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Abstract
Background: Hepatitis C virus (HCV) associated liver diseases may be related to apoptotic processes.
Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency
to interact with different apoptosis inducing agents.

Methods and Results: The use of a tightly adjustable tetracycline (Tet)-dependent HCV protein
expression cell system with the founder osteosarcoma cell line U-2 OS allowed switch-off and on of the
endogenous production of HCV proteins. Analyzed were cell lines expressing the HCV polyprotein, the
core protein, protein complexes of the core, envelope proteins E1, E2 and p7, and non-structural proteins
NS3 and NS4A, NS4B or NS5A and NS5B. Apoptosis was measured mainly by the detection of hypodiploid
apoptotic nuclei in the absence or presence of mitomycin C, etoposide, TRAIL and an agonistic anti-CD95
antibody. To further characterize cell death induction, a variety of different methods like fluorescence
microscopy, TUNEL (terminal deoxynucleotidyl transferase (TdT)-catalyzed deoxyuridinephosphate
(dUTP)-nick end labeling) assay, Annexin V staining, Western blot and caspase activation assays were
included into our analysis.

Two cell lines expressing the core protein but not the total polyprotein exerted a strong apoptotic effect,
while the other cell lines did not induce any or only a slight effect by measuring the hypodiploid nuclei. Cell
death induction was caspase-independent since it could not be blocked by zVAD-fmk. Moreover, caspase
activity was absent in Western blot analysis and fluorometric assays while typical apoptosis-associated
morphological features like the membrane blebbing and nuclei condensation and fragmentation could be
clearly observed by microscopy. None of the HCV proteins influenced the apoptotic effect mediated via
the mitochondrial apoptosis pathway while only the core protein enhanced death-receptor-mediated
apoptosis.

Conclusion: Our data showed a caspase-independent apoptosis-like effect of the core protein, which
seems to be inhibited in the presence of further HCV proteins like the non structural (NS) proteins. This
observation could be of relevance for the viral spread since induction of an apoptosis-like cell death by the
core protein may have some impact on the release of the HCV particles from the host cell.

Published: 1 December 2009

Virology Journal 2009, 6:213 doi:10.1186/1743-422X-6-213

Received: 3 August 2009
Accepted: 1 December 2009

This article is available from: http://www.virologyj.com/content/6/1/213

© 2009 Berg et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19951438
http://www.virologyj.com/content/6/1/213
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Virology Journal 2009, 6:213 http://www.virologyj.com/content/6/1/213
Background
Hepatitis C virus (HCV) infection represents one of the
most important factors for the generation of chronic hep-
atitis, liver cirrhosis and hepatocellular carcinoma [1-3].
Since the identification of the virus in 1989 [4], an abun-
dance of investigations had contributed to decipher the
molecules and mechanisms involved in the pathogenesis
of the disease. However, the properties and signaling
mechanisms of the HCV proteins encoded by the viral
RNA are still not completely understood. It has been
reported that induction of apoptosis is of great impor-
tance for the pathogenesis, and two major problems of
HCV infection may be related to apoptosis, i.e. the viral
persistence and the direct or indirect destruction of liver
cells. Therefore, the study of host-virus interactions, espe-
cially the influence on the regulation of apoptotic proc-
esses by the different viral proteins is poorly defined but
may help explain these problems. Thus, if viral proteins
inhibit host cell apoptosis this effect may contribute to the
viral persistence since the virus escapes the immunologi-
cal attack. On the other hand, if viral proteins induce
apoptosis in the host cell, this may be an important factor
for liver cell destruction.

From a variety of viruses it is well known that they employ
different apoptotic signaling components in the host cell
for inhibition or activation of the endogenous suicide
program. Thus, some viruses are able to induce apoptosis
of the host cell via their newly synthesized virus-specific
proteins [5-7], while virus-specific proteins from other
viruses act as anti-apoptotic agents [8-12]. Similar obser-
vations were made for the hepatitis C virus, showing that
the virus may destroy hepatocytes by induction of apop-
tosis. In addition, CD4+ and CD8+ T-cells are involved in
the inflammatory process as well as the destruction of
these cells by directly inducing cytotoxic effects via apop-
tosis or indirectly by secretion of different cytokines [13].
On the other hand, inhibition of apoptotic processes cre-
ates a privileged milieu for the replication and propaga-
tion of HCV [14]. Furthermore, inhibition of apoptosis
may play a major role in the generation of hepatocellular
carcinoma [15,16].

In the past, the apoptotic and anti-apoptotic effects of dif-
ferent HCV proteins have been intensively studied. How-
ever, conflicting data were generated depending on the
experimental conditions, i.e. methods and cell lines used.
E.g. in transfected HepG2, Jurkat T or COS-7 cells endog-
enously expressing the core protein or the full length HCV
polyprotein, induction of apoptosis was observed [17-
19]. In contrast, stably transfected B cells expressing the
core protein did not exert any apoptotic effect [20]. In
addition, studying the effect of 'non-core' HCV proteins
conflicting results have also been found with respect to
their potency to stimulate apoptotic processes [21-23].

A similar situation could be observed studying the influ-
ence of the HCV on the extrinsic receptor-mediated and
intrinsic mitochondrial apoptosis pathway. Thus, a slight
inhibition of the death receptor-mediated apoptosis by
the endogenously expressed core protein was described
[24], while other authors found an increase of the Fas-
mediated apoptosis by the transfected cells expressing the
core protein using the same founder cell line [25,26].
These data demonstrate that the experimental settings like
the use of different vectors, different kinetics, cell cultures,
or detection methods may influence the results and
render a generalized statement more difficult. Thus, the
objective of our study was to investigate the effect of a
spectrum of HCV proteins and protein complexes in a
tightly adjustable HCV protein expression cell system
which allowed switch off and on of the endogenous pro-
duction of HCV proteins [27-31]. Using this tetracycline-
regulated (Tet-off) system we studied the influence of dif-
ferent HCV proteins on apoptosis induction and on the
receptor-mediated and mitochondrial pathway of apopto-
sis stimulated by different agents.

Methods
Tetracycline-regulated cell lines
All tetracycline-regulated cell lines (Table 1) were a kind
gift from Darius Moradpour, Division of Gastroenterol-
ogy and Hepatology, Centre Hospitalier Universitaire
Vaudois, Lausanne, Switzerland, and were generated
using the constitutively tetracycline-controlled transacti-

Table 1: HCV-proteins expressed in the different cell lines

cell lines expressed HCV-proteins clones Ref.

UHCV ORF UHCV-32 [30]
UC p21 (core-protein) UCcon-39 Moradpour, unpublished
UCp7 p21-p7

(core-protein-E1-E2-p7)
UCp7con-11.17 Moradpour, unpublished

UNS3-4A NS3, NS4A UNS3-4A-24 [31]
UNS4B NS4B UNS4Bcon-4 [27]
UNS5A NS5A UNS5A [32]
UNS5B p68 (NS5B) UNS5Bcon-5 [33]

* E: envelope, NS: non structural protein, ORF: open reading frame
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vator (tTA)-expressing U-2 OS osteosarcoma cell line
(ATCC HTB-96) as described [27-33] (Moradpour unpub-
lished). All cell lines were maintained in culture in Dul-
becco's MEM (invitrogen Life Technologies, Karlsruhe,
Germany) supplemented with 10% heat-inactivated fetal
calf serum (PAA laboratories, Cölbe, Germany), 500 μg/
ml Geneticin (G418; invitrogen), Glutamax 2 mM (invit-
rogen), 50 units/ml penicillin (invitrogen), 5 μg/ml strep-
tomycin (invitrogen), 1 μg/ml puromycin (Sigma,
Deisenhofen, Germany) and 1 μg/ml tetracycline (Tet,
Sigma) [29,30]. Cells were grown at 37°C in a 5% CO2
atmosphere in the log phase. Adding tetracycline to the
different cell lines blocks the expression of the HCV pro-
teins. On the other hand cells were washed twice with PBS
(invitrogen) and incubated in medium without tetracy-
cline to induce HCV protein expression.

Apoptosis and cell viability assays
Apoptosis was measured by flow cytometry using the
Nicoletti method to detect the leakage of fragmented DNA
from apoptotic nuclei [34,35]. Briefly, the different cell
lines were grown in the presence or absence of tetracycline
and/or in the presence or absence of different apoptosis
inducing agents for the indicated times at a concentration
of 1 × 105/ml in 96-well (200 μl) or 24-well plates (1 ml)
and cultured for 48 h if not stated otherwise. In some
assays, cells were pre-incubated with the broad-range cas-
pase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluor-
omethylketone (zVAD-fmk; 100 μM; Bachem,
Heidelberg, Germany) for 24 h before the apoptotic stim-
uli were added for another 24 h. Apoptosis was induced
exogenously by TRAIL (TNF-receptor-associated apoptosis
inducing ligand; 40 ng/ml; R&D systems, Heidelberg, Ger-
many), anti-CD95 antibody (100 ng/ml; CH11; upstate/
Biomol, Hamburg, Germany), etoposide (400 ng/ml;
Sigma), or mitomycin C (50 μg/ml; Medac, Wedel, Ger-
many).

In further experiments a variety of protease inhibitors of
signal transduction were added to the cultures at day 0:
leupeptin (100 μM; Böhringer Mannheim, Mannheim,
Germany), pepstatin A (50 μM; Böhringer Mannheim),
cathepsin B inhibitor Ca-074 (30 μM; Calbiochem, Bad
Soden, Germany), calpain inhibitor II (N-Ac-L-Leuc-L-
Leucyl-L-methioninal; 10 μg/ml; Sigma), pefabloc (0.3
mM; Roche, Mannheim, Germany), oligomycin (10 μM;
Calbiochem), LY294002 (20 μM; inhibitor of PI3 kinase;
Cell signaling, Beverley, USA), and ROCK inhibitor Y-
27632 (100 μM; Calbiochem).

At the end of the incubation period, cells were collected
and lysed for 10 min in 100 μl of hypotonic buffer (0.1%
sodium citrate, 0.1% Triton X-100, 50 μg/ml propidium
iodide (PI)). Apoptotic nuclei were detected by flow
cytometry (FACSCalibur; BD, Heidelberg, Germany)

using the CellQuest analysis software. Nuclei to the left of
the 2 N peak containing hypodiploid DNA were consid-
ered apoptotic [35,36]. Analyses were performed in tripli-
cates and mean and standard deviation are provided in
the Figures.

Apoptosis was also detected by Annexin V/PI staining as
reported after trypsinization of the cells after a 48 h cul-
ture period [37].

For the determination of cell viability using the methyl-
tetrazolium salt (MTS) test, 1 × 105 cells/ml were incu-
bated in the presence or absence of Tet and the apoptotic
stimuli for the times indicated. Subsequently, MTS (450
μg/ml; 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
liumbromid, Sigma) was added to the cells for 4 h at
37°C. Resulting formazan crystals were dissolved in 4%
SDS and measured at 550 nm. Analyses were performed
in triplicates and mean and standard deviation are pro-
vided in the Figure.

Western blot analyses
For the detection of HCV and apoptosis-related proteins,
Western blot analyses were performed following the
method described previously with slight modifications
[35,36,38,39]. As primary antibodies mouse monoclonal
antibodies (moAbs) directed against caspase-8 (1:10 dilu-
tion of a hybridoma supernatant; Cell Diagnostica, Ger-
many), caspase-3 (1 μg/ml; Transduction Laboratory,
Heidelberg, Germany), PARP (poly-ADP-ribose polymer-
ase; 1:2,000; Alexis, Hiddenhausen, Germany), the core
protein and the NS3 protein (1:1,000) [31,40] were used.
HRPO-conjugated secondary antibodies to mouse IgG
(1:4,000; Biorad, Munich, Germany) allowed the use of
the ECL plus technique (Amersham-Buchler, Braunsch-
weig, Germany) to visualize the antigens after extensive
washing.

Fluorometric assay of caspase activity
Analyses of the caspase activity using cytosolic cell extracts
of 2 × 104 cells were performed as described [39].

Microscopy
To study morphological alterations of the cell lines,
microscopic analysis were performed. Therefore, 2 × 104

cells/well were cultured in chamber slides (Lab Tek, Brand
Products, Germany) in the presence or absence of Tet and
zVAD-fmk (100 μM) for 24 h. Afterwards, mitomycin C
(50 μg/ml), TRAIL (40 ng/ml), or anti-CD95 antibody
(100 ng/ml) were added for another 24 h. Nuclei were
stained with the cell permeable dye Höchst 33342 (2 μg/
ml; Sigma) for 10 min at 37°C and investigated by fluo-
rescence microscopy using the Axiovert 135 microscope
(Zeiss, Jena, Germany). Analyses were performed in tripli-
cates.
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TUNEL
To evaluate the induction of DNA-fragmentation by the
terminal deoxynucleotidyl transferase (TdT)-catalyzed
deoxyuridinephosphate (dUTP)-nick end labeling
(TUNEL) assay, 5 × 105 cells/ml were cultured for 24 h in
the presence and absence of Tet and zVAD-fmk (100 μM)
before mitomycin C (50 μg/ml) or TRAIL (40 ng/ml) were
added for another 24 h. DNA-fragments were detected
using the MEBSTAIN Apoptosis kit Direct (Coulter-Immu-
notech, Krefeld, Germany) following the instructions of
the manufacturer as described [41,42].

Results
1. Induction of hypodiploid nuclei by the HCV core protein
In order to compare the potency of the different HCV pro-
teins to induce apoptosis, we first studied the expression
of the proteins produced by the UHCV cell line coding for
the ORF and the UC cell line coding for the core protein.
Figure 1A demonstrates by Western blot analysis in a
kinetic study that in the absence of tetracycline (Tet) the
core protein is strongly synthesized in both cell lines,
while the NS3 protein, exemplary shown for the expres-
sion of further HCV proteins, is present only in the Tet-off
UHCV but not the UC cell culture (Figure 1B). Thus,

Expression of different HCV-proteins in the UHCV and UC cells (A, B) and their induction of apoptotic nuclei (C, D): 2 × 106 cells (A, B) or 1 × 104, 2 × 104, and 3 × 104 cells/well (C, D) of each cell line were cultured for the indicated time in the pres-ence or absence of tetracycline (Tet) to induce HCV-specific protein expressionFigure 1
Expression of different HCV-proteins in the UHCV and UC cells (A, B) and their induction of apoptotic nuclei 
(C, D): 2 × 106 cells (A, B) or 1 × 104, 2 × 104, and 3 × 104 cells/well (C, D) of each cell line were cultured for the 
indicated time in the presence or absence of tetracycline (Tet) to induce HCV-specific protein expression. A, B: 
Cellular proteins were resolved by SDS-PAGE and HCV proteins were detected by immunoblotting with an antiserum gener-
ated against the core (A) or NS3 protein (B) of HCV. C, D: Induction of apoptosis was assessed by flow cytometric analysis of 
propidium iodide staining of hypodiploid apoptotic nuclei. The mean values and standard deviation of triplicate cultures are 
shown.
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within the UHCV cell line the polyprotein is cleaved to
release the single HCV proteins.

To study the effects of the core protein and the whole HCV
proteins on apoptosis induction, we analyzed the typical
apoptosis-associated leakage of fragmented DNA from
apoptotic nuclei by the Nicoletti method using flow
cytometry. As shown in Figure 1C in kinetic studies, there
was no apoptotic effect detectable in the polyprotein
expressing UHCV cell line, independent from the cell
number seeded. In contrast, the core protein expressed in
the UC cell line in the absence of Tet led to a strong leak-
age of fragmented DNA already after one day (Figure 1D).
The typical apoptotic effect depended on the expression
level of the core protein and not on the cell density
employed. Thus, testing two high and two low expression
cell lines from the UHCV and the UC cells, DNA fragmen-
tation was induced only in the UC cell line with an ele-
vated expression of the core protein (data not shown).

2. Cell death could not be induced by further HCV proteins
Next, we addressed the question, whether further HCV
proteins expressed in our test system also exert cell death
inducing properties. Therefore we tested a variety of cell
lines expressing different single HCV proteins or protein

groups by flow cytometry [27,31,32,43]. However, a
strong effect on the generation of hypodiploid nuclei
could only be observed in the cell line UCp7 expressing
the core, E1, E2 and p7 protein, whereas the other cell lines
did not exert any or only a slight (NS3-4A and NS4B pro-
teins) effect (Figure 2). For the NS3-4A cells the increase
of apoptotic cells after 3 days was independent from the
NS3-4A protein since the difference in the rate of apop-
totic nuclei between the induced and the non-induced
cells was constant from day 1 to day 3. Possibly, this is a
problem of the position of the insert coding for the HCV
protein in this cell line.

Since we did not observe any difference in the rate of
apoptotic nuclei in the absence of Tet in the NS5B cells
after 2 days, we further studied the activity after a quite
longer period, i.e. 6 days. However, we only found an
unspecific increase, most likely due to the consumption of
nutrients in the cell culture medium.

3. Apoptotic features induced by the HCV core protein
In order to characterize more precisely cell death induc-
tion by the core protein we analyzed the reactivity of the
UC cell line by different methods. Thus, we observed by
phase contrast and fluorescence microscopy (magnifica-

Induction of apoptosis in different HCV-protein expressing cell lines: 2 × 104 cells of the different cell lines UCP7, UNS3-4A, UNS4B, UNS5A, and UNS5B were cultured for the indicated times in the presence or absence of Tet to induce specific pro-tein expressionFigure 2
Induction of apoptosis in different HCV-protein expressing cell lines: 2 × 104 cells of the different cell lines 
UCP7, UNS3-4A, UNS4B, UNS5A, and UNS5B were cultured for the indicated times in the presence or 
absence of Tet to induce specific protein expression. Induction of apoptosis was assessed by propidium iodide staining 
of hypodiploid apoptotic nuclei and flow cytometry. The mean values of triplicate cultures and standard deviation are shown.
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tion 320×) that the core protein induced typical morpho-
logical features of apoptosis: Similar to mitomycin C and
TRAIL, which served as positive controls, the core protein
stimulated apoptotic blebs on the cell surface (Figure 3A).
In addition, nuclei were condensed and fragmented in
these cells as evidenced by the staining pattern with the
Hoechst dye 33342 (Figure 3A). However, in the TUNEL
assay detected by flow cytometry there was only a slight
increase in the amount of fragmented nuclei which were

accessible for the TdT in response to the core protein as
compared to the positive controls (Figure 3B).

4. Influence of the HCV proteins on death receptor-
mediated and mitochondrial apoptosis pathways
Since in our experiments the major effect was induced by
the core protein, we focused in our further studies on the
UC cell line. To investigate whether the HCV core protein
exerts an enhancing effect on the activation of the death

Different features of apoptosis induced by the HCV-core protein in UC cells cultured in the presence or absence of tetracycline to induce specific protein expressionFigure 3
Different features of apoptosis induced by the HCV-core protein in UC cells cultured in the presence or 
absence of tetracycline to induce specific protein expression. A: membrane blebbing and nuclear condensation was 
visualized in 2 × 104 UC cells cultured for 48 h. Apoptotic stimuli were added during the last 24 h: mitomycin C (50 μg/ml), and 
TRAIL (40 ng/ml). Nuclei were stained with the cell permeable dye Höchst 33342 and cells were applied to phase contrast and 
fluorescence microscopy (magnification: 320 ×). B: Detection of apoptosis by the TUNEL assay. 5 × 105 cells/ml were cultured 
for 48 h and mitomycin C (50 μg/ml) and TRAIL (40 ng/ml) were added during the last 24 h and served as positive control. 
TUNEL assay was measured by flow cytometry.
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receptor pathway or the mitochondrial apoptosis pathway
we first stimulated the expression of the HCV proteins for
24 h and added a variety of apoptosis inducers to the cell
cultures for another 24 h. For stimulation of death recep-
tors we used agonistic anti-CD95 antibodies or the DR4
and DR5 ligand TRAIL and for the activation of the mito-
chondrial apoptosis pathway we used the anticancer drugs
mitomycin C and etoposide, as previously described [39].
As shown in Figure 4A, a costimulatory effect of the core

protein expressed by the UC cells on the rate of hypodip-
loid nuclei measured by flow cytometry could be
observed only in the TRAIL and anti-CD95 stimulated
cells as compared to the non-core expressing cells.

Figure 4B demonstrates that the core protein alone slightly
enhanced the phosphatidylserine (PS) externalization
and further enhanced the effect of the apoptotic agents
acting via the receptor-mediated pathway as measured by

Influence of HCV-core protein on the receptor-mediated and the mitochondrial apoptosis pathway studied in different assays: 1 × 105 UC cells/ml were cultured for 48 h in the presence or absence of Tet to induce specific protein expressionFigure 4
Influence of HCV-core protein on the receptor-mediated and the mitochondrial apoptosis pathway studied in 
different assays: 1 × 105 UC cells/ml were cultured for 48 h in the presence or absence of Tet to induce specific 
protein expression. Apoptotic stimuli were added during the last 24 h: mitomycin C (50 μg/ml), etoposide (400 ng/ml), 
TRAIL (40 ng/ml) and anti-CD95 antibody (100 ng/ml). A: Induction of apoptosis was assessed by flow cytometric analysis of 
propidium iodide staining of hypodiploid apoptotic nuclei. The mean values and standard deviation of triplicate cultures are 
shown. B: Apoptosis was visualized by the externalization of PS which was stained with Annexin V and C: viability of the cells 
was measured by staining of the cells with PI and subsequent detection by flow cytometry. Given are means of duplicates. D: 
Metabolic activity of the UC cells was determined by the MTS test. Optical density was measured in an ELISA reader after incu-
bation of the cells with MTS for 4 h and suspension of crystals. Given are mean and standard deviation of triplicates.
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the staining with Annexin V by flow cytometry. Similar
observations were made for the uptake of propidium
iodide that measures cell death in general and cannot dis-
criminate between apoptosis and necrosis (Figure 4C). In
addition, the viability of the cells expressing the core pro-
tein was reduced by the core protein as evidenced by a
diminished formazan crystallization in the MTS test (Fig-
ure 4D).

However, analyzing the UHCV, UNS4B, and NS5A cell
lines, there was no significant difference in response to the
exogenously added apoptotic stimuli between the cells
expressing the respective HCV proteins or not (data not
shown).

5. Cell death induction by the core protein is not caspase-
dependent
In order to study whether caspases are involved in the
process of cell death induction by the core protein, we first
stimulated the core expressing UC cell line in the presence
or absence of the broad spectrum caspase inhibitor zVAD-
fmk. As shown in Figure 5A, the core protein induced gen-
eration of hypodiploid nuclei was only partially affected
by zVAD-fmk, whereas zVAD-fmk clearly inhibited their
generation stimulated by mitomycin C, etoposide, TRAIL,
and anti-CD95 antibody in the Tet-on cells. In contrast, in
the polyprotein expressing UHCV cell line generation and
inhibition of apoptotic nuclei using different apoptotic
stimuli with or without zVAD-fmk was independent of
the Tet-off system (Figure 5B).

Despite the observation that the UC cell line was less sen-
sitive to the receptor-mediated apoptosis pathway, an
additional apoptotic effect could be observed by the core-
protein (Figure 5A). This effect could only partially be
inhibited by zVAD-fmk suggesting that a caspase-inde-
pendent mechanism may be responsible for the core pro-
tein induced cell death.

Studying in more detail the core protein mediated apopto-
sis it became evident that zVAD-fmk did not inhibit the
core protein-induced generation of hypodiploid nuclei, in
contrast to cell death induction due to Mitomycin C and
TRAIL which showed an almost complete inhibition fol-
lowing application of zVAD-fmk (Figure 5C). Interest-
ingly, most hypodiploid nuclei were very small in the core
protein expressing cells as compared to the nuclei arising
after stimulation with TRAIL. While zVAD-fmk did not
inhibit the core protein-induced generation of hypodip-
loid nuclei, it almost completely blocked the small nuclei
induced by mitomycin C.

To directly analyze the involvement of caspases in the
action of the core protein, Western blot analyses were per-
formed confirming that both, caspases-3 and -8, had not

been activated since neither caspase cleavage products
could be observed, nor did they comprise any activity, as
demonstrated by the lack of the cleavage of the caspase
substrate PARP (Figure 5D). In contrast, cultivation with
the typical apoptotic stimuli mitomycin C, TRAIL or the
stimulatory anti-CD95 antibody induced caspase activa-
tion that could be inhibited by zVAD-fmk.

In addition, using the fluorogenic substrate DEVD-AMC
in a fluorometric assay we could not observe any core pro-
tein related caspase activity (Figure 5E). Cell lysates of the
Tet regulated core expressing UC cell line did not possess
any caspase activity, in contrast to the lysates of cells incu-
bated with mitomycin C, TRAIL or the anti-CD95 anti-
body which showed a typical caspase activity. Similar
observations were made with the UHCV cell line (data not
shown).

Additional experiments were performed to study whether
ICAD (inhibitor of caspase activated DNAse) was cleaved
by the core protein which in turn may lead to the activa-
tion of the endonuclease CAD (caspase activated DNAse).
However, we could not observe any cleavage of ICAD by
the core protein (data not shown) which further confirms
a caspase-independent type of DNA cleavage.

6. Analysis of the involvement of a variety of protease 
inhibitors in the apoptosis-like effect of the core protein
To study in more detail the mechanisms involved in the
apoptosis-like activity of the core protein, we tested a vari-
ety of broad-spectrum as well as specific protease inhibi-
tors for their ability to block the core protein-induced
generation of apoptotic nuclei (Figure 6). In these kinetic
studies, neither the cathepsin B inhibitor (Figure 6A) nor
the calpain inhibitors I (data not shown) and II (Figure
6B) exerted any effect on the core protein-induced apopto-
sis. In addition, none of the other specific and unspecific
inhibitors as leupeptin, pepstatin, pefabloc, ROCK inhib-
itor and oligomycin were able to block the apoptotic effect
after 48 h of cell culture, while the inhibitor of the PI3
kinase LY294002 and the calpain inhibitor I were toxic
(data not shown).

Discussion
The objective of our study was to investigate the potency
of endogenously expressed HCV proteins on apoptosis
induction and to analyze their influence on the death
receptor-mediated and the mitochondrial apoptosis path-
way. To address these questions, we used a recently estab-
lished tightly adjustable HCV protein expression cell
system which allowed switch off and on of the endog-
enous production of a broad spectrum of HCV proteins or
protein complexes (Tet-off system) [27-31]. Using this
system we compared the apoptosis-inducing effects of the
different single HVC proteins and protein complexes. This
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is of major importance since the literature presents con-
flicting data on that topic. It could be shown that e.g. the
receptor-mediated apoptosis was inhibited by the core
protein [24] while just the opposite effect was obtained by
different authors, even if the same cell line was used
[25,26]. These data demonstrate that the observed effects
strongly depend upon the experimental conditions. To
circumvent this problem by using cell lines inducible
expressing a broad spectrum of HCV proteins and protein
complexes it became evident that the cell lines expressing
the core protein (i.e. UC and UCp7) showed a strong

induction of apoptotic nuclei. The other HCV proteins
and protein complexes did not show any effect with the
exception of a very slight stimulation by the NS3-4A and
NS4B proteins.

Cell death induction of the core protein expressing cells
was evidenced by a variety of methods. Thus, typical
apoptosis-associated morphological alterations like the
loss of the contact to neighboring cells, formation of
apoptotic blebs and nuclear condensation could be
clearly detected. In addition, a slight externalization of

Influence of the HCV-core protein on caspase activationFigure 5
Influence of the HCV-core protein on caspase activation. 1 × 105 cells/ml of the UC (A, C, E) and UHCV cell lines (B) 
or 1 × 106 UC cells (D) were cultured for the indicated times in the presence or absence of Tet to induce specific protein 
expression and the broad spectrum caspase inhibitor zVAD (100 μM). The apoptotic stimuli mitomycin C (50 μg/ml), etopo-
side (400 ng/ml), TRAIL (40 ng/ml), and anti-CD95 antibody (100 ng/ml) were added during the last 24 h of the culture. The 
broad spectrum caspase inhibitor zVAD was added at day 0 if indicated. A-C: Induction of apoptosis was assessed after 48 h by 
flow cytometric analysis of propidium iodide staining of hypodiploid apoptotic nuclei. The mean values and standard deviation 
of triplicate cultures are shown (A+B). D: Cleavage of caspases-3 and -8 as well as of PARP was detected in the cell lysates by 
Western Blot analysis. E: Detection of the caspase activity in UC cells was performed by in vitro cleavage of the fluorogenic sub-
strate DEVD-AMC and was measured by fluorometry at the time indicated. Apoptotic stimuli were added for 24 h. The mean 
values and standard deviation of triplicate cultures are given.
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phosphatidylserine as well as a diminished metabolic
activity induced by the core protein fit to these observa-
tions. The best read-out system for the analysis of the
apoptotic effect was the visualization of hypodiploid
nuclei. Interestingly, these nuclei were very small, similar
to those obtained by stimulation with mitomycin C but
their generation could not be blocked by the caspase
inhibitor zVAD-fmk in contrast to that observed for mito-
mycin C or TRAIL. In addition, the typical 'DNA-ladder'
obtained after internucleosomal cleavage of DNA could
not be observed in the UC cell line (data not shown).
Moreover, using the less sensitive TUNEL assay we did not
find any core protein related typical apoptosis-associated
DNA fragmentation pattern while mitomycin C and
TRAIL were active in this test system. The lack of reactivity
of the core protein in these two assays is in accordance
with the lack of caspase activation since the internucleo-
somal cleavage of DNA is mainly due to the activity of
CAD (caspase-dependent DNase) during apoptosis,
which is inhibited by ICAD (inhibitor of CAD) [44,45].
Consistently with the lack of caspase activation, we, in
contrast to Sacco et al. [46], did not observe alterations of
ICAD (data not shown). From all these data it is assumed
that the core protein stimulated apoptosis-like cell death is
mainly caspase-independent. Caspase-independent apop-
tosis pathways have been described and are now generally
accepted [47]. In contrast to our data, Moorman et al. and
Goh et al. observed an activation of caspases-3 and -8 by

the core protein [19] or the cleavage of PARP [17] which
may be strongly influenced by the experimental condi-
tions.

Analyzing the apoptotic effect of the UCp7 cells we cannot
completely exclude that it was influenced by the proteins
E1, E2 or p7, although it seems reasonable that the core
protein was responsible for the major effect. However, in
this respect two publications may be of relevance showing
apoptotic effects of the E1 [48] and the E2 protein [49].
Thus, further investigations should include cells express-
ing either protein in the same adjustable system.

In order to better define the mechanisms involved in the
apoptosis-like machinery stimulated by the core protein,
we tried to block the core protein induced generation of
hypodiploid nuclei by a variety of proteases via unspecific
and specific inhibitors. However, none of the different
protease inhibitors, like the specific inhibitor of cathepsin
B (Ca-074) or calpains or the unspecific inhibitors of pro-
teases like leupeptin and pepstatin could block cell death
induction. In future experiments further signal transduc-
tion cascades like the Akt/PKB and other signaling path-
ways have to be investigated.

One intriguing finding was that the polyprotein express-
ing UHCV cells did not exert any apoptotic effect although
they clearly expressed the core protein. This observation is

HCV core protein induced apoptosis could not be completely inhibited by a broad spectrum of protease inhibitorsFigure 6
HCV core protein induced apoptosis could not be completely inhibited by a broad spectrum of protease inhib-
itors. 1 × 105 UC cells/ml were cultured for the indicated times (A, B) in the presence or absence of Tet to induce specific 
protein expression. The protease inhibitors were added at day 0: cathepsin inhibitor Ca-074 30 μM, and calpain inhibitor II 10 
μM. Induction of apoptosis was assessed by propidium iodide staining of hypodiploid apoptotic nuclei and flow cytometry. The 
mean values and standard deviation of triplicate cultures are given.
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difficult to explain and may reflect the complexity of the
virus-specific reactions. It may be possible that both, the
core protein associated apoptotic and the possible anti-
apoptotic effects of further HCV proteins may act
together. Thus, in stably transfected cell lines, Chung et al.
found an anti-apoptotic effect of the NS5A protein while
the core protein exerted apoptotic potency, similar to our
data [50]. In addition, it has been described that different
HCV proteins like the NS3 and NS4A or NS4A, NS4B and
NS5A interact [51,52]. Thus, it cannot be excluded that
different proteins also bind to the core protein or signaling
molecules of the core protein induced cascade and block
its effect. This regulation of apoptosis may be of advantage
for the virus in order to circumvent a premature apoptosis
before the virus replication and assemblage has finished.

The second objective of our investigations was to study
the influence of the HCV proteins on apoptosis induced
by exogenous stimuli acting on the mitochondrial (mito-
mycin C and etoposide) or the death receptor-mediated
(TRAIL, agonistic anti-CD95 antibody) apoptosis path-
way [35,36,39]. None of the tested cell lines, i.e. the
UHCV, UNS4B and UNS5A cell lines exerted a significant
stimulatory or inhibitory effect on either apoptosis path-
way. In contrast, the UC cell line enhanced the TRAIL and
anti-CD95 mediated apoptosis as evidenced by an
increase of cell death-related features studied in different
test systems.

From the data presented here it appears that the core pro-
tein did not exert its major effect via the receptor mediated
pathway by inducing the respective ligands on the neigh-
boring cells. However, we cannot exclude that this mech-
anism is operative in the core protein mediated
enhancement of apoptosis induced by death receptor lig-
ands.

Comparing our data on the influence of the HCV proteins
on exogenous apoptotic stimuli with the data in the liter-
ature our results in part are in accordance with previously
published work since some authors did not find an influ-
ence of the core protein on the receptor-mediated apopto-
sis pathway [53], an increase [26,54] or an inhibition
[24].

In contrast to the available data on the core protein, the
data on the NS5A protein are more uniform demonstrat-
ing a rather anti-apoptotic effect for that protein
[22,23,55-58].

From the results obtained in our study it is evident that the
core protein exerted the strongest caspase-independent
direct apoptosis-like effect whereas none of the other HCV
proteins showed a clear-cut influence on exogenous apop-
totic stimuli. In this respect the localization of the mature

core protein at the outer mitochondrial membrane may be
of importance [59]. Although we did not observe the
release of cytochrome c in the Tet-off UC cell line (data
not shown) an interaction of the core protein with other
molecules of the apoptotic machinery localized at the
mitochondrial membranes may occur. Thus, further
investigations are necessary to better characterize the role
of the different HCV and host cell proteins in the apop-
totic processes. Since some of the proteins interact with
each other, more complex systems are needed for a more
precise evaluation of the pathology of the disease in order
to develop new remedies with an anti-viral effect to HCV.

Conclusion
In our experiments the non-structural proteins seem to
exert an anti-apoptotic effect since in the polyprotein
expressing cells no apoptosis-like features could be
observed. Thus, it is tempting to speculate that in vivo they
may inhibit early host cell death while core protein stimu-
lated caspase-independent apoptosis-like effect may fol-
low at later stages and, therefore, could be of relevance for
the release of the HCV particles from the host cell and the
viral spread.

List of abbreviations
CAD: caspase-dependent DNase; DEVDamc: N-acetyl-
Asp-Glu-Val-Asp-aminomethylcoumarin; E: envelope;
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of CAD; mito: mitomycin; MTS: methyltetrazolium salt;
NS proteins: non structural proteins, ORF: open reading
frame; Tet: tetracycline; TNF: tumor necrosis factor; TRAIL:
TNF-related apoptosis inducing ligand; TUNEL: terminal
deoxynucleotidyl transferase (TdT)-catalyzed deoxyurid-
inephosphate (dUTP)-nick end labeling; zVAD: benzy-
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