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Abstract: The widespread adoption of smartphones and the new-generation wireless networks
have changed the way that people interact among themselves and with their environment. The use
of messaging platforms, such as WhatsApp, has become deeply ingrained in peoples’ lives, and many
digital services have started to be delivered using these communication channels. In this work, we
propose a new OAuth grant type to be used when the interaction between the resource owner and
the client takes place through a messaging platform. This new grant type firstly allows the autho-
rization server to be sure that no Man-in-the-Middle risk exists between the resource owner and the
client before issuing an access token. Secondly, it allows the authorization server to interact with
the resource owner through the same user-agent already being used to interact with the client, i.e.,
the messaging platform, which is expected to improve the overall user experience of the authorization
process. To verify this assumption, we conducted a usability study in which subjects were required
to perform the full authorization process using both the standard authorization code grant type
(through a web-browser) and the new grant type defined in this work. They have also been required
to fill in a small questionnaire including some demographic information and their impressions about
both authorization flows. The results suggest that the proposed grant type eases the authorization
process in most cases.

Keywords: access control; authorization; messaging platforms; OAuth; virtual assistants

1. Introduction

The way users interact among themselves and with their environment is constantly
changing, and the delivery of digital services continuously evolves to keep pace with these
changes. The use of virtual assistants has recently revolutionized the service-delivery
paradigm. These assistants interact with users through multiple interfaces (smart speakers,
messaging platforms, etc.) providing different kinds of services ranging from simple infor-
mation enquiries (e.g., the forecast or the air pollution) to more complex operations, such as
route optimization or patient follow-up management [1]. As occurs with traditional web ap-
plications, virtual assistants might eventually need access to some private information held
by a third-party service provider (e.g., the real-time traffic state information) to perform
some operations on the user’s behalf. Service providers will require users to authenticate
themselves and authorize the virtual assistant to access their remote accounts [2–4].

Access to this information is usually provided through Web Application Programing
Interfaces (Web-APIs) designed for this purpose [5], while transactions with these kinds
of API rely on Hypertext Transfer Protocol (HTTP) for message exchange. Security of
Web-APIs usually relies on the Open Authorization (OAuth) 2.0 framework [6,7]. This
framework defines a scenario composed of four actors: the end-user, the resource server,
the client, and the authorization server. In this scenario, the end-user asks the client to
perform some operation on his behalf so that the client requires access to some user’s
protected resource stored at the resource server to complete the requested operation. The
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authorization server arbitrates the access to the protected resource, ensuring that the end-
user has sufficient rights to access the requested resource and that the client has been
authorized to act on the end-user’s behalf. In this context, OAuth includes all the required
elements to empower the end-user, allowing him to authorize the client to act on his behalf,
without having to show his credentials. Among other things, it defines a protocol (grant
type) that allows the authorization server to directly interact with the resource owner, thus
verifying his identity and gathering his consent to let the client act on his behalf. This grant
type was designed with a concrete type of client profile in mind, that is, web-applications
that are served by a web server and accessed by end-users using a web-browser as user-
agent. Thus, this grant type was conveniently designed so that the interaction between
the resource owner and the authorization server could be performed through the same
interface (user-agent) that the resource owner was already using to access the client, i.e., a
web browser.

When communication channels other than web-browsers are used for the interaction
between the end-user and the client, such as messaging platforms, the underlying autho-
rization problem is essentially the same (providing the end-user with a reliable method to
express his intention of authorizing the client to act on his behalf), but some considerations
must be taken into account. These considerations include two aspects: dealing with security
issues and usability aspects derived from changes in the scenario. The contributions of this
paper are as follows:

• We propose a new OAuth grant type to be used when the interaction between the client
and the resource owner is done through a messaging platform. Unlike the standard
OAuth authorization code grant type, it allows the authorization server to ensure that
no Man-in-the-Middle (MitM) risk exists between the resource owner and the client
before issuing the access token so that no user’s private information is exposed to a
potential attacker. This new grant type has been designed to allow the authorization
server to interact with the resource owner using the same communication that he was
already using with the client, the messaging platform.

• We conducted a usability test to verify that gathering the user consent using the
proposed grant type results in a better overall user experience of the authorization
process.

The rest of this paper is organized as follows. In Section 2, we describe the access-
control background. Section 3 shows the proposed grant type. Section 4 presents a security
analysis, while Section 5 describes the usability study. Section 6 discusses the results
obtained. Finally, the conclusions and future work can be found in Section 7.

2. Background
2.1. OAuth 2.0 Framework

OAuth 2.0 is currently the standard framework for authorization. It defines a base
scenario composed of four actors: the end-user, the resource server, the client, and the
authorization server. The end-user is an entity capable of granting access to a protected
resource that is stored in the resource server. The client is an application that requires
access to the protected resource to perform some action on behalf of the end-user and
with his consent, while the authorization server arbitrates the access to the protected
resource by means of two endpoints: the authorize endpoint and the token endpoint.
When the client requires access (on behalf of the end-user) to the protected resource, it
sends an authorization request (A) to the authorize endpoint so that the authorization
server can directly interact with the end-user, authenticating him and gathering his consent
to authorize the client to act on his behalf. If the end-user authorizes the client to act
on his behalf, the authorization server sends an authorization code in the authorization
response to the client (B). The client exchanges the code obtained for an access token at
the token endpoint of the authorization server, sending the code in the token request (C)
and receiving the access token in the body of the token response (D). Requests to the token
endpoint must include the client credentials whenever client authentication is required.
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Finally, the client can use the obtained access token to access the protected resource at
the resource server. The standard defines a protocol based on HTTP redirections (see
Figure 1) so that the authorization server can directly interact with the end-user. In this
flow, information is passed from the client to the authorization server encoded as query
parameters in the URL when redirecting the end-user.

Figure 1. OAuth 2.0 Authorization code grant type.

2.2. TextSecure Security

Most messaging platforms, such as Signal, WhatsApp, Facebook Messenger, or Skype,
rely on the TextSecure protocol [8] to provide security to users’ conversations. This protocol
provides end-to-end encryption between communication peers so that no eavesdropper is
able to see the content of exchanged messages. To that end, it relies on a public key scheme
where each user-agent (i.e., application installed in the user’s device) generates its own key
pair (public and private keys) at the time of installation. This key pair is further used to
generate session keys that are used to encrypt the conversation.

However, there is no way for a party to be sure a priori that a given public key belongs
to his communication peer. A MitM attacker would be able to modify messages exchanged
at the start of a conversation, tricking parties into believing that his own public key (the
attacker one) belongs to the other communication peer, developing the attack. This is
addressed by the so-called authentication ceremony, which consists of comparing parties’
public keys using an out-of-band channel, thus preventing this risk. In current messaging
platforms, it can be done by comparing a safety number (which is really a concatenation of
both users’ public key fingerprint) or scanning a QR code.

2.3. Problem Definition

In this work, we will focus on a scenario (see Figure 2) in which an end-user is using
a messaging platform to access a remote service provided by the client. The end-user
requires to authorize (in an OAuth sense) the client to access, on his behalf, some protected
resource held by the resource server.

Currently, if the client needs to access a resource stored at the resource server and this
access has been secured using the OAuth framework, the client’s best attempt to obtain the
user consent consists in sending a link to the user as a normal message in the conversation
pointing to the authorize endpoint of the authorization server with the required parameters
(the same URL to which the user would be redirected if the communication between the
user and client were through a web-browser). The user must follow this link and continue
the interaction through the web-browser to authorize the client to access his protected
resource. Once the client obtains the required access token, the client will again interact
with the user through the messaging platform so that he must return from the web-browser
to this platform. Switching from the messaging platform to the web-browser and back may
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hamper the usability of the system, making users reluctant to use new communication
channels to consume services.

Figure 2. Reference scenario. End-user authorizes the client to access his resources at the resource
server on his behalf.

Given the construction of the TextSecure protocol, a MitM attacker could be placed
between the user and the client, inevitably seeing all the private information being ex-
changed between both. Even worse, this attacker would be able to modify the link sent by
the client (to start the authorization process) so that it will point to a fake website owned
by the attacker pretending to be the authorization server. In such a situation, the attacker
would be able to trick the user into introducing his private credentials at the fake site,
making them available to the attacker. This MitM threat could be simply prevented by
the authentication ceremony (as stated in Section 2.2). However, users must complete
the authentication ceremony with every single client they want to interact with, which
would hamper the user experience. Studies point out that most users do not complete
the authentication ceremony even to exchange sensitive information, such as credit cards
numbers [9–11], and the worst part is that the authorization server, which is the custodian
of the users’ data privacy, has no way of ensuring that the authentication ceremony has
been completed between them before issuing an access token.

3. Proposed Authorization Protocol

In this section, we detail the proposed grant type (see Figure 3). It was designed to be
used with client profiles that use messaging platforms as user-agents to deliver services.
In this new grant type, the authorization server is able to interact with the end-user using
the same interface (user-agent) that he is already using to interact with the client, i.e.,
the messaging platform. Messaging platforms do not support any kind of redirection
mechanism, which is crucial in the Authorization Code grant type defined by the OAuth
standard. These redirections have a double function: to allow the client to pass the required
information to the authorization server (and the other way) and to allow the authorization
server to directly interact with the end-user (to ask them for their consent). As can be seen
in Figure 3, our protocol substitutes those redirections with direct HTTP communication
between the client and the authorization server (to pass the required information), while
the direct communication between the authorization server and the end-user is enabled
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thanks to the inclusion of two new parameters (platform and id) at the authorization
request as explained below.

Figure 3. Proposed grant type to authorize third-party applications served through messaging
platforms. Blue arrows represent HTTP messages, while orange arrows represent communications
through the messaging platform.

The proposed protocol also integrates the security-related aspects as a part of the
protocol. The authorization server is also allowed to complete the authorization process
securely without relying on the authentication ceremony between the user and the client. It
is also able to guarantee that no MitM risk exists before letting the client obtain any private
information.

3.1. Prerequisites

Since the resource owner will interact with the authorization server using a messaging
platform, some prerequisites are needed before the proposed grant type can be used. There
are two main prerequisites: obtaining the user identifier (id) on a specific platform and
completing the authentication ceremony on this platform (as shown in Section 2.2). This
must be done using an out-of-band channel and would typically be performed at the time
the user registers himself at the authorization server using its web interface. Note that
an authorization server may support several messaging platforms. In that case, the user
would firstly be asked to select which platform is going to be registered. On the other hand,
the same user may register himself on several platforms.

Most messaging platforms currently support two ways of completing the authenti-
cation ceremony: by comparing a safety number or by scanning a QR code. We present
three different ways of doing this. The first way is asking the user to manually write the
safety number in a text box. The second way, which is appropriate when the registration is
being done from a different device from that where the messaging application is installed
(i.e., a laptop), is asking the user to show the pairing QR code to the webcam of the device
where the registration is taking place. The third way, which is appropriate when the regis-
tration is being done from the same device that has the messaging application installed (i.e.,
a smartphone), is asking the user to take a snapshot of the pairing QR code and upload it
to the authorization server.
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3.2. Authorization Request

When the client application requires access to a protected resource, it sends a request
to the authorize endpoint of the authorization server, including the following parameters
using the “application/x-www-form-urlencoded” format with a character encoding of
UTF-8 in the HTTP request entity body:

platform
REQUIRED. The concrete messaging platform the user is interacting
with (e.g., WhatsApp, Signal).

id
REQUIRED. The user identifier in the messaging platform (e.g., phone
number).

key_fingerprint
REQUIRED. Fingerprint of the long-term identity public key.

client_id
REQUIRED. A string uniquely identifying the client.

redirect_uri
OPTIONAL. A URI to redirect the user back after the authorization.

scope
OPTIONAL. A string describing the access rights requested by the
client.

state
RECOMMENDED. An opaque value used by the client to maintain
state between the request and callback.

Among these parameters, there are some defined in the standard (client_id, redi-
rect_uri, scope, and state) and others defined specifically for this grant type (platform, id, and
key_fingerprint). The platform parameter is used to determine which specific messaging
platform the resource owner is using to interact with the client (e.g., WhatsApp, Signal),
and the id is the identifier of the resource owner at this platform (e.g., the user’s phone
number). These parameters are required to allow the authorization server to contact the
resource owner since his identity is a priori unknown. The key_fingerprint is the fingerprint
of what the client believes to be the end-user’s public key. It is included to allow the
authorization server to ensure that no MitM attack between the client and the end-user is
taking place before issuing the access token even if the authentication ceremony between
them has not been completed.

3.3. Authorization Request Processing

When the authorization server receives this request, it is validated, ensuring that all
the required parameters are present and valid. Then, the authorization server verifies that
the received combination of platform and id has previously been registered for any user. If
so, the key_fingerprint received from the client is verified to ensure that it is the same as that
shown to the authorization server (the fingerprint of what is currently being shown to the
authorization server as the end-user’s public key). They are also compared to be the same as
that stored as a result of the authentication ceremony performed as explained in Section 3.1
(the fingerprint of the actual end-user’s public key). If everything goes as expected, the
authorization server acknowledges the received request, sending a 200 OK response to
the client. Otherwise, the authorization server quickly rejects the authorization, sending a
400 Bad Requests message, including the error response parameters (error, error_description,
error_uri, and state) in the response body as defined in the standard. If the provided
combination of id and platform has not been registered previously by any user, the error
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parameter is set to “access_denied”. If the public key fingerprint sent by the client does not
match the one registered in the authorization server for that combination of id and platform,
the authorization server returns the error parameter set as “public_key_not_match”. It can
be used by the client to inform the resource owner about a possible MitM attack and abort
the communication when considered necessary.

At this point, the authorization server can already contact the resource owner at the
platform and id specified by the client. In this interaction, the authorization server may
ask the user for some extra authentication information, like a one-time password (OTP) or
some voice biometrics, or simply rely on the possession of the device where the messaging
application is running (i.e., the possession of the complementary private key of the public
key that was associated to a specific user during the authentication ceremony at the time of
registration). Once the user identity has been verified, the authorization server evaluates
the access control policies as it normally does (the specific policy evaluation method lies
outside the scope of the OAuth standard). If everything goes as expected, the authorization
server contacts the resource owner again to inform him the client application is requesting
access to a resource on his behalf and asks him to authorize the client to complete this
operation.

3.4. Authorization Response

Once the authorization server has obtained the resource owner’s consent, it sends the
authorization response to the client endpoint specified at the time of client registration
or in the authorization request by the redirect_uri parameter. This response includes the
following parameters in the HTTP request entity-body using the “application/x-www-
form-urlencoded” format with a character encoding of UTF-8.

code
REQUIRED. The authorization code generated by the authorization server.

state
REQUIRED if the “state” parameter was included in the client authorization
request. The exact value received from the client.

If the resource owner’s consent cannot be obtained, the parameters included in the
response are those defined in the error response (error, error_description, error_uri, and
state), setting the error parameter as “access_denied”. Independently of the result of
the authorization and the parameters included in the authorization response, the client
acknowledges the reception of the authorization response, sending a 200 OK response.

3.5. Obtaining Access Token

Finally, if the client has obtained a valid authorization code, it is exchanged for an
access token in the token endpoint of the authorization server using the token request and
token response defined in the standard, authenticating the client when required. Once the
client application has obtained the access token, it can obtain the required resource from
the resource server, authorizing the operation with the access token.

4. Security Analysis

In this section, we analyze the security provided by the proposed authorization flow.
First, we show how this method allows the authorization server to prevent the existence of
a MitM between the end-user and any client, only requiring that the authentication cere-
mony between the end-user and the authorization server has previously been completed.
Secondly, we analyze the degree of security of the proposed method in the face of known
attacks against OAuth. Other threat models (e.g., Denial of Service or eavesdropping) have
not been considered in this section, as they are out of the scope of the manuscript.
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4.1. MitM Attacker

All the trust in the TextSecure protocol is based on asymmetric cryptography. Each
participant generates its own key pair (a public key, K+

x , and a private key, K−
x ) that is used

in the generation of all the subsequent cryptographic material required to encrypt and
sign all messages exchanged during the conversation. Thus, a MitM attacker has to cheat
both communication ends to make one communication end think that the attacker’s public
key (K+

e ) actually belongs to the other communication end [12]. In the scenario shown in
Figure 4, the user has been cheated into thinking that the attacker’s public key (K+

e ) really
belongs to the client. In the same way, the client has been cheated into thinking that the
attacker’s public key (K+

e ) really belongs to the user. Finally, the user can be sure that what
he believes to be the authorization server’s public key (K+

as) belongs to the authorization
server and, in turn, the authorization server can be sure that what it believes to be the user’s
public key (K+

u ) really belongs to the user thanks to having completed the authentication
ceremony (which is a prerequisite of the proposed protocol).

Figure 4. Man-in-the-Middle prevention showcase using the proposed grant type.

In such a scenario, the MitM would be able to see and modify messages exchanged
between the end-user and the client, while the authorization server has no way of detecting
his presence if no additional measures are applied. The use of the key_fingerprint parameter
in the authorization request of the proposed protocol is intended to sort out this situation.
When the client starts the authorization process, the fingerprint of the attacker’s public
key (K+

e ) is included in the request, since the client has been cheated into thinking that this
public key actually belongs to the end-user. When the authorization server receives the
authorization request, it is able to compare the fingerprint of the received public key (K+

e )
with the fingerprint of the public key that it has stored for the end-user (K+

u ) as a result of
the authentication ceremony. Any time that a MitM appears between the end-user and the
client, the public key fingerprints will not match, and the authorization server would be
able to detect its presence before issuing any access token.
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4.2. Security against Known Attacks

In this section, we compare the security provided by the standard authorization code
grant type through a web browser as suggested in Section 2.3 (method A hereafter) with the
new grant type proposed in Section 3 (method B hereafter). To that end, we analyze how
attacks described in [13] affect these solutions or not, considering the five attacker models
defined in [13] and the MitM attacker presented previously (Section 4.1). We classify these
attacks in three groups. The first group includes attacks that do not depend on the grant
type flow but are related with other architectural aspects of the OAuth framework. These
attacks include Access Token Leakage at the Resource Server, TLS Terminating Reverse
Proxies, Refresh Token Protection, and Client Impersonating Resource Owner. Attacks in
this group affect both methods as they are independent of the specific grant type, and its
countermeasures should always be applied. The second group includes those attacks that
are exploited taking advantage of the HTTP redirection mechanism (used in the original
OAuth Authorization Code grant type to move the user from the client to the authorization
server and back) or any feature related with the web-browser (like the browser history).
Thus, they would affect method A but would not affect method B, at least in its current
form, as the proposed method does not rely on any HTTP redirection nor the use of a
web-browser. This group includes Credential Leakage via Referer Headers, Credential
Leakage via Browser History, Authorization Code Injection, Access Token Injection, Cross
Site Request Forgery, Open Redirection, and Clickjacking. Finally, attacks in the third
group, which are the most interesting for us, affect both methods in different ways and are
analyzed more carefully below. These attacks are Insufficient Redirect URI Validation and
Mix-Up Attacks. Table 1 summarizes this information.

Table 1. Exposure of methods A and B to attacks defined in [13]. Attacks in the first, second, and
third groups are written in yellow, green, and red, respectively.

Attack Vector A B

4.1. Insufficient Redirect URI Validation Yes Yes *
4.2. Credential Leakage via Referer Headers Yes No
4.3. Credential Leakage via Browser History Yes No
4.4. Mix-Up Attacks Yes Yes *
4.5. Authorization Code Injection Yes No
4.6. Access Token Injection Yes No
4.7. Cross Site Request Forgery Yes No
4.8. Access Token Leakage at the Resource Server Yes Yes
4.9. Open Redirection Yes No
4.10. 307 Redirect Yes No
4.11. TLS Terminating Reverse Proxies Yes Yes
4.12. Refresh Token Protection Yes Yes
4.13. Client Impersonating Resource Owner Yes Yes
4.14. Clickjacking Yes No

*: The attack is significantly harder to develop using the method B compared with the method A.

The Insufficient Redirect URI Validation attack, as described in [13], is conducted as
follows. First, the attacker needs to trick the user into opening a tampered URL in his
browser that launches a page under the attacker’s control. This URL initiates an authoriza-
tion request with the client ID of a legitimate client to the authorization endpoint, including
a redirect URL under the attacker’s control and matching the registered redirect URL
pattern for the legitimate client. The authorization request is processed and presented to
the user. If the user does not see the redirect URI or does not recognize the attack, the code
is issued and immediately sent to the attacker’s domain. When using method A, the MitM
only needs to tamper with any legitimate authorization link sent by the client so that the
redirect_uri points to a domain under his control. In this case, it would be difficult for the
user to notice that he is being attacked given that starting the authorization by opening the
link is part of the legitimate authorization using method A. On the other hand, when using
method B, the attacker’s best attempt would be to trick the user into believing that a client
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under his control is actually a legitimate client (e.g., initiating a new conversation with the
user and stating that it is a known client application whose phone number has changed re-
cently) and to obtain the user’s consent to access his protected resources. Independently of
the method used, this could be shortcut by strictly validating redirect_uris (i.e., performing
strict string matching instead of supporting regular expressions) at authorization server.

Mix-Up attacks require the client to try to obtain authorization from the user using an
authorization server under the attacker’s control. When using method A, the MitM can
simply modify the user messages to trick the client into thinking that the user has selected
the authorization server under the attacker’s control when he actually has not. On the other
hand, when using method B, this attack would only be possible if the user intentionally
selects the authorization server under the attacker’s control for any reason. This attack
could be prevented by the client using distinct redirect URIs for each authorization serv-er.

Finally, there is the passive MitM attack where the MitM is placed between the client
and the user without modifying any message, with the sole purpose of eavesdropping on
the user’s private information exchanged from his routine use of the client. When using
method A, this kind of attack can be prevented by completing the authentication ceremony
between each user and each client. However, as already stated, the authorization server,
which is responsible for the security of the user’s resources, has no way of being sure that
this authentication ceremony has been performed before issuing an access token. Method
B prevents this attack as explained in Section 4.1.

5. Usability Study

We conducted a study to better understand how users perceive the proposed autho-
rization method and what might make them reluctant to use it. This study consists of
two tests: test A and test B. In both tests, the subject is required to interact with a virtual
assistant, Alfred, using the Signal secure messaging application [14]. At a certain point of
the conversation, Alfred informs the user that he needs his authorization to access some
protected resource on his behalf. In test A, subjects are requested to complete the autho-
rization process using the standard authorization code grant type through a web-browser,
as suggested in Section 2.3 (see Figure 5a). In test B, they are requested to authorize Alfred
using the new grant type proposed in Section 3 (see Figure 5b). After completing both
tests, subjects are required to fill in a small questionnaire, including some demographic
information and their impressions about both authorization methods.

Figure 5. (a) Example interaction in test A; (b) example interaction in test B.
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5.1. Study Recruitment, Design and Realization

The study participants were recruited from our campus and from our circle of ac-
quaintances in equal parts. We ensured that none of them previously knew what our work
consists of or the objective of the study to avoid biased results.

We designed the study so that each subject would be provided with two similar smart-
phones (one for each test) with a preregistered virtual assistant contact. The reason behind
using different smartphones for each test was that it eases the subjects’ understanding of
what they are doing (authorizing the virtual assistant by two different means), as we saw
during the study design, providing a more reliable feedback.

When the participants arrived, they were firstly asked to read and sign the informed
consent. After that, we briefly explained the basis of the study and informed them that a
study coordinator would be observing their interaction and would answer any possible
question they might have. At this point, the study coordinator handed out the smartphone
prepared for test A and provided the following context information:

Suppose that you are using the Signal app to normally interact with your virtual assistant,
Alfred. You ask him when the following appointment with the physician is. The objective is to
complete the required steps to obtain this information from Alfred.

After successfully completing the first test, the subject was provided with the other
smartphone (prepared for test B) and instructed to repeat the task after being warned that
some steps in the process would be different. After completing the task, the subject was
required to briefly explain to the study coordinator what he/she had done to check the
subject’s understanding of the technology (up to a certain point). The subject was then
required to complete a small summary containing some demographic questions and some
related to their impressions of both tests. The demographic questions include the subject’s
gender and age. The subjects also had to select one of three options describing their degree
of familiarity with the technology. The three levels were “Occasional user”, “Habitual
user”, and “Advanced user”, defined as follows:

• Occasional user: your main use of computers is to occasionally navigate the web,
send/read emails, or see some videos on YouTube.

• Habitual user: you usually rely on a computer for many tasks daily and/or part of
your work depends on it as a user.

• Advanced user: you are a computer enthusiast and/or your work involves a deep
level of computer understanding (programmer, computer sciences, etc.).

For each test, the question “What has been your impression on the usability of
method X?” was asked to rate the usability of the authorization method. Possible an-
swers to this question were integers from 1 to 10, where a higher score was better. The
question “Do you believe the method X to be secure? Why?” was also included for each
test, where possible answers were “yes” and “no” along with a space to justify their answer.
Finally, the participants were requested to answer the question “Which method would
you prefer to use?” considering their overall experience and taking into account both
usability and security. A text box was also required to be filled in, including some “Specific
comments that motivate your previous responses”. After completing the questionnaire,
the study coordinator announced that the study had finished.

5.2. Demographics

A total of 24 participants took part in the study. One of them was a priori excluded
from the study given that he affirmed that he did not understand what he had done after
completing the test. The remaining 23 participants were categorized in accordance with
three parameters, their gender, their age, and their degree of experience of interacting with
computers. Ten participants out of the 23 were male (43% of the total). The participants
were categorized in three age groups: under 25, between 25 and 48, and 49 and over. The
first group had 8 participants (35% of the total), the second group 10 (43%), and the last
group 5 (22%). The level of familiarity with computers was categorized in the three levels
defined in Section 5.1: “Occasional user”, “Habitual user”, and “Advanced user”. The
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first group had 10 participants (43%), the second group 4 (17%), while the last group had
9 (39%). All this information is summarized in Table 2.

Table 2. Participants’ demographics.

Individual Characteristics N %

Gender
Male 10 43
Female 13 57

Age
0–24 8 35
25–48 10 43
49+ 5 22

Tech. Level
Occasional user 10 43
Habitual user 4 17
Advanced user 9 39

We can see that the population is reasonably well-balanced as regards the gender of
the participants. Looking at their ages, the younger and mid-range groups are also well
balanced while the oldest subjects’ group has less members than the others. Finally, the
participants experience with the use of computers is skewed since only a few are habitual
users. This is due to the recruitment procedure. Most of the participants from our circle
of acquaintances are occasional users, while participants from our campus are advanced
users. However, the occasional users and advanced users’ groups are well balanced.

6. Results and Discussion

In this section, we present the results obtained from the usability study both qualita-
tively and quantitatively. The participants’ responses to the questionnaire are summarized
in Table 3. The first row in the table includes the mean number of points with which
participants rated the usability of both methods out of a maximum of 10. The second row
shows the number of participants who believe each method to be secure, while the last row
shows how many participants preferred one method over the other.

Table 3. Usability study overall results.

Question Test A Test B

Usability 7.74 8.52
Security 13 23

Pref. method 4 19

There is no significant difference between the usability rates obtained by both methods.
As many participants stated, “both methods are very simple to use”. However, the method
proposed in this work obtained a slightly better result. In Table 4, we can observe partici-
pants’ comments that justify this. From the usability point-of-view, most participants who
preferred method B said that it is simpler because they do not have to leave the application
to complete the process (15 participants). A smaller set of participants stated that they
prefer method A since the interaction is more similar to the one that they currently use for
authorization tasks (just three participants). From the security perspective, 13 out of the
23 participants believed the method used in test A to be secure. Many participants (16 out
of 23) expressed their concern that they do not feel comfortable clicking the link provided
by the client. However, some of them (six) still considered this method to be secure. On the
other hand, all the participants involved in the study believe the method used in test B to
be secure. Just one participant pointed out that he obtained a better security impression
with the method for the test A stating that “seeing the link makes me more comfortable as
I get a deeper understanding about how the system works”. The conjunction of all these
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facts explains that most participants (19 out of 23) prefer to use the method proposed in
this work.

Table 4. Participants’ commentaries.

Participant Comments #

Test A
It is more familiar 3
The interaction is simpler 2
Seeing the link gives me more security 1

Test B
The interaction is simpler 6
It is more secure 14
Do not have to leave the app 15
I do not feel comfortable clicking a link 16

Figure 6 details the results showing differences between the population groups de-
scribed in Section 5.2. Figure 6a shows results distributed by gender, Figure 6b shows their
distribution by ages, while Figure 6c does the same with the level of familiarity with the
technology. In all the subfigures, the bars are grouped in three categories: the usability
rate, security, and the preferred method. The first group of bars represents the usability
rate assigned to each test (over a maximum of 100 points), the second group shows the
percentage of participants that believe the method to be secure, while the third group
shows the participants’ preferences of one method over the other. The bars for the same
demographic group share the same color between categories, while the solid bars represent
results for Test A and the hollow bars for Test B.

Figure 6a shows no significant differences in how participants of different genders
rated the usability, although male participants believe method A to be more secure than
female participants, which is also reflected in the preferred method for each of them.
Figure 6b, which shows the results split by the age of the participants, indicates that there
are no significant differences among users in the 18 to 24 age group and users in the 25
to 48 age group in any of the three categories. However, older participants (49 and over)
rated the usability of method A as being worse than method B and had less confidence in
the security of method A. This is reflected in the fact that no user in this group preferred
method A over method B.

The most interesting results can be seen in Figure 6c, which shows the results depend-
ing on the technical abilities of the participants. In this figure, occasional users are labeled
as tech. 1, habitual users as tech. 2, and advanced users as tech. 3. The more experienced
participants rated the usability of method A higher than others with less experience. A
larger number of experienced participants also trusted method A to be secure compared
with participants in other groups. Finally, all the participants that preferred method A over
method B were advanced users. Some insights derived by this study may be conditioned by
the limited number of participants, and a study addressing this concern would be needed
to confirm our findings.

As a final comment, none of the participants involved in the study noticed that the
link sent by the client points to a HTTP service (see Figure 5a), which is not using TLS to
secure the connection (i.e., using HTTPS instead). In a real scenario, this link might be sent
by a MitM (trying to cheat the user) if the authentication ceremony has not been completed
between the user and the client. This demonstrates that most users (including some
graduates in computer sciences) are far from understanding all the security implications
of their decisions and actions. Thus, security methods should be designed to protect
users’ security on their behalf, reducing their exposure to possible threats derived from
their actions.
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Figure 6. Usability study detailed results.

In this context, minimizing the number of required authentication ceremonies would
improve not only the system usability but also the security of the communication. Using
the flow proposed in this work, with the OpenID Connect [15] protocol to provide feder-
ated identity, would help with this problem. In the OpenID Connect protocol, the client
application wants to obtain some information about the end-user (such as their identity)
from an identity provider. One of the OAuth grant types is used to allow the identity
provider to authenticate the user and obtain their consent to share the information with the
client. A client application that uses the OpenID Connect protocol with the proposed grant
type to deal with users’ identities would not need to worry about the presence of a possible
MitM attacker even without completing the authentication ceremony. In this case, the
identity provider would seamlessly verify that the public key fingerprint included in the
authorization request really belongs to the user (just in the same way that an authorization
server does as part of a normal authorization flow), ensuring that no MitM risk exists.
Thus, the user is only required to complete the authentication ceremony with the identity
provider instead of doing so with each client.
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In the same way, an authorization server may rely on an identity provider to deal with
a user’s identity. In such a situation, the authorization server would act as the client of
the identity provider so that only the authentication ceremony with the identity provider
would newly be required. This is especially interesting for those scenarios where users’
resources are spread across several resource servers protected by different authorization
servers.

7. Conclusions

In this work, we propose a new protocol to allow users to authorize third-party appli-
cations when the interaction with these applications is taking place through a messaging
application. This protocol has been designed as a new OAuth grant type to take advantage
of all the elements already defined in this framework and to provide direct access to all
existent APIs that are already secured using it. The proposed grant type allows the autho-
rization server to interact with the resource owner directly through the same messaging
platform already being used for interaction with the client. It also allows the authorization
server to be sure that there is no risk of an MitM between the client and the user before
issuing an access token.

Aligning the way that authentication and authorization tasks are handled with how
users interact to obtain the service that requires these tasks improves the overall system
usability. In the usability test, we saw that most users found the proposed method usable
for authorizing clients through messaging platforms and preferred it to using a web-
browser with this same purpose. This is especially true for those users less experienced
with computers, who rated our proposed approach highly for both usability and security.
This is very important since users with less technical skills are the main target of the new
service-delivery paradigm aiming to reach more population sectors.

The use of new features included in some messaging application (like Telegram’s
embedded web browser) may affect the usability test results, as they make the authorization
process smoother without forcing the user to swap between the messaging platform and the
system web browser. However, some major messaging applications (i.e., Signal, WhatsApp,
etc.) do not support this feature yet, and the problem with the MitM attacker would always
remain even with the use of embedded browsers.

Finally, the proposed method widely reduces the number of authentication ceremonies
that must be completed. However, one authentication ceremony (with the authorization
server) is still required. Further research may explore the inclusion of digital certificates to
stop relying on the completion of any authentication ceremony. On the other hand, some
insights derived from the usability study may be conditioned by the limited number of
participants (a total of 23), and a study addressing this concern would be needed to confirm
our findings.
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