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Abstract

Background: Social insect colonies routinely face large vertebrate predators, against which they need to mount a
collective defence. To do so, honeybees use an alarm pheromone that recruits nearby bees into mass stinging of the
perceived threat. This alarm pheromone is carried directly on the stinger; hence, its concentration builds up during
the course of the attack. We investigate how bees react to different alarm pheromone concentrations and how this
evolved response pattern leads to better coordination at the group level.

Results: We first present a dose-response curve to the alarm pheromone, obtained experimentally. This data reveals
two phases in the bees’ response: initially, bees become more likely to sting as the alarm pheromone concentration
increases, but aggressiveness drops back when very high concentrations are reached. Second, we apply Projective
Simulation to model each bee as an artificial learning agent that relies on the pheromone concentration to decide
whether to sting or not. Individuals are rewarded based on the collective performance, thus emulating natural
selection in these complex societies. By also modelling predators in a detailed way, we are able to identify the main
selection pressures that shaped the response pattern observed experimentally. In particular, the likelihood to sting in
the absence of alarm pheromone (starting point of the dose-response curve) is inversely related to the rate of false
alarms, such that bees in environments with low predator density are less likely to waste efforts responding to irrelevant
stimuli. This is compensated for by a steep increase in aggressiveness when the alarm pheromone concentration
starts rising. The later decay in aggressiveness may be explained as a curbing mechanism preventing worker loss.

Conclusions: Our work provides a detailed understanding of alarm pheromone responses in honeybees and sheds
light on the selection pressures that brought them about. In addition, it establishes our approach as a powerful tool to
explore how selection based on a collective outcome shapes individual responses, which remains a challenging issue
in the field of evolutionary biology.
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Background
Whoever has delighted in honey knows how much of a
valuable food source a honeybee colony can be. To fend
off the many predators attracted by this nutrient trove,
honeybees have evolved stingers and a powerful venom
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efficient against vertebrates and invertebrates alike. But
arguably their most important weapon is number: honey-
bees build a collective defence against intruders, stinging,
threatening and harassing them in dozens or hundreds.
Central to this response is the alarm pheromone carried
directly on their stingers, whose banana-like scent is well
known to beekeepers. When released, the sting alarm
pheromone (SAP) alerts and attracts other bees, recruit-
ing them to the site of the disturbance and priming them
to sting. It is a chemically complex blend of over 40 com-
pounds, but its main component, isoamyl acetate (IAA), is
sufficient to trigger most of the behavioural response. The
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SAP has been extensively studied, both from the releaser
end (production, dispersal) and from the recipient end
(detection, reaction, role of the different compounds, role
of the context in which it is perceived — reviewed in [1]).
Despite this wealth of knowledge on the SAP, two impor-
tant aspects of its function remain elusive: its quantitative
action and the evolution of this response. In this study,
we use a combination of in vivo and in silico methods to
better understand how honeybees react to different con-
centrations of alarm pheromone, how this impacts the
organisation of the collective response, and which selec-
tion pressures might have driven the evolution of this
defensive strategy.
If they detect a threat, guard bees can disperse the SAP

actively by raising their abdomen, extruding their stinger
and fanning their wings. Alternatively, since the SAP is
carried on the stinger itself, it is automatically released
upon stinging. Thus, the SAP potentially carries infor-
mation about the presence and location of a threat, but
also about the magnitude of the attack already mounted
against it. Several studies already demonstrated that the
intensity of the response is correlated with the amount of
alarm pheromone in the atmosphere [2–5]. While these
studies provided valuable information, they all tested bees
in groups — and often in field conditions; hence, they
could not establish an individual dose-response curve.
Furthermore, in many cases, the behavioural readout was
rather indirect (e.g. attraction or fanning); only one study
[5] actually measured stinging frequency. To comprehend
how each bee makes the decision to sting, and thus how
the colony as a whole coordinates actions during a defen-
sive event, an individually resolved dose-response curve is
necessary. Here, we took advantage of an assay developed
a few years ago [6], which measures stinging responses
under controlled conditions, to fill this knowledge gap.
We found that, indeed, there is a steep ramp-up phase
at low to medium alarm pheromone concentrations, in
which the stinging likelihood of a bee increases together
with the concentration. In addition, we show for the first
time the existence of a second, decreasing phase at high
pheromone concentrations. This is consistent with an
anecdotal report that a high dose of IAA became repellent
to bees [7].
How to interpret this experimental curve? More pre-

cisely, what could have driven the evolution of such
a response pattern? In social insect colonies, individ-
uals coordinate their actions to reach fitness goals set
at the colony level, effectively functioning as a sin-
gle evolutionary unit. Thus, individual responses can
only be understood through the collective outcome that
they contribute to. Making the link between individual
and collective behaviour has been the focus of a large
body of work. Modern tracking technologies [8] com-
bined with physics-inspired modelling of individuals have

proven that collective movement, for example of march-
ing locusts and schooling fish [9–11], could arise from
simple interaction rules between members of a group
[12]. To explain the more complex division of labour
of social insects, threshold models for stimulus-response
reactions of individual agents have been used, but they
usually do not give an account of the underlying mech-
anisms or of their evolution [13]. Such an evolutionary
perspective on self-organisation has been provided using
neural networks [14, 15] but while being one of the most
powerful tools of machine learning, neural networks are
typically hard to interpret because of their high dimen-
sionality. Evolutionary game theory has also recently been
applied to study task allocation in social insects [16], mod-
elling behavioural changes on the scale of colony lifetime
under certain imposed pay-off relations for the individual
behaviour. Game-theoretic approaches provide interest-
ing novel perspectives on the dynamics of task distribu-
tion in a population, but usually give no account of the
agent-based mechanisms that underlie this dynamics [17],
in stark contrast to the approach we will follow in this
paper.
To address this evolutionary question, we resort to

Projective Simulation [18], which is a simple model of
agency that integrates a notion of episodic memory with
a reinforcement learning mechanism. Projective Simula-
tion (PS) allows for a realistic encoding of the sensory
apparatus and motor abilities of the agents, which can
perceive, make decisions and act as individuals. An impor-
tant distinction between PS and classic neural network
approaches is the straightforward interpretability of the
decision process, because of its restricted dimensional-
ity. When interacting with other agents, individual actions
may influence the perceptions and responses of the rest
of the ensemble, which in turn leads to the emergence
of collective behaviour. Crucially, neither the individual
responses nor the interaction rules among agents are
fixed in advance. Instead, they are developed through-
out a learning process in which the agents’ decisions
are reinforced if they are beneficial under certain evolu-
tionary pressures (note that here “learning” is therefore
a process of selection between generations rather than
happening within an individual’s lifetime). All of these fea-
tures make Projective Simulation a suitable framework
to model behavioural experiments like the one presented
above, since it allows us to analyse the observed responses
from both the individual and the collective perspectives.
Furthermore, we are able to draw conclusions about the
possible evolutionary pressures that may have led to
such behaviour by means of the reinforcement learning
process.
In this work, we model each bee as a learning PS agent

and the colony as an ensemble of agents that under-
goes repeated encounters with predators. During each
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encounter, bees can die from stinging but this also par-
ticipates in deterring the predator, or they can be directly
killed by the predator. Since the success of a bee colony
is highly dependent on its available workforce, the overall
performance of the colony is then evaluated by count-
ing the number of bees that are still alive at the end
of the encounter, and the individual response pattern is
rewarded accordingly. Hence, the whole simulation is sim-
ilar to an evolutionary process, in which the behaviour
of each generation of bees is passed on depending on its
reproductive success. By investigating systematically the
parameters of a simple but realistic predator model, we
found that the initial ramp-up in stinging responsiveness
was mainly driven by uncertainty on the predator detec-
tion (frequency of false alarms) and that the pheromone
concentration at peak aggressiveness was dependent on
the most resistant predator encountered. The second,
decreasing phase could be interpreted as the combina-
tion of a self-limiting mechanism to avoid over-stinging
(i.e. stinging far beyond what would be necessary to deter
the predator) and of a return to baseline due to lack of
experience in this range of concentrations.
The native range of the Western honeybee (Apis mellif-

era) spans a large part of Europe, Africa and Middle East
Asia [19] and thus includes a wide diversity of ecosys-
tems. As a consequence, multiple subspecies exist that
have adapted to local conditions. In particular, the African
honeybees are known for having stronger defensive reac-
tions than their European counterparts: they recruit more
bees, do so more quickly and are more persistent [20, 21].
Part of the explanation resides in their higher sensitivity
to the SAP [4]. As a final test of our model, we tune the
parameters to represent the constraints that were hypoth-
esised to drive the evolution of this striking difference in
behaviour (mainly a higher predation rate in Africa). We
show that, with this input, our model accurately predicts
the different strategies adopted by each subspecies. Thus,
this novel application of Projective Simulation [22] to a
group of agents with a common goal is promising for the
study of social insects in general, and of the honeybee
defensive behaviour in particular.

Results
Experimental results
To better understand if and how bees use the alarm
pheromone concentration as a source of information dur-
ing a defensive event, we first sought to establish a dose-
response curve to the SAP. This requires to precisely
control the pheromone concentration inside the testing
arena. We used two methods to create a range of alarm
pheromone concentrations: (1) pulling out a defined num-
ber of stingers from live, cold-anaesthetised bees, or (2)
diluting synthetic IAA. To verify that the final concentra-
tions scaled linearly with either the number of stingers

or the dilution factor, we measured odour concentrations
inside the arena using a photoionization detector (PID).
As shown on Fig. 1, both methods reliably created lin-
ear series of concentrations (IAA: Pearson’s r = 0.9989,
p < 0.001; stingers: Pearson’s r = 0.9922, p < 0.001).
The absolute concentrations reached by using stingers
appear to be much lower than the ones obtained with syn-
thetic IAA, but one should keep in mind that the delivery
method was also very different (stingers placed on the
dummy vs. IAA carried in by the air flow) and that only a
subset of the SAP compounds can be detected by the PID,
making a direct comparison difficult.
We first evaluated the stinging response of single bees

faced with a rotating dummy on which a certain number
of freshly pulled stingers were placed, to mimic previous
attacks by other bees. The stinging likelihood of an indi-
vidual bee increased linearly with the number of stingers
(see Fig. 1a), from about 20% of the bees reacting to the
dummy alone to 60% of them stinging when 7 stingers
— and hence 7 “units” of SAP — were added (n = 126
bees per data point so 756 bees in total; Pearson’s r =
0.9845, p < 0.001). Three colonies contributed equally
to this dataset, which allowed us to check for variations
in this response pattern (see Fig. 2). We found no signif-
icant difference on the regression slope between colonies
(ANOCOVA, interaction term: F(2, 754) = 0.9, p =
0.432), indicating that the effect of the SAP was similar on
all bees. However, bees from colony 1 were overall more
likely to sting than bees from colony 2 (ANOCOVA fol-
lowed by Tukey’s HSD on intercepts, p = 0.024), while
bees from colony 3 showed intermediate aggressiveness
(ANOCOVA followed by Tukey’s HSD on intercepts, 1 vs.
3: p = 0.150, 2 vs. 3: p = 0.550). Such behavioural variabil-
ity is not surprising, as it is known that the aggressiveness
of honeybees is strongly influenced by genetic factors [23].
The advantage of getting the SAP from stingers is that

we could work with the full pheromonal blend, which is
otherwise difficult to obtain. Its main inconvenience, how-
ever, is that only limited concentrations can be reached. To
get at these higher concentrations, we repeated the exper-
iment with different dilutions of IAA, the main active
component of the SAP. The results are shown in Fig. 1b.
Consistent with our previous results, we observed a lin-
ear increase in stinging responsiveness between 0 and
25% IAA (Pearson’s r = 0.9127, p = 0.011). The two
higher concentrations that we sampled (50% and 100%)
revealed a decay in aggressiveness. While these 3 points
were not sufficient to test for a correlation, the decrease in
stinging frequency between 25 and 100% was significant
(χ2(1, 96) = 7.3612, p = 0.007).

Modelling the honeybees’ collective response
The agent-based learning framework of PS [18] was used
tomodel the defensive behaviour of honeybee colonies. PS
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Fig. 1. Stinging response as a function of the pheromone concentration. a Stinging frequency of a bee as a function of the number of pulled
stingers on the dummy. a’ Schematic of the behavioural assay (top view). The bee is facing a rotating dummy inside the arena, on which pulled
stingers (red arrowheads) have been placed. b Stinging frequency of a bee as a function of the IAA concentration inside the arena. b’ Schematic of
the behavioural assay (top view). The bee is facing a rotating dummy inside the arena, while the alarm pheromone is carried in by three air flows
(red arrows). In both graphs, the shaded area corresponds to the 95% confidence interval, estimated from a binomial distribution with our sample
size (126 and 72 bees for each point in a and b, respectively). Insets show photoionization detector (PID) measurements of the SAP and IAA
concentrations, which are linearly correlated with both the number of stingers and the dilution factor

agents possess an explicit episodic memory (ECM), which
is a network of clips representing how sensory informa-
tion encountered by the agent is connected with possible
action outputs (Fig. 3). The state of the agent’s memory
(i.e. the weight of the connections) at a given time is repre-
sented by a real-valuedmatrix, h. In our case, this memory
structure is not acquired through individual experience,
but rather selected across generations. This evolution-
ary process is represented by the parameters g, R and γ ,
whichmodel, respectively, the past behaviour of the popu-
lation, the success of the current strategy and “forgetting”
(imperfect selection). To represent different environmen-
tal pressures that may shape the resulting collective strat-
egy, we also consider that bee populations may vary in
how early they detect a predator approaching (tatt), and
in the time lag �tv with which the bees visually perceive

the predator’s desistance, enabling them to terminate their
defence independently of pheromone percepts. Finally,
our model includes several variables describing the pre-
dation pressure experienced by bee colonies. These are
the killing rate k of a predator (number of killed bees
per time step), a threshold value sth quantifying the num-
ber of stings after which a predator stops its attack, and
the rate of false alarms rf . A more detailed description of
the model and its parameters is given in the “Methods”
section and in Fig. 3.
In the following, we describe the variations of the model

through which we tested the influence of different envi-
ronmental pressures on the resulting collective strategy,
with a view to uncovering a plausible causal explanation
for the empirically observed reaction of bees to the alarm
pheromone.
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Fig. 2. Stinging frequency of a bee as a function of the number of pulled stingers on the dummy, for different colonies of origin (numbered from 1
to 3), evaluated using n = 42 bees for each data point, i.e. a total of 756 bees across the 3 colonies. An ANOCOVA detected no significant difference
in alarm pheromone responsiveness between colonies (similar slopes), but bees from colony 1 were more aggressive than bees from colony 2
(different means)

Interval between predator detection and the start of its
attack
A small proportion of honeybees, termed guards, sit at
the nest entrance and monitor its surroundings [1]. They
may detect predators early enough to start the defen-
sive response before the intruder reaches the colony. We
varied the time tatt at which a predator starts killing
bees after it was detected: high values for tatt thus rep-
resent colonies that invest heavily in guards or monitor
large areas, whereas low values can be taken to represent
colonies that only get alerted once the predator is already
close by. As shown in Fig. 4a, we find that the probabilities
of stinging are lower when the bees detect the preda-
tor early (tatt = 60) than when they do not have guards
(tatt = 0). Nonetheless, populations with guards actually
fare better than their counterparts, as the predator has less
time to kill bees before being deterred (Fig. 4a’).

Predation rate
In our model, each trial corresponds to a defensive event,
which we assume is started by a non-specified disturbance
close to the colony (for example, the visual perception
of an object moving in the vicinity). In reality, most of
these stimuli are likely to be unrelated to predation: they
could be animals just passing by, falling branches and
so on. Reacting to these stimuli would mean that bees
waste time and effort that could be better invested (and,
at worst, even die from stinging unnecessarily). The fre-
quency of these false alarms depends on the environment
considered: a high density of predators and/or the pres-
ence of specialised predators may be translated by a high

predation rate for colonies, and hence fewer false alarms.
To explore this, we include in our model trials in which
there is no predator, which appear with probability rf . For-
mally, for these trials, sth is set to 0, since there is no
actual need to sting. We observe that, as the percentage of
false alarms in the learning process grows larger, the ini-
tial probability of stinging gets lower but the maximum
reached stays similar (Fig. 4b). This ramp-up is consistent
with the experimental data and can be interpreted as fol-
lows: since overreaction has a cost for the colony, few bees
would sting in the absence of alarm pheromone, which
preventsmany bees from leaving the hive after everymini-
mal signal of danger. However, the pronounced increase in
the probability of stinging (ps) enables a fast recruitment
when there actually is a predator. Hence, the steepness of
the ramp-up phase gives us insights into the predation rate
to which populations were subjected.

Diversity of predators
Honeybee colonies attract a wide array of vertebrate
predators, from mice and toads to humans and bears.
Obviously some are easier to deter than others, and their
distribution may vary depending on the ecosystem con-
sidered. We evaluate the influence of predator diversity by
changing the range of sth. Each population adapted pri-
marily to the most resistant predator encountered, with
bees stinging with very high probability until they reach
an alarm pheromone concentration at which all preda-
tors should be gone (Fig. 4c). While it makes sense that
honeybee colonies need to be able to cope with the worst
predator in their environment, it is interesting to note
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Fig. 3. Theoretical model of one defensive event. Wemodel the colony as an ensemble of N = 100 identical bees, which are artificial learning agents
that decide whether to sting (“Sting” and S) or not (“Chill” and •) based on their sensory perception. These percepts include the alarm pheromone
concentration (binned logarithmically from 0 to 8) and a visual signal that the predator is leaving, vESC. The 100 bees act sequentially, so there are 100
time steps, and each stinging bee releases one unit of alarm pheromone (small ticks on middle panel’s y axis), so that the sensory environment of a
bee is defined by the behaviour of previous bees. A predator attacks the colony and kills k bee per time step from the time it reaches the colony, tatt ,
until it receives a certain number of stings sth . At this point, it stops killing, but is still in the vicinity for �tv time steps before truly escaping, modelled
as the activation of vESC for the remaining bees after time�tv . Once every bee has made a decision, the outcome of the defensive event is evaluated
and the individual decision process is updated based on the colony performance (reward factor R, proportional to the number of remaining live
bees) for each percept (glowmatrix g), with some forgetting (γ ). The upper panels show the internal structure of bees and the predator’s parameters,
the middle panel the time course of the bees’ perception and the bottom panel the behaviour of both bees and predator during an example trial

that “weak” predators have little impact on the defensive
strategy adopted. Predators can also vary in the relative
frequency at which they are encountered. We investigate
this by comparing a scenario with uniform distribution
of predators to one in which “small” (sth ∈ (16, 26))
predators are 4 times more likely than “large” (sth ∈
(27, 40)) ones. We observe (Fig. 4d) that the bees that
more often encounter weak predators have a lower proba-
bility of stinging at high pheromone concentrations, most
likely because these are not often reached. As a result,
these populations are less efficient against large predators
(Fig. 4d’). Hence, the relative abundance of the differ-
ent predators in a given environment also influences the
defensive strategy adopted.

Defence termination
Finally, we consider how bees determine when to stop
stinging. Realistically, a predator does not disappear as

soon as its stinging threshold is reached: it needs time to
move outside of the defended area. This delay is imple-
mented as the parameter�tv in ourmodel. Agents trained
with �tv = 20 have lower probabilities of stinging than
those with �tv = 10 for high pheromone concentrations
(Fig. 4e). Since it takes more time for the predator to leave,
these populations are at a higher risk of “wasting” bees
(i.e. bees stinging even though sth was already reached),
as is indeed observed for weak predators. However, they
seem to compensate this effect when dealing with strong
predators by relying on high pheromone concentrations
to signal that an efficient defensive response has already
been achieved. Thanks to this adaptation, they are able to
curb their number of stings to value close to sth for strong
predators (Fig. 4e’). This could explain the decay in alarm
pheromone responsiveness observed in the experimental
data. Alternatively, this decay may be a simple return to
baseline, as is observed when the agents do not have to
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Fig. 4. Stinging response as a function of alarm pheromone
concentration (first column) and performance (second column) in
(Continued on next column)

Fig. 4. (Continued from previous column)
modelled colonies facing different environmental pressures. Triangles
denote colonies trained for 80,000 trials with parameters: N = 100,
sth ∈ (16, 40), k = 1, tatt = 0, rf = 0 and �tv = 10. They are
compared to colonies that a invest in guards to detect the predator
earlier (tatt = 60); b have higher false alarm rates (rf = 0.3, 0.6); c face
only weak predators (sth ∈ (7, 16)); d face a non-uniform (n-u)
distribution of predators, in which weak predators (sth ∈ (16, 26))
appear 4 times more often than strong ones (sth ∈ (27, 40)); and e
need more time to visually detect that the predator is escaping
(�tv = 20). Only one parameter is varied in each comparison. Panel f
compares colonies that defend small and large territory areas, which
we model by setting tatt = �tv = 10 and tatt = �tv = 40,
respectively. In all plots of the first column, percepts in which the
probability of stinging remained as initialised (ps = 0.5) because they
were never reached are not included. Shaded areas indicate the sth
range. Markers are at the end of each percept’s bin. Probabilities ps for
percept vESC are given in Table 1. Average ± one standard deviation
for 50 independently trained populations. In the second column,
panels a’, b’, d’ and f’ display the percentage of live bees at the end
of encounters, depending on the predator resistance sth . The upper
bound indicates the optimal performance for the given scenario.
Panels c’ and e’ show the total number of bees stinging as a function
of predator resistance, and the dashed lines indicate the maximum
number of times bees could sting before percept vESC is activated.
Numbers below this boundary indicate self-limitation based on
pheromone concentration. Average ± one standard deviation in the
last 500 trials of 50 independently trained populations

address this issue (�tv = 0, the predator is immediately
removed, see Additional file 1: Figure S1). In any case,
measuring when this decay starts would provide infor-
mation about the range of predators encountered by real
populations.

Territory size
Both tatt and �tv are linked to the time needed for the
predator to move from the edge of the defended territory
to the nest itself. Hence, we could expect that for a given
population, tatt = �tv and that this single value represents
the territory radius. It is interesting to note that an opti-
mal behaviour would require a high value for tatt (to get a
better chance to cope with predators with high sth, Fig. 4a’)
but a low value for �tv (to avoid over-stinging predators
with small sth, Fig. 4e’). This is indeed what we observe
in Fig. 4f ’: colonies defending a smaller area perform bet-
ter when confronted with weak predators, but lose more
bees when faced with resistant predators. Thus, defending
a large area seems to be an adaptation to predators that
are on average quite resistant, whereas defending a small
area is a better strategy when most predators can be easily
deterred.

Case study: European vs. African bees
The native range of the Western honeybee (Apis mel-
lifera) includes a wide variety of ecosystems [19]. As a
consequence, multiple subspecies exist that have adapted
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Table 1 Probability of stinging (ps) for percept vESC at the end of learning processes with the parameters specified that are analysed in
Fig. 4. Learning process #1 (triangles in Fig. 4) is used as a baseline for comparison

Parameters

Panel Process # sth k rf tatt �tv ps±std

a 1 (16,40) 1 0 0 10 0.005 ± 0.002

2 (16,40) 1 0 60 10 0.023 ± 0.011

b 1 (16,40) 1 0 0 10 0.005 ± 0.002

3 (16,40) 1 0.3 0 10 0.012 ± 0.006

4 (16,40) 1 0.6 0 10 0.024 ± 0.010

c 1 (16,40) 1 0 0 10 0.005 ± 0.002

5 (7,16) 1 0 0 10 0.018 ± 0.005

d 1 (16,40) 1 0 0 10 0.005 ± 0.002

6 (16,40) n-u 1 0 0 10 0.007 ± 0.003

e 1 (16,40) 1 0 0 10 0.005 ± 0.002

7 (16,40) 1 0 0 20 0.006 ± 0.002

f 8 (16,40) 1 0 10 10 0.007 ± 0.003

9 (16,40) 1 0 40 40 0.024 ± 0.014

Only one parameter (indicated in bold) is varied in each comparison. See main text for details. n-u non-uniform distribution

to local conditions. Among them, A. m. scutellata (which
we call here “African bees” for simplicity) are well known
for their fierce attacks, although most of the experimental
data was gathered on “Africanized” bees, a hybrid sub-
species which retained the defensive behaviour of their
African ascendants. When faced with a predator, these
bees recruit more bees, do so more quickly and are more
persistent [20, 21]. Part of the explanation could reside
in their higher sensitivity to the SAP, as shown in Fig. 5a
(data from [4]). It has been hypothesised that several traits
of African bees, including high defensiveness, evolved
in response to higher predation rates in the tropics
[24, 25]. From our model perspective, this would mean
fewer false alarms. African bees may also face specialised
predators such as ratels (Mellivora capensis [26–28]),
which are more difficult to deter. In our model, we trans-
late this into a higher range of sth for African bees than for
European bees.
We modelled two types of bee populations that differed

only with respect to these properties: frequency of false
alarms (rf ) and range of sth. Consistent with experimental
data, the populations which have learned to defend against
larger and more frequent predators develop a stronger
reaction to the pheromone. The higher frequency of
attacks in the African case drives the agents to react more
strongly at low concentrations. In addition, the proba-
bility of stinging remains high over a much larger range
of alarm pheromone concentrations due to the larger sth
interval (Fig. 5b). As a result, African populations are able
to survive attacks from very resistant predators, whereas
European populations would go nearly extinct (Fig. 5c).
These results support the hypothesis that the difference in

aggressiveness at low pheromone concentrations [4] is due
to higher attack rates in Africa. Furthermore, under the
assumption that African bees also encounter more resis-
tant predators, we observe that they keep stinging over
a broader range of alarm pheromone concentrations. It
would be interesting to test African(ized) bees at these
higher pheromone concentrations, as we did for European
bees, in order to verify this prediction.

Discussion
We use experimental and theoretical work to better
understand how the collective defensive behaviour of hon-
eybees is organised. We show that not only the presence,
but also the concentration of alarm pheromone provides
important information to individual bees. We explore the
meaning of this regulation of stinging behaviour by alarm
pheromone concentration via a relatively simple model
of collective defence and characterise the shaping role
of several environmental factors such as predation rate,
predator resistance and predator diversity.
The architecture of our agent’s decision-making process

is very simple: it only postulates that the agent can dis-
criminate between different concentrations of pheromone
and acts accordingly. Honeybees are capable of assess-
ing and even learning absolute odour concentrations [29];
hence, it would be tempting to see our model as a sim-
plified view of the processing being implemented by an
actual bee brain. However, we have to keep in mind that
our experimental results were obtained by testing each
bee only once and can thus be interpreted in another way:
the gradation in response could arise at the population
level, from varying thresholds of response between bees
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Fig. 5. Comparison of European and African(ized) honeybees. a Comparison of the aggressive score as a function of the alarm pheromone
concentration for Africanized (AHB, black triangles) and European (EHB, blue circles) honeybees. Experimental data modified from [4] (see the
“Comparison between Africanized and European bees” section). Stars indicate significant differences in responsiveness according to the original
paper (*p < 0.05, **p < 0.01). b Comparison of the learned probabilities of stinging between European and African populations, from modelling.
Shaded areas indicate the range of predators that European (blue, sth ∈ (15, 25)) and African (grey, sth ∈ (15, 70)) colonies faced during the learning
process. Average ± one standard deviation from 50 independently trained populations, at the end of a learning process with 105 trials. For clarity,
percepts for which the probability of stinging remains at the initialisation values (ps = 0.5) are not shown. Visual percept vESC: ps = 0.09 ± 0.01 for
EHB and ps = 0.05 ± 0.01 for AHB. Parameters: N = 200, γ = 0.003, k = 1, tatt = 0,�tv = 10, rEf = 0.6, rAf = 0.3. c Performance of each colony when
faced with predators of sizes sth = 20, 55, from modelling. European colonies go extinct when they encounter a predator that is more resistant than
the ones they faced during the learning process, whereas African colonies are able to survive

[30] (rather than within each individual bee). It is impor-
tant to note that both interpretations are valid within the
scope of our model, because our reward scheme is based
on the population response. In the first interpretation, the
internal structure of each agent could thus directly repre-
sent the decision-making process of a real bee, hard-wired
in the brain. In the alternative interpretation, the probabil-
ity of stinging would be more accurately described as the
proportion of bees with a stinging threshold lower than
the given alarm pheromone concentration, and hence, the
internal structure of the agents would rather represent
the decision process of an ersatz “average bee” given this
population structure. In this case, selection should act on
the mechanisms controlling this individual variability, to
ensure that an appropriate distribution of thresholds is
maintained across generations [31]. Further experiments
would be necessary to decide between these two interpre-
tations, for example by repeatedly testing individuals at
different concentrations.
Independently of this interpretation, our data suggests

that each individual has at least two internal thresholds:
one to start stinging and one to stop. This is consistent
with an anecdotal field observation that high concentra-
tions of alarm pheromone become repulsive to bees [7].
Indeed, without a stopping threshold, the dose-response
curve would only plateau at high concentrations instead
of decreasing as we observed. The ecological function of
this newly discovered second threshold, according to our

theoretical results, could be to avoid over-stinging (i.e.
stinging and chasing of a predator already in the process
of moving away from the colony). Alternatively, it could
be that these high concentrations are never reached in the
wild and hence that no adaptive response could evolve.
Of course, our model is by no means exhaustive: there

may be other environmental factors influencing the hon-
eybees’ defensive behaviour that we did not investigate.
We did try, however, to include themost common descrip-
tors of predation. It is also important to note that the
factors that we did include are sufficient to provide plausi-
ble explanations regarding the adaptive value of the alarm
pheromone dose-response curve. Moreover, each of these
factors only had a narrow effect on alarm pheromone
responsiveness, such that the features of the experimen-
tal curve could not be obtained in many different ways. As
a consequence, our model could successfully identify the
most pertinent factors.
Detailed ecological surveys of the interactions between

bees and predators are difficult to conduct, and indeed,
we could not find any quantitative information about
the prevalence of specific predators or about preda-
tion rates in a given environment. Our results could
serve as an alternative tool to gather information on
this topic. We provide an example of this using previ-
ously collected data comparing African(ized) and Euro-
pean bees and found that our model accurately predicted
the experimental data when considering that African bees
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were subjected to higher predation rates. Hence, mea-
suring alarm pheromone responses could inform about
the natural history and environment of given populations
where this knowledge is missing. Nonetheless, our results
should first be validated by gathering accurate field data
before they could be used in this way. From what we
already know, African bees defend a much larger area
around their nest [20]. According to our model, this strat-
egy is better suited to tackle resistant predators. Future
studies could also test this hypothesis by experimentally
measuring the SAP concentration at which individual
stinging responsiveness is maximum, since we found this
to be representative of the most resistant predator.
On the theoretical side, our model could be expanded

into a more fine-grained analysis of collective defence. For
example, it would be interesting to allow some hetero-
geneity between agents, since we know that at least two
types of bees participate in the defence: guards and sol-
diers [1]. Another interesting challenge would be to let
the agents learn about the optimal size of the territory
to defend (tatt and �tv). Finally and most importantly,
we believe that this agent-based modelling approach is an
exciting tool to study the evolution of collective behaviour
in general, which could be applied to other tasks and
species. For example, trail building and following in ants
is also a process that relies on pheromone accumula-
tion and in which individuals make decisions based on
pheromone concentration [32, 33]. It could be interest-
ing to adapt our framework to this alternative type of
collective decision-making.

Conclusions
Social insect colonies are often called “superorganisms”
because of how some tasks are distributed between colony
members, which is reminiscent of the different functions
of cells and organs in multi-cellular organisms. Under-
standing how such coordination is achieved and how
selection shaped the behavioural responses of individual
group members is a fascinating and complex question.
Here, we contribute to this field of research by combining
experimental work and a novel computational approach to
better comprehend the collective defensive behaviour of
honeybees. In particular, we focused on responsiveness to
the sting alarm pheromone, as this signalling mechanism
is at the core of the bees’ communication during a defen-
sive event. First, we show experimentally that the stinging
likelihood of individual bees varies depending on the con-
centration of SAP in the atmosphere. This response pat-
tern exhibits at least two phases: an initial, ramp-up phase
from low to intermediate concentrations of pheromone,
followed by a decrease at high concentrations. To inter-
pret these results, we built a relatively simple agent-based
model of the honeybee defensive behaviour. The novelty
of our approach resides in adapting Projective Simulation

to a group of agents with a common goal (and hence a
common reward scheme). We also added the constraint
that all agents inherit the same decision process, as this
better represents the heritability of aggressive traits across
generations. This agent model allowed us to explore the
impact of different evolutionary pressures on individ-
ual responsiveness to the alarm pheromone. From these
insights, we postulate that the existence of the first phase
(ramp-up) in SAP responsiveness results from a trade-off
between avoiding false alarms and quickly recruiting nest-
mates in the presence of real predators. The SAP intensity
at which the stinging probability peaks depends on the
most resistant predator in a given environment. Finally,
the decrease in stinging likelihood at high SAP concentra-
tions could be due to a self-limiting mechanism to avoid
unnecessary stings, or simply the consequence of a return
to baseline because such high concentrations are never
encountered in the wild, and hence no specific response
had the chance to evolve. Altogether, our work provides
new insights into the defensive behaviour of honeybees
and establishes PS as a promising tool to explore how
selection on a collective outcome drives the evolution of
individual responses.

Methods
Experimental material andmethods
Honeybees
The experiments were conducted at the University of
Konstanz, with honeybees (Apis mellifera) from freely for-
aging colonies hosted on the roof. The experiment in
which the alarm pheromone was obtained by pulling out
stingers (see the “Alarm pheromone” section below) was
conducted betweenMay and August 2018. Three colonies
contributed equally to this experiment (n = 252 bees per
colony, 756 bees in total). The experiment with synthetic
alarm pheromone was conducted in May/June 2019. The
bees were taken from 4 colonies (including one from 2018,
the other colonies were lost during the winter), again in
equal numbers (n = 96 bees per colony, 384 bees in total).
To catch the bees, a black ostrich feather was waved in
front of the hive entrance. The bees attacking the feather
(and thus involved in colony defence) were collected in a
plastic bag and cooled in ice for a few minutes, until they
stopped moving. They were then placed alone in a modi-
fied syringe with ad libitum sugar water (50% vol/vol) and
given at least 15 min to recover from the cold anaesthesia
before testing.
Alarm pheromone
The alarm pheromone of honeybees includes over 40
compounds [34, 35], making it difficult to synthesise.
Hence, in a first experiment, we pulled stingers out of
cold-anaesthetised bees to get the full alarm pheromone
blend. This manipulation was done as fast as possible and
just before the start of the trial. The stingers were placed
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on the dummy (the stinging target) to mimic other bees
stinging it before the start of the trial. The range of alarm
pheromone concentration was obtained by varying the
number of stingers: 0, 1, 2, 3, 5 or 7 stingers. A clean air
flow entered the arena from 3 holes on the sides, equally
spaced, and the arena lid was drilled with an array of
small holes to allow the air out. The advantage of pulling
stingers was to obtain the full odour blend, but the incon-
venience was that the concentrations we reached were
limited. To cope with this issue, we performed a second
set of tests in which we only used the main component of
the alarm pheromone, iso-amylacetate (IAA, Merck �).
IAA is sufficient to reproduce most of the action of the
full blend [36, 37]. In this case, IAA was diluted in min-
eral oil (Merck �) to a final concentration (vol/vol) of 0%
(control), 0.1%, 1%, 5%, 10%, 25%, 50% or 100% (pure). To
deliver the odour, 10μl of solution were put on a small
filter paper which was then placed inside the air flow
entering the arena. To verify that the odour concentration
was linearly correlated to either the number of stingers
or the dilution ratio, measurements were made inside the
arena with a photoionization detector (PID). The mea-
sures were taken every 0.01 s, and the data was smoothed
on a sliding 1 s (101 points) time window centred on each
point. The amplitude of the odour signal was then cal-
culated by subtracting the baseline (average of the 5 s
just before the stingers were inserted or the air flow was
started) from the peak value (average of the 5 s centred on
the maximum value reached). For tests with IAA, a single
measure was taken for each concentration. In tests with
stingers, the concentrations were close to the limit of the
PID sensitivity; hence, we repeated the measures 3 times
and averaged the results to increase reliability.

Stinging assay
The protocol for the stinging assay has been described in
detail in [6]. Briefly, the bee was introduced into a cylindri-
cal testing arena where it faced a rotating dummy coated
in black leather. The stinging behaviour was first scored
visually and defined by the bee adopting the characteris-
tic stinging posture: arched with the tip of the abdomen
pressed on the dummy. This was further confirmed at the
end of the trial by the presence of the stinger, embedded
in the leather.

Comparison between Africanized and European bees
It has been shown that Africanized bees are more sen-
sitive to SAP [4]. In this previous study, the responses
of caged honeybees to different concentrations of alarm
pheromone were classified into 5 categories according to
their intensity: “no response” (N), “weak response” (W),
“moderate response” (M), “strong response” (S) or “very
strong response” (V). To better visualise this data and to
be able to compare it to ourmodel results, we transformed

this data by calculating an “Aggressive score” (As) for each
alarm pheromone concentration and for each ecotype,
which was defined asAs = N×0+W×1+M×2+S×3+
V ×4, with each letter corresponding to the percentage of
reactions that fell into the corresponding category.

Theoretical model: Projective Simulation
Projective Simulation (PS) [18, 38–42] is a model for
artificial agency that combines a notion of episodic mem-
ory with a simple reinforcement learning mechanism.
It allows an agent to adapt its internal decision-making
processes and improve its performance in a given environ-
ment. PS has a transparent structure than can be analysed
and interpreted throughout the learning process. This fea-
ture is of particular importance in this work, since we
aim at explaining the experimentally observed individual
responses to certain stimuli.
In the context of behavioural biology, the model of PS

offers the possibility of enriching the description of the
entities’ sensorimotor abilities to get closer to the real
mechanisms, which can help gain new insight into phe-
nomena that too simplified or abstract models cannot
account for. Honeybees offer an interesting opportunity
for PS since they exhibit complex behaviours at both the
individual and the collective level despite their relatively
small brain. In addition, Projective Simulation can be
used to model collective behaviour [22, 43] by consider-
ing ensembles of PS agents that interact with each other.
In the present work, this interaction is determined by the
olfactory perception of the pheromone that bees release
when stinging. The fact that each agent has an individ-
ual deliberation process allows us not only to explain the
experimental results but also to study how the individ-
ual responses to alarm pheromone are combined into an
appropriate defensive reaction for the colony.
In this section, we describe the general features of Pro-

jective Simulation and we further specify how we model
the scenario of colony defence in the “Details of the model
I: the bee and the learning process” and “Details of the
model II: the predator” sections.
The individual interaction of a PS agent with its sur-

roundings starts with the agent perceiving some input
information, which triggers a deliberation process that
ends with the agent performing a certain action. The
deliberation process is carried out by the main inter-
nal structure of the agent — called episodic and com-
positional memory (ECM) [18] —, which is a network
consisting of nodes, termed clips, connected by edges.
Clips represent snippets (or “episodes”) of the agent’s
experience and can encode information from basic per-
cepts, like a colour or an odour, to compositions of short
sequences of sensory information. Each clip is connected
to its neighbouring clips by directed, weighted edges. The
weights, termed h values, are stored in the so-called h



López-Incera et al. BMC Biology          (2021) 19:106 Page 12 of 16

matrix and in turn determine the transition probability
from one clip to another. The deliberation process is thus
modelled as a random walk through the clip network.
The ECM has a flexible structure that may consist of sev-
eral layers and that can change over time by, for instance,
the creation of new clips and their addition to the exist-
ing network (see e.g. [41]). However, for the purpose of
this work, it is sufficient to consider the basic two-layered
structure (see Fig. 2), where one layer of percept-clips (or
just “percepts”, for brevity) encodes the perceptual infor-
mation that the agent gets from its surroundings, and
another layer of action-clips (or just “actions”) encodes the
information about the possible actions the agent can take.
The interaction round of an individual PS agent goes

as follows: first, it perceives certain input information
that activates the corresponding percept-clip in the ECM,
which triggers a random walk through the network that
ends when an action-clip, and subsequently its corre-
sponding actuator, are activated, leading the agent to actu-
ally perform the action. Therefore, the final action that the
agent will execute depends on the transition probabilities
from clip to clip in the ECM, which are determined by the
h values as,

pij = hij
∑

k hik
, (1)

where the transition probability from clip i to clip j, pij,
is given by the weight hij of the edge that connects them,
normalised over all the possible outgoing transitions to
clips k connected to i. In this work, we consider the two-
layered PS, where each percept clip is only connected to all
the action clips, so pij is simply the transition probability
from percept i to action j.
A reinforcement learning mechanism can be imple-

mented by updating the h values at the end of an inter-
action round. If the agent’s choice is good, it receives
a reward R that increases the h value of the traversed
percept-action edge, so that the agent has higher prob-
ability of performing that action the next time the same
percept clip is activated. At the beginning of the learn-
ing process, we consider that the agent chooses one of the
possible actions at random. Therefore, all edges are ini-
tialised with the same h value, h(0)

ij = 1, which leads to a
uniform probability distribution over the actions. In addi-
tion to an increase of the edge weights throughout the
learning process, noise can be added by introducing a for-
getting parameter γ (0 ≤ γ < 1) that quantifies how
much the h values are damped towards their initial value.
This can be interpreted as the agent forgetting part of its
past experience. The specific update rule at the end of
the interaction round for an edge connecting percept i to
action j has the form,

h(t+1)
ij ←− h(t)

ij − γ (h(t)
ij − h(0)

ij ) + R, (2)

where h(t)
ij denotes the current h value, h(0)

ij the initialised
h value at the beginning of the learning process and R ≥ 0
the reward. If the transition from percept i to action j is
rewarded, then R has a value R > 0, whereas if it is not
rewarded, R = 0 and the edge weight is only damped.
Note that this update rule increases the h value at the
end of each interaction round, depending on whether a
reward is given for that round. If one considers a scenario
where the agent interacts for several rounds and only gets
a reward at the end of the last one, then only the percept-
action edge that is traversed in that round is enhanced. In
order to reinforce all the percept-action pairs that led to
a reward, a mechanism called glow is introduced as part
of the model. The idea is to keep track of which edges are
traversed during the interaction rounds before the reward
is given. To do so, once an edge is traversed, a certain level
of excitation or “glow” is associated to it with the effect
that, when the next reward is given, all the “glowing” edges
are enhanced in proportion to their glow level. The glow
for each edge i → j is stored in the element gij of the so-
called glow matrix g, and the update rule of Eq. (2) takes
the form,

h(t+1)
ij ←− h(t)

ij − γ (h(t)
ij − h(0)

ij ) + gijR. (3)

Therefore, if that edge is glowing (gij = 1) at the end of
the interaction round where the reward is given, it will
be enhanced. For the purpose of this work, it is suffi-
cient for the reader to consider that edges get a glow value
gij = 1 if they are traversed and gij = 0 if they are not. For
more details on how to assign and update glow values in
different scenarios, we refer the reader to [38].
So far, we have described the main processes that a

single PS agent carries out when interacting with its sur-
roundings and learning via reinforcement. In this work,
we model a scenario with an ensemble of PS agents, each
of which has its own deliberation process and makes deci-
sions independently from the rest of the ensemble. The
precise details of how the agents interact with each other
and how the collective performance is evaluated are given
in the “Details of the model I: the bee and the learn-
ing process” section. There are a few remarks still to be
made regarding the learning process of such an ensemble
and its interpretation from a biological point of view. In
this work, we do not assume that the individual biologi-
cal entities have the capacity to learn, but we consider the
learning process from an evolutionary perspective. Hence,
the improvement of the collective performance of the
ensemble of agents throughout the learning process can
be interpreted as the adaptation of a given species to cer-
tain pressures throughout its entire evolutionary history.
In the context of reinforcement learning, the selection
pressure is encoded in the reward function, in such a way
that we can test hypotheses about which environmental
factors may have influenced the resultant behaviour we
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currently observe in the real organisms. In this view, the
forgetting parameter would capture one aspect of genetic
drift.

Details of the model I: the bee and the learning process
We consider a population of N bees, where each bee
is modelled as a PS agent that perceives, decides, acts
and learns according to the model explained in the pre-
vious section. Unless specified otherwise, we always use
N = 100. The population is confronted with the pres-
sure of a predator that attacks the colony and kills agents
until it is scared away, i.e. until it is stung a certain number
of times. In this section, we describe how we model the
colony and the learning process. We give further details
on the model of the predator in the “Details of the model
II: the predator” section.
Honeybees release an alarm pheromone when their

stinger is exposed, which allows them to alert and recruit
nearby bees into a collective defensive response. Since we
are interested in explaining the experimentally observed
response of bees to the sting alarm pheromone, we con-
sider that the agents decide whether to sting or not based
on the pheromone concentration they perceive. The alarm
pheromone concentration is discretised in our model and
it increases by one unit every time an agent decides to
sting. This is the only mechanism for SAP release that we
consider. The honeybee SAP disperses very fast when the
stinger is extruded [1], so we considered this increase to be
immediate. In addition, this pheromone has been shown
to accumulate within the time-frame relevant for an attack
[44]. Hence, the minimum concentration is 0 units, when
no agent stings, and the maximum is N units, if all agents
sting. Note that each agent can only sting once, like a real
bee (when a bee stings an animal with elastic skin such
as a mammal or bird, its stinger remains hooked into the
predator thanks to its barbs, and tears loose from the bee’s
abdomen).
In order to define the structure of the ECM and the

percepts of the PS model, we group the range of N
pheromone units into bins of logarithmic size, where each
bin corresponds to one percept (see Fig. 3). There are
two reasons for this choice, exposed thereafter. Nonethe-
less, we also explored other types of binning, as presented
in Additional file 2. First, the logarithmic sensing implies
that the agents are able to resolve with high precision
low values of pheromone concentration but that preci-
sion decreases as the concentration increases. On the one
hand, with a range of pheromone units extending to N ∼
102, it is plausible to assume that the agent can distin-
guish between 0 and 1 pheromone units but a change by 1
pheromone unit becomes harder to sense when the con-
centration is of the order of e.g. 30 units. Furthermore,
several species of animals present a logarithmic relation-
ship between the stimuli and their perception, as it is

the case for instance with human perception, which is
quantified by the Weber-Fechner law. The second rea-
son for this choice is related to the structure of the PS
agents’ interaction. We consider the collective interaction
to be sequential, i.e. the agents perceive, decide and act
one after the other until all of the N agents have made
their decision and acted. This a priori artificial condition
becomes more realistic with the logarithmic binning since
several agents perceive the same percept and hence act
based on the same input information, which is effectively
as if they would react in parallel. An illustrative example
of the sequential interaction, named trial, is given in Fig. 3.
Each trial is always a defensive event that is triggered by
an unspecified disturbance outside the nest. Each of the
agents decides only once whether to sting or not; hence,
the trial comprises N time steps, where a “time step” is
defined to be the decision time of one agent.
Since we want to model a situation as close as possible

to the experimental one, we assume that our agents also
have a visual perception of the predator during the whole
process (the bees see a rotating dummy, as explained in
the “Experimental material and methods” section). As in
the experimental setup, we consider that this visual per-
ception remains unchanged while the agent perceives the
increase in the pheromone concentration (percepts 0 to
8, see Fig. 3). However, in our model, we add an addi-
tional percept (labelled as vESC in Fig. 3) that is activated
when the visual perception of the predator changes and
the agents see that the predator is already escaping and is
no longer a threat to the colony. In this case, we assume
that the visual input overrides the olfactory one so that
the agents decide based on the visual information only.
This is consistent with reports that show that while the
alarm pheromone recruits bees to the location of the dis-
turbance, a moving visual stimulus is then necessary to
release the stinging behaviour [45]. In order to study the
interplay between the visual and the olfactory information
and their influence on the self-limitation of the stinging
response, we consider the percept vESC to not be activated
immediately after the predator stops attacking, but after
some time delay�tv. This time delay is more realistic than
an immediate cut-off: it corresponds to the time needed
for the bees to perceive that the predator is retreating. In
addition, the predator may need time to move outside of
the perimeter defended by the resident bees.
In order to avoid unnecessary losses, we could expect

the agents to learn to stop stinging already during the
interval �tv, based on the pheromone concentration (i.e.
on the number of bees that already stung, which may be
sufficient to deter any predator). We can thus analyse the
two extreme cases with �tv = 0 and �tv = ∞, which
correspond respectively to when bees are able to imme-
diately distinguish that the predator is leaving (�tv = 0)
or to when they completely ignore this visual cue (�tv =
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∞). In the former case, we expect no self-limiting mech-
anism to develop, since the end of the attack is always
immediately signalled by the visual stimulus. In the latter
scenario however, unusually high alarm pheromone con-
centrations may start playing the role of this “stop signal”.
Note that in the experimental setup the dummy is always
rotating; hence, the bees’ reactions are modulated by the
pheromone level exclusively.
With respect to the learning process, the performance

of the population is evaluated at the end of one sequen-
tial interaction (or trial) and the individuals are rewarded
or not depending on the final state of the colony. Thus,
the agents’ ECMs do not change during the trial. At the
end of it, a reward that is proportional to the number of
surviving agents is given and the ECMs of the agents are
updated accordingly. Importantly, the same h matrix is
used for every agent of the population. The reason for this
choice is that genetic mixing during reproduction means
that, effectively, the average individual responses to the
alarm pheromone are transmitted to the next generation
[46]. One could easily imagine that a scenario in which
certain agents always sting while others never do may lead
to a viable collective strategy, but such a population struc-
ture could not be stably maintained across generations.
As explained in the “Theoretical model: Projective Simu-
lation” section, the update rule of Eq. (3), now given in
matrix form, reads,

h(t+1) = h(t) − γ
(
h(t) − h(0)

)
+ gR. (4)

where h(t) is the h matrix at the current trial and h(0)

denotes the initial h matrix (a 2 × 10 matrix with ones
in all its entries). Note that agents start with a probabil-
ity of stinging ps = 0.5 for all the percepts. The already
learned responses are damped by a factor γ at the end of
each trial. The influence of this parameter on the learning
process is further studied in Additional file 2. In this work,
we adapt the notion of a glow matrix g presented in the
“Theoretical model: Projective Simulation” section to take
into account the choices of all agents and distribute the
reward depending not on the individual performance but
on the collective one. We remark that the learning pro-
cess is, in our case, interpreted as the evolutionary history
of honeybees. Therefore, even though there exist fluc-
tuations at the individual level, we are interested in the
average effect on the population. From this perspective,
we consider a glow matrix g that stores how many agents
chose an action given a certain percept. In the example of
Fig. 3, the second column of g — the one corresponding
to percept 1 — in that trial is (9,3), which indicates that 9
agents decided not to sting and 3 decided to sting. If the
population is rewarded at the end of the trial, the individ-
ual responses that lead to a good collective performance
are enhanced. For instance, if the optimal defence is that

all the bees sting from the beginning, the individual prob-
ability of stinging for low pheromone concentrations will
converge to a high value.
As to the reward, it is determined by the percentage of

bees that remain alive at the end of the trial,

R = a
N
, (5)

where a denotes the number of live bees. This number
is evaluated at the end of each trial, by subtracting the
number of dead bees from the total number of agents N.
Bees die after stinging (s) or because they are killed by the
predator (q),

a = N − s − q. (6)

Note that the number of agents does not change during
the trial (all N agents get to decide and act, bees killed
by the predator are only counted at the end of the trial).
This choice of reward system reflects the fact that honey-
bee colonies with a larger workforce are more successful
ecologically: they have a better chance of surviving winter
[47], and most importantly, they are more likely to be able
to invest in reproduction in spring [48]. The reward func-
tion presented here is linear. We also explored a different
scaling of this linear function and non-linear functions,
and the results are included in Additional file 3: Figure S3.
In the simulations reported here, the entire learning

process consists of 80,000 trials, which is sufficient for the
population to converge to a stable behaviour.
We remark that the learning processes that the popula-

tions of PS agents undergo are interpreted as processes of
adaptation to given evolutionary pressures. In this work,
we focus on the defence behaviour against predators, so,
by changing the parameters of our predator model, we
are effectively testing how different pressures affect the
final behaviour. This allows us to analyse possible causal
explanations for the responses observed in present-day
real bees.

Details of the model II: the predator
The predator has an active role in our model, since it
attacks the hive and kills bees at a given killing rate of k
bees per time step (for an exploration of the role of this
parameter, see Additional file 3: Figure S4). Therefore, the
colony needs to build up the defence as fast as possible
to reduce the number of bees killed by the predator. Of
particular importance is the time needed for the bees to
detect the presence of the predator, which we parametrise
as the time step at which the predator starts its attack
tatt (see Fig. 3). A low value for this parameter simulates
cases in which the predator is only detected close to the
colony and hence starts killing bees quickly. At the oppo-
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site, a high value for tatt represents an early detection by
the bees, when they have more time to fly out and build
up the defensive response before the predator reaches the
nest itself.
The predator stops killing bees when the number of

total stings reaches a threshold sth. By changing this
parameter, we model the type of predator that the colony
may encounter. As an example, one may consider that
small predators such as mice can be killed or scared away
with fewer stings than bigger or thick-skinned animals like
bears and honey badgers. Thus, different sth can be inter-
preted as differences in the predator’s resistance to bee
stings.
In the wild, bees regularly encounter a wide variety of

predators, and they need to be able to cope with all of
them. We model this situation by introducing a range of
sth. Instead of being faced with only one type of preda-
tor (same sth in all trials), the colony is attacked by a
predator with a different sth for different trials, which is
chosen from a uniform distribution over a certain range.
Therefore, the parameter sth gives us the flexibility to
model different environmental conditions. For instance,
we can model colonies of bees that are usually attacked
by small/less resistant predators and observe the defen-
sive strategy that they adopt. We can then study how they
respond when suddenly faced with bigger/more resilient
predators, thus mimicking their introduction into a novel
environment.
Since the agents can only develop one strategy (i.e. a set

of probabilities of stinging for the various percepts) per
learning process, they have to optimise it to accommo-
date the whole range of sth. Note that the activation of
the visual percept vESC — which happens when the visual
information changes and the predator is seen leaving —
allows them to stop the defence behaviour at different
points of the trial depending on the specific sth of each
predator. In particular, percept vESC is activated after �tv
time steps from the point where the number of stings
reaches the corresponding sth.
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