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ABSTRACT The 16S rRNA gene amplicon sequence data from tailing and nontailing
rhizosphere soils of Mimosa pudica from a heavy metal-contaminated area are
reported here. Diverse bacterial taxa were represented in the results, and the most
dominant phyla were Proteobacteria (41.2%), Acidobacteria (17.1%), and Actinobacteria
(14.4%).

The rhizosphere of plants is normally colonized by microbial communities which
potentially benefit the host plants (1–3). Knowledge of the bacterial community of

the metal-tolerant and leguminous Mimosa pudica (found abundantly in the studied
heavy metal-contaminated soil) would explain their involvement in enhancing the
growth and survival of the plant (4). Studies on microbial communities from different
environments provide novel insights into their structure and function, leading to the
discovery of novel functional genes (5, 6). The 16S rRNA gene amplicon sequence data
presented here provide insight toward understanding how the bacterial diversity
impacts plant growth promotion and heavy metal tolerance.

The rhizosphere soils of M. pudica were collected from six different sites (tailing
sites, MRS1, MRS2, and MRS3; nontailing sites, MRS4, MRS5, and MRS6) of an ex-tin
mining area (latitude 5°389N, longitude 101°19E) in Perak, Malaysia. Physicochemical anal-
ysis (7) indicated the soils to have acidic pH (4.90 to 5.75) and to be sandy loam in nature
and salt free (electrical conductivity [EC] range, 0.12 to 0.79 mS/cm). Heavy metal analysis
by inductively coupled plasma optical emission spectrometry (8) detected arsenic (14.3
to 1,242mg/kg), cadmium (1.6 to 17.8mg/kg), and lead (52.17 to 81.10mg/kg). M. pudica
roots were shaken gently to remove rhizosphere soil adhering to the surface of the roots.
This was done in a laminar flow cabinet, and sterile forceps were used to remove soil
tightly attached to the roots (9, 10). DNA was extracted from the rhizosphere soils using a
NucleoSpin soil DNA extraction kit (Macherey-Nagel, Germany) according to the manu-
facturer’s instructions. PCR amplification of the V3/V4 hypervariable regions was
performed using the recommended Illumina 16S rRNA gene amplicon library method
(USA) (11) with the primers Bakt_341F (CCTACGGGNGGCWGCAG) and Bakt_805R
(GACTACHVGGGTATCTAATCC) (12). The libraries were sequenced using the MiSeq plat-
form (Illumina).

Adapter sequences and low-quality reads were removed from the paired-end
reads using BBDuk from the BBTools package (https://sourceforge.net/projects/
bbmap/) (13), and forward and reverse reads were merged using USEARCH v11.0.667
(14, 15). Default parameters were used for all software unless otherwise specified. All
sequences shorter than 150 bp or longer than 600 bp were removed from down-
stream processing. The reads were aligned with the SILVA 16S rRNA gene database
(release 132) (16), inspected for chimeric errors using VSEARCH v2.6.2 (17), and then
clustered de novo into operational taxonomic units (OTUs) at 97% similarity using
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UPARSE v11.0.667 (18). The taxonomic assignment of the OTUs was achieved using
QIIME v1.9.1 (19–21) against the SILVA database (16). All statistical analyses were
done in the R statistical package v3.6.1 (https://www.r-project.org/) (22).

The total number of reads obtained in this study was 125,158 (Table 1). The OTUs
were assigned to 23 bacterial phyla, 72 classes, 165 orders, 248 families, and 357 gen-
era. Proteobacteria (41.2%), Acidobacteria (17.1%), and Actinobacteria (14.4%) were the
most represented phyla, and the relative abundance of the top bacterial phyla in each
sample is shown in Fig. 1.

Data availability. The 16S rRNA gene amplicon sequencing data from this study were
deposited in the Sequence Read Archive (SRA) of the National Center for Biotechnology
Information (NCBI) under the BioProject accession number PRJNA601794 (Table 1).

FIG 1 Relative abundance of the top bacterial phyla in each sample obtained from the sequencing data. Each color represents a different phylum.

TABLE 1 Summary description of sample data in this study

Site Sample SRA accession no.
No. of
sequences

No. of
OTUs

Amplicon read
length (bp)

Tailing MRS1 SRR10909566 9,995 957 608
MRS2 SRR10909565 26,105 1,306 607
MRS3 SRR10909564 9,199 942 603

Nontailing MRS4 SRR10909563 28,389 1,213 604
MRS5 SRR10909562 27,898 1,308 599
MRS6 SRR10909561 23,572 1,285 568
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