs having a moderate increase in the tumor area, and 
higher expression in regions not annotated as normal nor as tumor (Fig. 5, “LINE” and “SINE”, respectively). 
Interestingly, DNA TEs are also enriched in tumors, despite their lower presence in the human genome compared 
to retroelements. Nonetheless, at the statistical level their expression is still relatively increased when comparing 
tumor versus normal regions (Fig. 5b). Collectively, these results bridge the findings obtained in the single-cell 
section of this work, by showing that, in addition to being activated in early GC stages, TEs are also expressed in 
the malignant tumor regions.

The spatial transcriptomics analysis also revealed that TE expression extends beyond the tumor regions. 
Activation of TEs in the tumor microenvironment could also play a role in GC initiation and progression. 
As mentioned earlier, in the single-cell results it was also observed that TEs were enriched in non-tumor cell 
populations, hinting at this hypothesis. Furthermore, as observed in the hematoxylin and eosin-stained (H&E) 
tissue sections, the profiled sections display variability in their morphology (Fig.  5). In the original study, 
the pathologists selected the most heterogeneous gastric cancer sections in order to characterize intratumor 
heterogeneity14. Therefore, in addition to Normal epithelium (NE) and Tumor Tissue (TT), other regions 
identified in the tissue histological images were: Tumor tissue and glands (TTG), Intestinal metaplasia (IM), 
Serrated glandular structure (SGS), Lymphoid follicle (LF), Muscularis mucosa (MM), Peritumoral muscularis 
(PM), Muscle tissue (MT), Heterotopic cystic malformation (HCM), Lamina propria (LP), Blood − containing 
tissue (BCT), Connective tissue (CNT) (Fig. 6). Some of these regions were identified in one patient only: for 
example, Intestinal metaplasia in patient JJ, Serrated glandular structure in patient JJ62, and Heterotopic cystic 
malformation in patient ZL716, further highlighting intertumor diversity.

By leveraging the GC tissue annotations, I then investigated the spatial enrichment of specific TEs, in order to 
address whether TEs are also expressed in the tumor microenvironment. To this end, I applied the FindMarkers 
function to compare expression in the different tissue regions using the normal epithelium as control. This 
analysis showed substantial variability in the number of spatially enriched TEs detected on each sample: JJ62 
– 148, JJ – 75, ZL716 – 57, ZL69 – 38 (Fig. 6, Supplementary Fig. 8, Supplementary data 4), which makes sense 
given the heterogeneity observed between the GC tissue sections. In agreement with the global TE analysis, 
specific TEs were enriched in the tumor regions of all samples. Sample JJ exhibits an overall increase in TE 
activity in the tumor and regions surrounding it, such as Lamina propria, Muscularis mucosa, Peritumoral 
muscularis, Lymphoid follicle, Connective tissue and Blood-containing tissue (Fig. 6a). Interestingly, this sample 
also has a region of Intestinal metaplasia, where enriched TEs were also identified. This finding provides further 
evidence of TE activation during intestinal metaplasia, as observed in the single-cell analyses. Additionally, 
Sample JJ62 shows a Serrated glandular structure next to the tumor region, and it has been reported that the 
region represents an intermediate step in the alteration of the normal epithelium during dysplasia, resulting in 
GC. TE activation between Serrated glandular structure and the tumor tissue was observed, implicating that TEs 
might be contributing to GC development (Fig. 6b). Interestingly, the Lymphoid follicles and muscular tissue 
surrounding the tumor also seems to show activation of TEs. The enhanced TE expression in the muscle tissue 
would match the single-cell result for smooth muscle cells. Sample ZL79 corresponds mostly to tumor tissue 
and Muscularis mucosa, with both regions having a signature of TE expression (Fig. 6c). Sample ZL716 display 
a large Heterotopic cystic malformation region with several Lymphoid follicles. Heterotopic cystic malformation 
might be associated with early GC46, and for most part, TEs detected in this sample seem to be expressed across 
it and the tumor regions (Fig.  6d). In terms of TE types, both intra- and inter-tumor, there seems to be as 
similar distribution, in which LINEs and SINEs are the most represented, followed by LTRs, and then DNA TEs. 
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Interestingly, Muscularis mucosa seem to be characterized by expression of LTRs and SINEs, and in the case 
of sample ZL716, only LTRs. LTRs have long been associated with cancer47, and alterations in the muscularis 
mucosa might play a role in early GC48. Thus, this finding could suggest that aberrant activation of LTRs in this 
region could be associated with GC. In sum, these results indicate that TEs are expressed in both the tumor tissue 
and in the tumor microenvironment, which suggests that TEs might also contribute to GC progression through 
changes to the regions surrounding the tumors.

Fig. 5.  TEs are enriched in the tumor regions of GC tissue sections. (a) Spatially-resolved expression of TEs 
when analyzed collectively (“All TEs), or at the class level (LTR, LINE, SINE, DNA). “H&E” column shows the 
pathologist-annotated normal and tumor regions in green and red, respectively. (b) Violin plots showing TE 
expression in the normal and tumor regions. Asterisks denote statistical significance at the following levels: 
****p ≤ 0.0001, ***p > 0.0001 and p ≤ 0.001, **p > 0.001 and p ≤ 0.01, *p > 0.01 and p ≤ 0.05. Annotation of H&E 
images was done with Inkscape 1.3.2 (https://inkscape.org).
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Next, I asked if there are TEs conserved across the studied tissue sections. To this end, the number of TEs 
common between different combinations of samples was visualized in an upset plot (Fig. 7a). By using this result 
as guide, it was observed that 33 spatially enriched TEs appear in at least 3 out of the 4 samples, and these were 
selected to build the set of “top” spatial TEs. Visualization of the TE type distribution indicates that despite the 
difference in number of enriched TEs detected on each sample, LINEs seem to be predominant, followed by 
SINEs, and then LTR and DNA (Fig. 7b). In the top set, DNA TEs do not appear, indicating that their activation 
follows the inter-patient GC heterogeneity captured in these samples. Conversely, there are 9 leading TEs in the 
top set because they were detected in all the samples (Fig. 7c). These 9 TEs correspond to 1 LTR, 4 LINEs and 4 
SINEs, with 6 of them having locus resolution. In contrast with the single-cell analysis, these results show more 
sparsity in terms of the number of TEs whose location is detected unambiguously in the genome. For instance, 
in the total 33 TEs of the top set, only 15 (45.5%) have locus resolution, with 6 of them being amongst the 
leading 9 TEs present in all datasets. Nonetheless, when assessing the overlap between the top spatial TEs and the 
single-cell results, 29 (87.9%) out of the 33 top TEs were also detected in the single-cell analysis, with 22 (66.7%) 
of these TEs also associated with the malignant milestones detected in the trajectory analysis (Supplementary 
Fig. 9).

Fig. 6.  The spatial portrait of Transposable Element expression in Gastric Cancer. (a) Annotated H&E image 
of GC tissue section of sample JJ, followed by the heatmap depicting the expression of spatially enriched TEs, 
the class distribution bar plots, and the spatial expression plots of representative TEs. (b) Annotated H&E 
image of GC tissue section of sample JJ62, followed by the heatmap depicting the expression of spatially 
enriched TEs, the class distribution bar plots, and the spatial expression plots of representative TEs. (c) 
Annotated H&E image of GC tissue section of sample ZL69, followed by the heatmap depicting the expression 
of spatially enriched TEs, the class distribution bar plots, and the spatial expression plots of representative 
TEs. (d) Annotated H&E image of GC tissue section of sample ZL716, followed by the heatmap depicting 
the expression of spatially enriched TEs, the class distribution bar plots, and the spatial expression plots of 
representative TEs. Annotation of H&E images was done with Inkscape 1.3.2 (https://inkscape.org).
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The TE-mediated gene regulatory network during GC
To ask about the potential role of TEs as regulators of gene expression, a methodology similar to previous 
works13,44 was applied: (1) using all the locus-specific TEs detected in both the single-cell and the spatial analysis, 
a gene-TE dictionary was built, considering all genes within 500 kbp of each TE; (2) Afterwards, to characterize 
the regulatory potential of TEs, the overlap with regulatory elements in GeneHancer and the ENCODE SCREEN 
candidate Cis-Regulatory Elements (cCREs) was assessed; (3) the gene-TE dictionary was filtered by considering 
either pre-defined interactions in GeneHancer or SCREEN, or if the gene was within 50 kbp of the TE; (4) finally, 
the Spearman correlation values were calculated for each gene-TE pair, and all interactions with correlation ≥ 0.3 
were kept.

To get an overview of the genes potentially regulated by TEs, two additional analyses were carried out. First, an 
automated literature search using the NCBI E-Utilities49 was carried out, and genes associated with publications 
in cancer were labeled as “Cancer gene”. Also, gene set enrichment analysis using the fgsea R package50 was 
performed, using the Kyoto Encyclopedia of Genes and Genomes (KEGG) terms, and the Gene Ontology (GO) 
terms, and filtering results to those having adjusted p-value ≤ 0.05.

Following the aforementioned approach, a total of 3151 interactions were predicted. Based on the genomic 
overlap with known regulatory elements from the GeneHancer and ENCODE SCREEN database, the TEs 
potentially interacting with genes are distributed as follows: 1142 “TE GeneHancer”, 572 “TE ENCODE cCREs”, 
and 1437 as “TE coexpression” (i.e., they only met the correlation threshold) (Supplementary data 5). A total of 
1992 unique genes are regulated by TEs, with 573 of them labeled as “Cancer gene”. 210 unique genes (59 being 
Cancer genes) have 3 or more interactions with TEs, amounting to a total of 997 interactions distributed in 87 
modules (Fig. 8a). TEs in these modules are distributed into 445 “TE GeneHancer”, 96 “TE ENCODE cCREs” 
and 454 “TE coexpression” Out of the 210 genes, 153 interact with either a TE GeneHancer or TE ENCODE 
cCREs, providing further support to the hypothesis of TEs playing a regulatory role in GC. The remaining 

Fig. 7.  Spatially enriched TEs common between the GC tissue sections. (a) Upset plot of the spatially enriched 
TEs. The number of TEs at each given overlap, represented by a set of connected dots in the lower half, is 
indicated as a bar plot. (b) Class distribution of spatially enriched TEs on each sample, and for the top TEs 
(“Top”) which corresponds to those identified in at least 3 out of the 4 samples. (c) Feature plots of spatially 
enriched TEs identified in all samples, depicting their expression across the tissue sections. For TEs identified 
with locus resolution, their genomic location is indicated under their name.
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Fig. 8.  Network analysis of Gastric Cancer TEs. (a) Regulatory network of genes associated with TEs. Genes 
previously associated with cancer are shown in red, and the remaining genes are shown in orange. TEs 
are colored according to their predicted regulatory link: TE GeneHancer in blue, TE ENCODE cCREs in 
green, and TE coexpression in purple. TEs that are module hubs are highlighted with black border, and the 
respective module is encircled in dashed lines. (b) Top 10 enriched gene set terms for the Gene Ontology (GO) 
Biological Process category (upper half) and KEGG pathways category (lower half). (c) Genome coverage plot 
of the intronic TE MamRTE1:RTE-BovB:LINE in locus chr10:78,040,182-78,040,254 (highlighted in red), 
having a predicted regulatory link with the RPS24 gene. On the right, the region enclosed with the dashed-
lines rectangle is shown zoomed. (d) Genome coverage plot of the region chr1:150,610,108-150,809,260, 
depicting upstream TEs (highlighted in red) having a predicted enhancer regulatory link with the CTSK gene. 
GeneHancer and ENCODE regulatory elements overlapping the selected TEs are shown in blue and green, 
respectively.
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interactions met the correlation threshold, and the gene is in close genomic vicinity of the TEs, consistent with 
previous findings13,36 suggesting such a regulatory role for TEs. In addition, to gain an overview of the regulatory 
impact of TEs, the network modules were characterized according to the presence of a “TE hub”. For a module to 
be classified as “TE hub”, a TE must account for the 50% of more of its interactions. Following, this approach, 11 
“TE hub” modules were identified (Fig. 8a, modules encircled in dashed lines). Out of the 87 modules, 44 (50.6%) 
have cancer genes, with the 11 “TE hub” modules amongst them (Fig. 8a, modules detailed in Supplementary 
Fig. 10). Interestingly, some of the genes in these modules have been previously associated with GC, such as 
CTSK51, CLDN1852 , HORMAD153,54, MS4A8 and MS4A1555, and SOCS356.

At a wider scale, gene set enrichment analysis revealed many terms of relevance to cancer (Fig.  8b). For 
example, intracellular signal transduction, programmed cell death and phosphorylation are all processes long 
associated with cancer57–59. Pathway-level analysis also depicts changes previously associated with cancer. The 
MAPK signaling pathway plays roles in cell proliferation, differentiation, migration and apoptosis, and is the top 
pathway likely regulated by TEs. Because of its role in many cell processes, malfunction on the pathway has been 
linked to cancer60. “Pathways in cancer” is the second term, and it encompasses different pathways with evidence 
associating them with cancer. Thus, this result is in close agreement with the previous literature search analysis 
carried out independently. Another interesting example is “Endocytosis”, that has many functions in nutrient 
uptake. Disruptions in this pathway also play a significant role in cancer, and there is evidence pointing to a role 
in GC61,62. Furthermore, when performing these analyses on each stage, it is revealed that these terms appear 
enriched from NAG, suggesting that TEs could potentially contribute to GC development by early alterations to 
gene expression (Supplementary Figs. 11–16).

Finally, two examples of genes regulated by TEs are depicted: RPS24 (Fig. 8c) and CTSK (Fig. 8d). RPS24 was 
chosen because the interacting TE appears in all 3 analyses (single-cell, TI and spatial), has a partial overlap with 
one of its exons (Fig. 8c, TE highlighted in red), and the regulatory link is based on GeneHancer. In turn, the 
result would suggest that the TE is acting as an enhancer of the same gene. This would be similar to a documented 
event occurring in the EGFR gene, causing its up-regulation, which in turn, contributes to breast cancer63. Also, 
over-expression of RPS24 has been reported to be a biomarker of colorectal cancer64. In these lines, the TE-
mediated up-regulation proposed in this study might also highlight a role of RPS24 in GC progression. On the 
other hand, CTSK has been previously implicated in GC, and the associated TEs are located about ~ 200,000 
kbp away from its locus, and have overlaps with ENCODE cCREs and GeneHancer elements, making this a 
good example of a long-distance regulatory link (Fig. 8d, Supplementary Fig. 17). CTSK has been reported as 
over-expressed in GC and has been proposed as GC biomarker51,65. Additionally, it is unclear how it becomes 
over-expressed51. This result would help bridge that gap, by indicating that up-regulation of CTSK is caused by 
TE-derived enhancers.

In sum, these results show that TEs are potentially regulating genes and pathways associated with cancer in 
several ways, strongly suggesting that TEs are implicated in the molecular aberrations that occur in GC.

Discussion
GC is commonly detected at advanced stages, point in which the survival rate is low. When detected on initial 
stages, survival rate is high, prompting the need for better understanding the molecular mechanisms associated 
with its development and discovery of early biomarkers. In this work, I studied single-cell and spatial RNA data 
publicly available from different cohorts and provide evidence pointing to TEs as potential biomarkers and 
regulators of gene expression during GC.

Here, I showed that TE expression is a hallmark of the early GC cascade and during GC. The single-cell analysis 
revealed that thousands of TEs are cell-type enriched, and their expression increases as gastritis progresses to 
early GC. Although LTR ERVs have received more attention in cancer studies13,44, there is increasing evidence 
depicting changes of several types of TEs in these malignances30. Concordant with the latter evidence, in addition 
to LTRs, I also detected expression of LINE, SINE, and DNA TEs. Marker analysis revealed that TEs are enriched 
in the different cell populations to varying degrees. For example, the top Cancer markers also exhibit some level 
of expression in MSCs, in line with the proposed idea that MSCs might provide an environment for the origin of 
Cancer cells6. Afterwards, the application of TI methods revealed a branching trajectory, broadly recapitulating 
the cascade from NAG, to CAG, to IM and to EGC. Particularly, some cell lineages show a clear association with 
the acquisition of the malignant status, based on their emergence in EGC and their high CNV score. Analysis 
of TE expression in the malignant lineages revealed 111 TEs that could potentially be early biomarkers for 
GC detection due to having expression not only in the later trajectory milestones, but in those leading up to 
them. Despite dynverse allowing a convenient assessment of many TI methods, the trajectory generated for 
this work still has some limitations, considering that in some instances it seemed to indicate cellular plasticity 
(phenomenon known to occur in cancer43) rather than cell evolution. Nonetheless, the inferred trajectory is still 
informative and underlines an additional layer in which the study of TEs can provide insights to understanding 
GC progression.

Studying the spatial dataset generated from GC patients also confirmed TE expression. The importance of 
this is two-fold: first, it allowed bridge the gap between EGC and GC in terms of TEs, and second, it serves 
as additional and independent confirmation that changes in TE expression during GC development might 
indeed be representative of the malignancy. A caveat here is that differences were observed between patients, 
and overall, with the single-cell data. The diversity of TEs detected on each sample can be attributed to inter-
patient and intra-tumor heterogeneity, and indeed in the original work it is reported that the regions with the 
most significant heterogeneity were selected for spatial sequencing14. On the other hand, the lower TE detection 
observed in spatial data versus the single-cell data could be attributed to differences in the techniques: Visium 
spatial RNA-Seq captures about 5–10 cells per spot, and by sequencing a combination of cells could reduce the 
detection of several transcripts, including TE-derived ones. Nonetheless, almost 90% of the top spatial TEs were 
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found in the single-cell data, and close to 70% are found in the list of TI-selected TEs, strongly suggesting that TE 
expression is a hallmark of GC. Furthermore, TE expression was also observed in the tumor microenvironment 
suggesting that they might be playing a significant role in GC tumorigenesis.

Finally, I adopted a gene-TE correlation approach to predict the impact of TEs in gene expression, which 
was coupled with the assessment of TEs as regulators via the overlap with GeneHancer and ENCODE cCREs. 
Close to 2,000 genes are likely regulated by TEs, and ~ 500 of them have been previously linked with cancer. 
Gene enrichment analysis also depict the global impact of these potential regulatory events, and several of the 
top terms and pathways have been also associated with cancer. This gene-TE correlation approach is similar to 
the one applied in gallbladder cancer, where they validated the regulatory potential of selected TEs13. There is 
a growing body of evidence supporting the role of TEs as regulators of gene expression either in their genomic 
vicinity or in long-distance locations by acting as enhancers24,30,44, thus the findings reported here are in strong 
agreement with the idea of TEs involved in GC-related gene aberrations.

In conclusion, I show that TEs become activated during the progression of gastritis toward EGC, and in GC 
itself by leveraging datasets publicly provided by independent studies. I present evidence of their activation 
both in the tumor tissue and in the tumor microenvironment, pointing to a role in tumorigenesis. Furthermore, 
in addition to becoming activated, TEs might influence gene regulation. In turn, this could contribute to the 
progression of GC. These findings highlight the biological and functional importance of studying TEs in this 
malignancy. The portrait of TE expression during GC development shown here advances our understanding of 
the disease, and pinpoints these elements as potential biomarkers for its early detection.

Methods
Raw sequencing data
The single-cell and spatial RNA-Seq data used in this study were obtained from publicly available databases. 
Single-cell FASTQ files were obtained from6, made publicly available at the Sequence Read Archive (SRA) under 
accession SRP215370. On the other hand, Spatial data was obtained from14, publicly available at the National 
Genomics Data Center Genome Sequence Archive (GSA) under accession HRA003070.

TE expression analysis
To calculate TE expression on each dataset, the raw sequencing data was aligned to the human genome using 
STAR66. First, the hg38 genome FASTA and ncbiRefSeq GTF annotation were downloaded from UCSC Genome 
Browser database67 and used to generate the genome index. Then, the sequencing data of both the single-cell 
and spatial experiments was aligned with the following options to generate BAM files compliant with SoloTE 
(described later): --outSAMattributes NH HI nM AS CR UR CY UY CB UB GX GN sS sQ sM to include cell 
barcode and UMI information in the output files, --outFilterMultimapNmax 100 --winAnchorMultimapNmax 
100 to increase sensitivity of alignment to TEs, --outSAMmultNmax 1 --outMultimapperOrder Random to keep 
only one random alignment for multimapped reads, --runThreadN 21 to set the number of process threads to 
21 and --runRNGseed 777 to set a random number generator seed to a fixed value for reproducibility. Each 
alignment file was then processed with SoloTE v1.0929, using the human genome hg38 version TE annotation in 
BED format obtained with the helper script SoloTE_RepeatMasker_to_BED.py. This process resulted in the raw 
count matrices that include TE expression.

Single-cell analysis
Analysis of single-cell count matrices generated above was carried out using the Seurat v4.1.0 package68 of 
the R statistical computing environment69 version 4.1.1, as described next. First, single-cell matrices were 
filtered to keep only the quality-control filtered cells reported in the original work. Afterwards, the matrices 
were merged in a single object and processed using the default Seurat workflow. Briefly, the object was used as 
input to NormalizeData, FindVariableFeatures and ScaleData, in order to prepare it for principal component 
analysis using the RunPCA function. Then, 30 dimensions were used for FindNeighbors, and RunTSNE, and 
the clustering was obtained with FindClusters. Per-sample pseudobulk count matrices were generated with the 
AggregateExpression function, using the sample identifier as “group.id”. Then, the pseudobulked matrices were 
processed with DESeq234, and the log-normalized counts were obtained with the rlog function, which were used 
to produce a per-sample PCA. For Fig. 2, these steps were repeated 2 more times using a single-cell matrix with 
only genes and another one with only TEs.

To identify TEs whose expression increases in the progression towards early gastric cancer, DESeq2 was used 
again to test for differences between CAG, IM and EGC with respect to NAG, using adjusted p-value ≤ 0.05 as 
threshold for significance. In addition, to also include TEs highly expressed throughout all time points, those 
within the top 5% of expression were also selected. This list of EGC progression-associated TEs was used for 
marker analysis in the FindAllMarkers function to identify the specific cell populations in which they were 
enriched. Results of this step were also filtered using a threshold of adjusted p-value ≤ 0.05.

Trajectory Inference (TI) analysis was carried out using dyno, and related plots were generated using 
dynplot, both from the dynverse collection of R packages15. The single-cell expression matrix was subsetted to 
the epithelial subtypes (PMC, GMC, Enteroendocrine, Neck-like, Chief, PC, Goblet, Enterocytes, MSCs, and 
Cancer) and then processed with the Seurat integration protocol. The “paga_tree” TI method was used for TI 
as it was identified as the most suitable for the dataset using the “guidelines_shiny” function. inferCNV v1.8.142 
was run to generate per-cell copy number variation scores, which were used as an additional validation of the 
inferred trajectory. The “branch_feature_importance” function was used to assess TEs enriched in the cell 
lineages associated with cancer progression.
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Spatial analysis
Spatial data was processed with STutility v1.1.145, which is built in top of the Seurat package. First, for each of 
the 4 samples an object was created, and processed with the SCTransform function to obtain the normalized 
expression. Then, total TE and per-class (LTR, LINE, SINE and DNA) TE expression was calculated by 
aggregating all the normalized counts respectively. Statistical differences in TE expression between tumor and 
normal regions across the tissue were tested using the Wilcoxon test implemented in the base R function wilcox.
test. The results of this step were depicted in the violin plots of Fig. 5b, highlighting the Wilcoxon test p-values 
obtained.

To find TEs with higher expression in tumor and non-normal regions of the tissues, differential expression 
analysis was carried out with the FindMarkers function. This was done by taking advantage of the pathologist 
annotations, using the normal epithelium regions as control (or the unannotated region in the case of sample 
ZL69) and each of the remaining regions as test groups. All TEs with adjusted p-value ≤ 0.05 were then selected 
as spatially enriched. The overlap between the spatially enriched TEs detected in each sample was assessed via 
an upset plot generated with the ggupset v0.3.0 package70.

Network analysis
To build the TE-gene networks, a list of TEs was built from those enriched in the single-cell or spatial data. 
Selected single-cell TEs were those associated with the progression from NAG to EGC and that also appear as 
markers of cell populations, whereas selected spatial TEs were those found with spatial enrichment in at least 3 
out of the 4 samples.

The selected TEs were then processed to identify potential regulatory links on the basis of their genomic 
location, using a methodology similar as previously published works13,44. First, interactions between regulatory 
elements and genes were obtained from GeneHancer and the SCREEN database. Particularly, GeneHancer v4.7 
interactions were downloaded from https://genecards.weizmann.ac.il/geneloc/index.shtml, and the ENCODE 
SCREEN Registry of candidate Cis-Regulatory Elements (cCREs) V371 from https://screen.encodeproject.org/. 
Afterwards, a TE-gene dictionary was built containing all genes within 500 kbp from the selected TEs. Using 
BEDTools v2.30.072, the overlap between selected TEs and regulatory elements was assessed to filter and classify 
the TE-gene dictionary into potential interactions: “TE GeneHancer”, if the TE overlapped with GeneHancer 
elements and the gene was a target of the regulatory element, “TE ENCODE cCREs” if the TE overlapped didn’t 
overlap with GeneHancer elements, but overlapped with ENCODE cCREs and the gene was a target of the 
regulatory element, and finally into “TE coexpression” if they didn’t have any overlap with regulatory elements, 
but the TE and gene were within 50 kbp of each other. Finally, the Spearman correlation between each TE-gene 
pair in the dictionary was calculated and those pairs with correlation ≥ 0.3 were selected to build the TE-gene 
network depicted in Fig. 7.

Gene set enrichment analysis
Gene set enrichment analysis was carried out as described before44, using the “geseca” function of the fgsea 
v1.29.1 R package50. The genes used as input were the 1992 being associated with TEs during the previous step 
(i.e., those selected for the network analysis). For the reference gene groups, the msigdbr package73 was used, 
which provides seamless integration of MsigDB74 gene sets with fgsea. Particularly, the reference gene groups 
utilized were the curated gene sets of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms (contained in 
the “C2” category), and the gene sets of Gene Ontology terms (contained in the “C5” category). The following 
parameters were specified: minSize = 1, maxSize = 500, nPermSimple = 10,000 and center = FALSE, scale = FALSE. 
In turn, the analysis was carried out twice, first using to the KEGG gene sets as reference, and then using the GO 
terms as references. Enriched terms having adjusted p-value ≤ 0.05 were selected.

Plots
All plots were generated in the R statistical computing environment, using ggplot2 v3.4.275, and extended with 
packages ggupset v0.3.076 (Fig. 7a), and ggcoverage v1.2.077 (Fig. 8c and Fig. 8d). Particularly, ggcoverage was 
used to plot the RNA-Seq coverage at regions chr10:78,032,363-78,058,306 and chr1:150,610,108-150,809,260. 
The region chr10:78,032,363-78,058,306 depicts the RPS24 gene and an intronic TE, whereas the region 
chr1:150,610,108-150,809,260 depicts a potential long-range interaction between an upstream TE and the CTSK 
gene.

Statistics
Statistical analyses were performed using the R statistical computing environment version 4.1.1. Pseudobulk 
statistical analysis was performed with DESeq2, using as threshold for significance adjusted P-value ≤ 0.05. 
Similarly, single-cell marker and spatial enrichment was carried out using the Seurat functions FindAllMarkers 
and FindMarkers, respectively. Both functions use the Wilcoxon rank sum test, and significance was set at an 
adjusted P-value ≤ 0.05. To test for overall differences in TE expression between the tumor and normal epithelium 
regions for the analysis shown in Fig. 5, the Wilcoxon test was used, and differences having P-value ≤ 0.05 were 
labelled as significant.

Data availability
The single-cell data is publicly available at Sequence Read Archive (SRA) under accession SRP215370. The spa-
tial data is publicly available at the National Genomics Data Center Genome Sequence Archive (GSA) under 
accession HRA003070.
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