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1e 30-second all-out sprint cycling exercise is a classical sport capacity evaluation method, which may cause severe lower limb
muscle fatigue. However, the relationship between lower limb muscle fatigue and the decline in exercise performance during 30-
second sprint cycling remains unclear. In this study, ten cyclists volunteered to participate in a 30-second all-out sprint cycling
while power, cadence, and surface electromyographic (EMG) signals of eight lower limb muscles were recorded during the
exercise. EMGmean frequency (MNF) of each lower limbmuscle group was computed for every 3-second epoch based on wavelet
packet transformation. Grey relational grades between pedalling performance and the EMG MNF of each lower limb muscle
group during the whole process were calculated. 1e results demonstrated that EMG MNF of the rectus femoris (RF), vastus
(VAS), gastrocnemius (GAS), and tibialis anterior (TA) progressively tired during a 30-second all-out sprint cycling exercise. Of
the muscles evaluated, the degree of fatigue of TA showed the greatest association with exercise performance decline, whereas the
muscle fatigue of RF, VAS, and GAS also significantly impacted exercise performance during a 30-second all-out sprint
cycling exercise.

1. Introduction

1e 30-second all-out sprint cycling exercise is a commonly
used method in evaluating the anaerobic endurance capacity
of lower limb muscles and has been widely adopted in sports
training for cyclists [1]. As a vigorous exercise, 30-second all-
out cycling causes severe lower limb muscle fatigue, which
manifests as a decline in exercise performance [2, 3]. In fact,
muscle fatigue occurs as early as five seconds in this intensive
exercise [1, 4]. As the decline in exercise performance during
30-second sprint cycling is mainly determined by the fatigue
of lower limb muscles, investigating the relationship be-
tween lower limb muscle fatigue and changes in exercise
performance may further help in understanding the
movement and aid training programme design.

Previous research evaluating muscle fatigue has mainly
focused on total muscle fatigue at the end of the exercise or
fatigue development in only a few muscles [2, 4]. Further-
more, earlier studies did not simultaneously quantify the
development and progression of muscle fatigue in multiple
lower limb muscles during 30-second sprint cycling. As
different muscles have different functional roles during
pedalling exercise, the process of fatigue development of
each lower limb muscle can differ significantly [3, 5]. For
example, muscle activity of the quadriceps decreased by
approximately 8% during 30-second sprint cycling, whereas
that of the gastrocnemius (GAS) decreased by up to 15%,
indicating an unbalanced development of fatigue for the two
muscle groups [5–7]. 1us, the relationship between the
fatigue development of each lower limb muscle and changes
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in exercise performance during 30-second sprint cycling
remains unclear.

Previous research has commonly evaluated local muscle
fatigue using surface electromyography (EMG) signal pro-
cessing. 1e efforts of several studies have yielded signal-
based quantitative criteria of fatigue in both static and
dynamic motor tasks [8–10]. Among comparisons of the
utility of different methods to evaluate muscle fatigue, the
wavelet transform has better accuracy and precision than
those obtained from other time-frequency analysis methods
in processing nonstationary EMG signals recorded during
dynamic contractions [11]. In particular, Wang et al. [4]
found that the grey relational grade between the mean
frequency (MNF) derived from the wavelet transform of
EMG and pedalling performance was as high as 0.78. Based
on this finding, MNF exhibits superior utility to other in-
dices in muscle fatigue evaluation induced by sprint cycling
exercise, suggesting that the fatigue of lower limb muscles
during a 30-second all-out cycling exercise can be assessed
well using the MNF of EMG signals. Moreover, grey rela-
tional analysis is a crucial method to reflect the uncertainty
in grey system theory, which was first initiated by Deng [12].
As the approach is appropriate for solving complicated
interrelationships among multiple factors and variables, it
may provide insights for exploring the relationship between
exercise performance and fatigue development of lower limb
muscles during 30-second all-out sprint cycling [13, 14].

1is study determined the impact and contribution of
fatigue from each lower limb muscle (or muscle group) to
the exercise performance decline during a 30-second all-out
cycling exercise by evaluating the grey relational grade
between the degree of muscle fatigue and the decline in
exercise performance. 1e extent of fatigue of each muscle
was quantified by the MNF derived from wavelet packet
transformation of EMG, whereas exercise performance
decline was estimated by decreased rates of power output
and cadence.

2. Materials and Methods

2.1. Participants. 1e sample size was estimated prospec-
tively using G∗ power v3.1.0 (Franz Faul, University of Kiel,
Germany) with a level of 0.05 and a power of 0.95. We used a
conservative effect size of 0.6 based on a previous study [15].
As a result, the sample size was estimated to be eight subjects.
To allow for study withdrawal and dropout, we decided to
recruit an additional two participants. 1us, the planned
sample size of this study was 10.

On this basis, sevenmale and three female cyclists, with a
mean age of 21.5± 4.67 years, a height of 175.0± 8.3 cm, a
weight of 75.4± 10.91 kg, and a BMI of 24.50± 1.83, were
recruited from the Shanghai Professional Cycling Team to
participate in the study.1e cyclists trained 6 days a week for
8 hours a day formore than 7 years and competed in Chinese
national track cycling events. None of the cyclists received
ergogenic aids or performance-enhancing drugs. Partici-
pants refrained from strenuous physical activity 24 h before
the experiment and were screened using a questionnaire to
ensure that they had not suffered a lower-body injury or

other health issues that may affect performance. 1e ex-
perimental design was approved by the Ethics Committee of
Tongji University.

2.2. Experimental Protocol. 1e experiment was conducted in
a laboratory with an indoor temperature maintained at ap-
proximately 24°C and comprised a warm-up exercise and a test
exercise (Figure 1). All exercises were performed on aWattbike
Pro air-braked ergometer (Wattbike Ltd., Nottingham, UK).
After familiarisation with the laboratory equipment and test
protocol, participants undertook a continuous warm-up on an
air-braked ergometer for 5min.1e resistance was set at level 3
and the cadence at 90 rpm. Following a 3 min rest period,
participants then completed a 30-second all-out sprint cycling.
During the test, the saddle height and position of the partic-
ipant on the ergometer were adjusted according to the setup of
the cyclist’s own bike, and the crank length was 170mm for the
experiment. Participants maintained a consistent bent posture
with the hip fixed to the saddle and feet fixed to the pedals via
straps during the pedalling exercise [16].

1e air resistance on the Wattbike ergometer, which
allowed a setting between 1 and 10, was set corresponding to
the maximum power output that the participant produced
during the all-out cycling exercise. According to the
Wattbike technical documentation of the manufacturer, air
resistance settings at levels 6 and 10 on the Wattbike er-
gometer result in a power output of 45 and 55W at a cadence
of 40 rpm, respectively, and 785 and 1045W at a cadence of
130 rpm, respectively.1erefore, in this study, the ergometer
was set to an air resistance level of between 8 and 10 for male
cyclists and between 6 and 8 for female cyclists. Verbal
encouragement was given to all participants to promote
maximal engagement. In addition to the EMG signal ac-
quisition, performance data (power and cadence) were
recorded from the bike pedals at a sampling rate of 1Hz.
Surface EMG signals and Wattbike data were synchronised
using a trigger that starts the EMG and Wattbike data
sampling software simultaneously.

1e air resistance on the Wattbike ergometer, which can
be set between 1 and 10 levels, was set to correspond to the
maximum output power that the participant can produce
during the all-out cycling exercise. According to the
Wattbike technical documentation, levels 6 and 10 of air
resistance on the Wattbike ergometer result in power s of 45
and 55W at a cadence of 40 rpm and 785 and 1045W at a
cadence of 130 rpm. As a result, in this study, the ergometer
was set to level 8∼10 for seven male cyclists and level 6∼8 for
three female cyclists. Verbal encouragement was given to all
participants to promote maximal engagement. Along with
the EMG signals, the performance data (power and cadence)
were recorded from the bike pedals at a sampling rate of
1Hz. Surface EMG signals and Wattbike data were
synchronised by a trigger which can start the EMG and
Wattbike data sampling software simultaneously.

2.3. EMG Measurement. Eight muscles of the right lower
limb were selected for surface EMG measurement,
namely, rectus femoris (RF), vastus lateralis (VL), vastus
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medialis (VM), biceps femoris (BF), semitendinosus (ST),
tibialis anterior (TA), gastrocnemius lateralis (GAS), and
soleus (SOL). Following the recommendations of the
Surface ElectroMyoGraphy for the Noninvasive Assess-
ment of Muscles (SENIAM) project [17], the skin of the
electrode sites was identified, shaved, lightly rubbed, and
cleaned using alcohol swabs to reduce impedance before
EMG measurement. Surface EMG signals were recorded
using a ME 6000 P8 Surface EMG acquisition instrument
(Mega Electronics System, Kuopio, Finland) with bipolar
Ag/AgCl electrodes with a 2 cm interelectrode distance.
1e sampling frequency of EMG signals was 1000 Hz. 1e
electromyogram electrode locations of RF, VL, VM, BF,
ST, TA, GAS, and SOL are shown in Figure 2.

2.4. EMG, Power, and Cadence Data Processing. Firstly, raw
EMG signals were bandpass filtered at 5–500Hz offline
using a 4th order zero-phase-shift Butterworth filter. Next,
the EMG signal of each muscle was segmented for each 3-
second epoch with no overlap, and the MNF based on
wavelet packet transformation was calculated for each
EMG segment. 1e values of muscles with the same
function were combined and averaged (e.g., VL and VM
were combined into VAS, BF and ST were combined into
HAM). Correspondingly, power and cadence were aver-
aged for every 3-second epoch for each participant during
the intensive all-out cycling exercise. Since each participant
was not fatigued in the first period, data of the 2nd to 10th
periods of the 30-second all-out cycling exercise were used
for the analysis.

In the wavelet packet transform analysis of surface EMG
signals, the Daubechies (db6) wavelet was implemented for
wavelet packet decomposition and reconstruction, and the
MNF was calculated on this basis, using the following
formula:

MNF �
􏽒∞ 0ωP(t,ω)dω
􏽒∞ 0P(t,ω)dω

, (1)

where (t) is equal to the power spectrum of EMG signals
based on wavelet packet transformation.

1e normalised processing equation of the data obtained
from each participant within each 3-second epoch is as
follows:

xNormalized �
xi − xmin

xmax − xmin
, (2)

where xNormalized is equal to the normalised value of raw data
xi and xmax and xmin indicate the maximum and minimum
values of series X, respectively.

2.5. Grey Relational Grade Calculation. 1e EMG MNFs of
six muscle groups were selected as inspection sequences to
choose power or cadence as the standard sequence. 1e
normalisation of each standard and inspection sequence
data were calculated by dividing the average value of the
sequence. We then calculated the grey relational coefficient
using the preprocessed sequences and Deng’s formula for
grey relational grade. 1e formula is shown as follows:

corr(x0(k), xi(k)) �
Δmin + pΔmax
Δ0i(k) + pΔmax

, (3)
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RF

VL

VM

TA

SOL

GAS

BFST

Figure 2: Electromyogram electrode locations of each tested
muscle.
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where i� 1, 2, 3, . . ., m and k� 1, 2, 3, . . ., n; x0 and xi
indicate the standard sequence and inspected sequence,
respectively. Δ0i� ||x0(k)− xi(k)|| is the difference between
x0 and xi. Δmin�∀imin.min. ∀k||x0(k)− xi(k)|| and
Δmax�∀imax.max. ∀k||x0(k)− xi(k)||. p is the dis-
tinguishing coefficient and p∈[0,1]. According to previous
research, we used p � 0.5 in this study.

To calculate the grey correlation coefficient, its mean
value is taken as the grey correlation grade (CORR), as
determined by the following equation:

CORR(x0, xi) �
1
n

􏽘

n

k�1
corr(x0(k), xi(k)). (4)

In this study, the grey relational grade of CORR ranged
from 0 to 1. A higher CORR value indicates that the trend of
change between the EMG index and power or cadence is
closer, and thus, more significantly affects exercise
performance.

MATLAB R2016 software (MathWorks, Natick, MA,
USA) was used for data processing.

2.6. Statistical Analysis. Normality distribution of data was
assessed using Kolmogorov–Smirnov test, and one-way
repeated-measures analysis of variance (ANOVA) was used
to determine differences between pedalling performance
(power or cadence) and EMG index in every 3-second
epoch. 1e Spearman rank cross-correlation analysis was
used to observe any correlations between dependent vari-
ables, namely, power, cadence, and EMG MNF, and all-out
cycling exercise duration time. 1e Pearson cross-correla-
tion analysis was used to identify correlations between
power, cadence, and MNF and demographic information
(age and BMI). 1e nonparametric Mann–Whitney U test
was used to compare differences between power, cadence,
and EMG MNF at each phase point between male and fe-
male participants. Repeated-measures ANOVA was used to
compare the grey relational grades of different EMG indices
and pedalling performance (power and cadence). Statistical
analyses were performed using SPSS for Windows version
13.0 (SPSS Inc., Chicago, IL, USA). All significant thresholds
were fixed at α� 0.05. Data were reported as mean-
± standard deviation (SD).

3. Results

1e average power output and cadence of all participants
calculated for every 3-second period over the exercise du-
ration are presented in Figure 3. From the 3rd pedalling
epoch, the power and cadence showed a gradual, approxi-
mately linear downward trend. Spearman cross-correlation
analysis revealed that exercise performance (power and
cadence) decreased significantly with increasing duration
time (power: ρ� −0.845, P≤ 0.001; cadence: ρ� −0.783,
P≤ 0.001). Based on one-way repeated-measures ANOVA,
we found statistically significant differences in power and
cadence between the 2nd and 10th pedalling epochs (power:
F� 33.421, P≤ 0.001; cadence: F� 45.030, P≤ 0.001).

Moreover, Pearson cross-correlation analysis revealed
that both age and BMI had no significant influence on power
and cadence (all P> 0.05). Similarly, the Mann–Whitney U
test revealed no significant differences between power and
cadence at each phase point (normalised value) between
male and female participants (all P> 0.05).

Figure 4 displays the EMG MNF of each muscle cal-
culated for every 3-second period during a 30-second all-out
pedalling exercise. 1e MNF of RF, VAS, TA, and GAS was
significantly influenced by the duration time (RF : F� 9.288,
P≤ 0.001; VAS : F� 5.460, P≤ 0.01; TA : F� 11.579,
P≤ 0.001; and GAS : F� 12.227, P≤ 0.001), whereas no ev-
idence of an association was found between the duration
time and the MNF of HAM and SOL (HAM : F� 1.821,
P> 0.05; SOL : F� 1.214, P> 0.05). In addition, Spearman
cross-correlation analysis revealed significantly negative
correlations between the duration time and the MNF of each
muscle (RF: ρ� −0.589, P≤ 0.001; VAS: ρ� −0.519,
P≤ 0.001; HAM: ρ� −0.329, P≤ 0.05; TA: ρ� −0.687,
P≤ 0.001; GAS: ρ� −0.686, P≤ 0.001; and SOL: ρ� −0.341,
P≤ 0.05).

Moreover, based on Pearson cross-correlation anal-
ysis, we found that neither age nor BMI had a significant
influence on the MNF of each muscle (all P> 0.05). We
also found using the Mann–Whitney U test no significant
differences between the MNF of each muscle at each
phase point and male and female participants (all
P> 0.05).

Table 1 shows the grey relational grade of the EMG
indices and pedalling performance. We determined that
different muscles had significantly different grey relational
grade values (F� 11.793, P≤ 0.001). Further, there was no
significant main effect of performance indices (F� 0.722,
P> 0.05), but a significant interaction effect between EMG
and performance indices was found (F� 1.006, P> 0.05).
Multicomparison results revealed that the grey relational
grade of TA was higher than other muscles (P< 0.05),
whereas the grey relational grades of HAM and SOL were
significantly lower than other muscles (P< 0.05).

4. Discussion

1emain finding of our study was that the EMGMNF of TA
had the highest grey relational grades of exercise perfor-
mance among all six measured muscle groups; in contrast,
the grey relational grades of HAM and SOL were signifi-
cantly lower than the other muscles. To our knowledge, this
study is the first to explore the relationship between exercise
performance decline and the fatigue degree of each lower
limb muscle during 30-second all-out sprint cycling.

In this study, each participant performed a strenuous all-
out sprint cycling exercise, during which most lower limb
muscles contracted at very high forces and tended to fatigue
quickly. As a result, the EMG MNF of RF, VAS, TA, and
GAS decreased significantly during the entire exercise
process, indicating that the fatigue of these muscles devel-
oped quickly and continuously during the entire exercise
process. Correspondingly, we found that exercise capacity
and performance (power and cadence) showed a significant
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decline from the 3rd 3-second epoch and developed pro-
gressively during the latter epochs.

We also determined that the grey relational grade of TA
was higher than that of other muscles, indicating a closer
relationship between TA fatigue and total exercise perfor-
mance decline during 30-second all-out sprint cycling. 1is
finding is consistent with that of Martin and Brown, who
reported an up to 63% decrease in ankle joint power during a
30-second cycling sprint [18]. During 30-second sprint
cycling in our cohort, the EMGMNF of TA showed a steady
and nearly linear decrease, indicating a significant and severe
fatigue development of the TAmuscle. It has been suggested
that TA plays a significant role in the directional control of
force production on the pedal, and thus influences cycling
technique and pedalling effectiveness [19, 20]. 1e signifi-
cant impact of TA fatigue on exercise performance decline
during this cycling exercise in our cohort is in agreement
with these previous findings.

Previous studies have reported a close relationship be-
tween exercise performance decline and muscle fatigue of
VAS, RF, and GAS during short-time sprint cycling exercise.
Furthermore, it was proposed that VAS and GAS play a key
role in the total power contribution during maximal sprint
cycling, whereas RF was an important muscle in energy
transfer between joints at critical times [21]. RF was also
found to be more susceptible to fatigue development than
other quadriceps femoris muscles during sprint cycling
exercise due to greater activation of muscle fibres as well as
the high composition of type II muscle fibres [22–24]. In this
study, the average grey relational grades between exercise
performance and VAS, RF, and GAS were all greater than
0.74 and significantly higher than the grey relational grades
of HAM and SOL, indicating a close relationship between
exercise performance decline andmuscle fatigue of VAS, RF,
and GAS during 30-second all-out cycling.

Regarding the muscles of HAM and SOL, previous
studies have found no significant roles for these muscles in
force production, power transfer, and fatigue development
during continuous sprint cycling, which were consistent
with the results of the present study [3, 20, 25]. We found no
significant interaction influence of duration time on the
MNFs of HAM and SOL, a finding which may be explained

by their lower activation level and high composition of type I
muscle fibres [3, 20, 25]. It has been suggested that ap-
proximately ∼80–85% of the power produced over a pedal
cycle is generated during leg extension (i.e., the downstroke),
whilst ∼15–20% is produced during leg flexion (i.e. the
upstroke) [26], which may also explain the significant roles
of TA, RF, and VAS during sprint cycling. In a broader
context, these findings indicate that the anaerobic endurance
training of HAM and SOL for improving 30-second all-out
sprint cycling exercise performance and the whole anaerobic
endurance ability of lower limb muscles is less of a concern
as the two muscles are not apt to fatigue during exercise.

A few limitations should be acknowledged in the
current study. Firstly, the number of male and female
participants in our cohort is distinct, which may affect the
universality and reliability of the results [27–29].
Addressing this potential issue, we evaluated the power,
cadence, and MNF for each muscle in our cohort, and our
data demonstrated similar changes in the indices and
metrics between male and female participants. In fact, there
were no significant differences between male and female
participants, thereby excluding potential sex-specific dif-
ferences in the results. Additionally, our original power
analysis indicated eight participants were statistically
needed for our study, but we recruited ten. Secondly, we
examined the EMG activities of eight leg muscles, and
several muscles, including the gluteus maximus (GMax)
and medial GAS (GASM), were not considered. According
to a previous study, the absence of GASM data is not critical
as the function of GASM can be inferred by the activity of
the lateral GAS [21]. However, the functional role of GMax
cannot be replaced by other muscles, so the absence of
GMax is a limitation of the current study. Lastly, except for
the main effect of fatigue of each lower limb muscle on the
decline of exercise performance, changes of muscle coor-
dination induced by fatigue may also influence exercise
performance during 30-second all-out sprint cycling [3], a
possible effect which was not considered in our study.
Nevertheless, despite these limitations, our current findings
provide insights towards understanding the relationship
between the fatigue of lower limb muscles and exercise
performance during a 30-second all-out cycling exercise.

3 6 9 12 15 18 21 24 27 30
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2
Po

w
er

 (n
or

m
al

iz
ed

 v
al

ue
) 

3 6 9 12 15 18 21 24 27 30
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Ca
de

nc
e (

no
rm

al
iz

ed
 v

al
ue

)

Figure 3: 1e average power and cadence of all 10 participants calculated for every 3-second period during a 30-second all-out cycling
exercise.

Journal of Healthcare Engineering 5



Table 1: Grey relational grades between pedalling performance and the EMG MNF of each.

RF VAS HAM TA GAS SOL
Power 0.77± 0.13 0.74± 0.17 0.68± 0.17▼ 0.82± 0.13▲ 0.81± 0.14 0.67± 0.16▼
Cadence 0.83± 0.11 0.78± 0.14 0.67± 0.16▼ 0.93± 0.04▲ 0.81± 0.06 0.68± 0.17▼

Note. ▲ and ▼, respectively, indicate significantly higher and lower grey relational grade values than other muscles.
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Figure 4: 1e EMGMNF of each muscle calculated for every 3-second period during a 30-second all-out cycling exercise. (a) RF, (b) VAS,
(c) HAM, (d) TA, (e) GAS, and (f) SOL. An ∗indicates a significant main effect of sprint duration time on EMGMNF, whereas # indicates a
significant negative correlation between the EMG MNF and sprint duration time.
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5. Conclusion

In conclusion, RF, VAS, GAS, and TA progressively tired
during a 30-second all-out sprint cycling exercise. Of the
muscles evaluated, the degree of fatigue of TA showed the
greatest association with exercise performance decline,
whereas the muscle fatigue of RF, VAS, and GAS also sig-
nificantly impacted exercise performance during a 30-sec-
ond all-out sprint cycling exercise. 1e findings may provide
insights for coaches and cyclists to better understand the
physiology and changes related to high-impact exercise and
aid the design of more effective training programmes.
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