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Detection of early blight and late 
blight diseases on tomato leaves 
using hyperspectral imaging
Chuanqi Xie, Yongni Shao, Xiaoli Li & Yong He

This study investigated the potential of using hyperspectral imaging for detecting different 
diseases on tomato leaves. One hundred and twenty healthy, one hundred and twenty early blight 
and seventy late blight diseased leaves were selected to obtain hyperspectral images covering 
spectral wavelengths from 380 to 1023 nm. An extreme learning machine (ELM) classifier model 
was established based on full wavelengths. Successive projections algorithm (SPA) was used to 
identify the most important wavelengths. Based on the five selected wavelengths (442, 508, 573, 
696 and 715 nm), an ELM model was re-established. Then, eight texture features (mean, variance, 
homogeneity, contrast, dissimilarity, entropy, second moment and correlation) based on gray level 
co-occurrence matrix (GLCM) at the five effective wavelengths were extracted to establish detection 
models. Among the models which were established based on spectral information, all performed 
excellently with the overall classification accuracy ranging from 97.1% to 100% in testing sets. 
Among the eight texture features, dissimilarity, second moment and entropy carried most of the 
effective information with the classification accuracy of 71.8%, 70.9% and 69.9% in the ELM models. 
The results demonstrated that hyperspectral imaging has the potential as a non-invasive method to 
identify early blight and late blight diseases on tomato leaves.

According to a previous research, tomato fruit ranks the first place among 40 fruits and vegetables in 
“relative contribution to human nutrition”1 and is widely consumed due to its high nutrition value. 
Tomatoes are a rich source of lycopene, beta-carotene, folate, potassium, vitamin C, flavonoids and vita-
min E2. They have anticarcinogenic, cardioprotective and other health benefits3. However, the quality 
and yield of tomato can be easily affected by various diseases during the growing season. Early blight 
(Alternariasolani) and late blight (Phytophthorainfestans) are the two common fungal diseases of tomato 
plants4. When these fungi infect tomato leaves, symptoms can rapidly spread and cover the entire leaf 
blade in a favorable environmental condition.

Conventionally, detecting diseases on crop leaves are based on visual assessments and diagnostic 
methods. Diagnose testing methods include polymerase chain reaction (PCR), enzyme linked immune 
sorbent assay (ELISA), fluorescence in situ hybridization and biomarker-based detection technology5. 
However, these methods have shown to be time-consuming, inefficient and destructive. Also, highly 
trained and qualified technicians are required for such detection techniques. Therefore, an advanced 
method is needed.

Hyperspectral imaging, which covers both spectral and imaging information, has been widely used 
in many fields, such as food6, agriculture7, medical science8, geography9 and archaeology10.The hyper-
spectral image (a hyperspectral cube) is composed of a series of images covering the whole wavelengths. 
Each pixel for one hyperspectral image has wavelengths covering the full spectral range. This technique 
has been studied previously for identification of diseases on crops. Williams et al.11 investigated fungal 
(Fusarium verticillioides) development in maize kernels using hyperspectral imaging technique. In that 
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study, principal component analysis (PCA) was used to remove background, bad pixels and shading 
of the images. A partial least squares (PLS) regression model was established to predict the infection 
severities. Bauriegel et al.12 used hyperspectral imaging to detect Fusarium culmorum on wheat ears. 
PCA was used to identify four distinct wavelength ranges (500–533 nm, 560–675 nm, 682–733 nm and 
927–931 nm), which allow the classification of healthy and diseased ear tissues. Spectral angle mapper 
(SAM) and head blight index (HBI) methods obtained correct detection rate of 84.0% and 91.0%, with 
an error of ± 10.0%. Rumpf et al.13 detected and classified diseased sugar beet leaves based on support 
vector machine (SVM) classifier model and spectral vegetation indices. The eight spectral vegetation 
indices and soil and plant analyzer development (SPAD) were used as features for detection. Vegetation 
indices were related to different physiological parameters and SPAD could reflect the chlorophyll content. 
The detection result for infected sugar beet leaves was 97.0%. However, no texture features were studied 
for the above researches. Qin et al.14 discriminated citrus canker disease from healthy, insect damaged, 
greasy spot, melanose, scab and wind scar infected samples using the hyperspectral imaging technique. 
The overall detection result was 96.2% based on spectral information divergence (SID) classification 
method. Both spectral and imaging information were studied in this research. However, it must be noted 
that the SID method used in this study has limit in its applications such as on-line disease detection 
because of the large amount of hyperspectral data. That means optimal wavebands must be identified 
for on-line detection. Mahlein et al.15 diagnosed different sugar beet leaf diseases (cercospora leaf spot, 
powdery mildew and leaf rust) by the hyperspectral imaging technique. Spectral reflectance combined 
with the SAM method was used for classification. From these researches, it can be found that the hyper-
spectral imaging technique can be used for detecting crop disease. When the effective wavelengths were 
identified, a multispectral imaging detection system can be designed, which can be used in precision 
agriculture, therefore, on-line and non-destructive disease detection can be achieved.

This study investigated the potential of using spectral reflectance and texture features extracted from 
hyperspectral images to detect early blight and late blight diseases on tomato leaves. The aims of this 
study were: (1) to develop a technique to identify two different diseases on tomato leaves using hyper-
spectral imaging; (2) to select effective wavelengths for diseases identification; (3) to compare the perfor-
mance of different models based on spectral and texture information; (4) to identify which wavelengths 
and texture features play the most prominent role for the detection of different diseases.

Results
Spectral analysis. Spectral curves. Mean spectral reflectance curves of healthy, early blight and late 
blight diseased leaves are shown in Fig.  1. The general trends of the three spectral curves were quite 
similar. There was a peak at around 555 nm and a valley at around 680 nm. The peak at 555 nm was 
the nitrogen absorption band. Reflectance increased sharply with the wavelengths from about 680 to 
750 nm. Wavelength at 700 nm is the red edge. From 700 to 1023 nm, the high reflectance was due to the 
internal light scattering by leaf cells. The reflectance in the visible spectral region was lower than that 
in the near-infrared region. There were some significant differences among the samples. Reflectance of 
healthy samples was higher than that of infected ones in the near-infrared region (750–1000 nm), which 
is caused by the collapse of leaf cell structure as the disease spread. In the visible region (400–750 nm), 
there was some overlap between healthy and diseased leaves. Moisture content of healthy samples was 
higher than that of the diseased ones, resulting in obvious reflectance valley of healthy samples at 970 nm 
which was assigned to the O-H stretching first and second overtones16. There are 512 bands covering the 
full spectral wavelengths (380–1023 nm). However, only 400–1000 nm was studied because of the noise 

Figure 1. Average spectral curves of three different types of tomato leaves. For each type of leaves, the 
reflectance values of all samples were averaged into one value, resulting in three curves.
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at the beginning and ending of the wavelengths. For wavelengths of 400–1000 nm, there are 477 bands 
(variables).

Identification results of full wavelengths. In the present study, the extreme learning machine (ELM) 
model was first established based on full spectral wavelengths. The spectral reflectance values were treated 
as X variables, and the sample types were treated as Y variables (healthy: 0, early blight: 1, late blight: 2). 
As shown in Table 1, the ELM models obtained satisfying results with the overall classification accuracy 
of 100% in both training and testing sets. However, too many input variables (477) in this method will 
increase the calculation time and may affect the robustness and accuracy of the model. The calculation 
times for full wavelengths-based and selected wavelengths-based models were 9.79 s and 1.36 s, respec-
tively. Also, for designing a multispectral disease detection system, effective wavelengths (variables) must 
be selected. Therefore, the effective wavelengths were identified for establishing a simplified model.

Significant wavelengths. In order to simplify the model and improve the performance of the identifica-
tion ability, the successive projections algorithm (SPA) was carried out to select effective wavelengths in 
this study. A total of five wavelengths (442, 508, 573, 696 and 715 nm) were identified as the key wave-
lengths by this algorithm. The selected wavelengths were then used to replace the full wavelengths for 
identification of different diseases. The number of selected variables suggested by SPA was only 1.05% of 
that of the full variables. Through wavelength selection, the raw spectral dataset was reduced to a matrix 
with a dimension of m ×  x, where m was the number of samples, and x was the number of selected 
wavelengths.

Identification results of SPA. ELM model was implemented to evaluate the detecting performance based 
on the effective wavelengths. The five selected wavelengths were then used to represent the full spectral 
wavelengths for establishing the SPA-ELM model. It performed excellently with the classification accu-
racy of 100% in the training set and 97.1% in the testing set. Though the classification accuracy in the 
testing set of the SPA-ELM model was a little lower than that of the ELM model, it is still acceptable and 
promising because the detection result with 97.1% is still high and it only decreased by 2.9%. Also, the 
calculation time decreased by 86.1% compared with ELM model simultaneously. Moreover, the num-
ber of the input variables suggested by SPA decreased largely, which has the potential to be used for 
developing on-line detection system. This indicated that SPA was an effective method for wavelengths 
selection, and the five wavelengths contained most of the effective information. The fewer input variables 
recommended by SPA can not only simplify the model and reduce the calculation time but also be used 
for designing a multispectral-based detection instrument.

Identification results for each selected wavelength. Each wavelength selected by SPA was used to establish 
identification model. There was variation in the accuracy of the ELM model depending on the wave-
length used for analysis. The ELM model at different wavelengths produced different results (59.2%, 
57.3%, 60.2%, 59.2% and 77.7%). The wavelength at 715 nm performed the best with the classification 
accuracy of 77.7% in the testing set. Other wavelengths such as 442, 573 and 696 nm also played prom-
inent roles in the identification with accuracies of 59.2%, 60.2% and 59.2%, respectively.

Texture features analysis. Texture information based on GLCM. The hyperspectral cube (hyper-
spectral image) contained one image at each spectral band (a total of 512 gray images for the whole spec-
tral bands), thus one hyperspectral image contained a large amount of redundant information which was 
not useful in discriminating the diseases. Therefore, images at the five selected wavelengths were used for 

Models Type Variables

Training Testing

No.a Missed b
CA 
c/% No.a Missed b

CA 
c/%

ELM

Healthy

477

80 0 100 40 0 100

Early blight 80 0 100 40 0 100

Late blight 47 0 100 23 0 100

All 207 0 100 103 0 100

SPA-ELM

Healthy

5

80 0 100 40 0 100

Early blight 80 0 100 40 0 100

Late blight 47 0 100 23 3 87.0

All 207 0 100 103 3 97.1

Table 1.  Classification accuracies of the extreme learning machine (ELM) and successive projections 
algorithm-extreme learning machine (SPA-ELM) models. aNo.: number of samples. bmissed: incorrect 
identification samples. cCA: classification accuracy.
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further study. For each sample, eight texture features (mean, variance, homogeneity, contrast, dissimilar-
ity, entropy, second moment and correlation) based on gray level co-occurrence matrix (GLCM) at five 
selected wavelengths (442, 508, 573, 696 and 715 nm) were extracted, resulting in a total of 40 texture 
features (8 texture features ×  5wavelengths) for each sample. Then, identification model (ELM) was built 
based on these texture features. The eight texture feature images for healthy, early blight and late blight 
infected leaves at each wavelength can be seen in Fig. 2. It can be found different texture features had 
various images for the same wavelength and ROI. For the same identical texture feature and ROI, the 
texture images were distinct at different wavelengths. Texture images of different ROIs were also varying 
for the same wavelength and texture feature. This is the reason why texture features has the potential to 
be used for diseases detection.

Classification accuracies of texture features. The identification results based on texture features were 
shown in Fig.  3. Different texture features gave various results for the same model. The classification 
accuracies ranged from 53.4% to 71.8% in the ELM model. Among the eight texture features, the dis-
similarity, second moment and entropy carried most of the effective information with high values of 

Figure 2. Eight texture feature images of healthy and infected tomato leaves (a: early blight; b: late 
blight; c: healthy). For each sample, eight texture images can be acquired at each effective wavelength. Then, 
texture feature was obtained from the corresponding texture image.

Figure 3. Classification accuracy of each texture feature. Each type of texture feature at the five 
wavelengths was put together and treated as the input variable to establish the ELM model.
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classification accuracy (71.8%, 70.9% and 69.9%). Also, all texture features at the five wavelengths were 
used for building the classification model, which obtained the classification result of 60.2%. Although 
results obtained using texture features are a little lower than those acquired by using reflectance, the 
results presented here are quite promising and encouraging for further study to detect diseases by texture 
features.

Classification accuracies for each texture feature at different wavelengths. In order to compare the per-
formance of each texture feature at different wavelengths, the ELM models were established again. The 
results can be found in Table  2, which show that the same texture feature had varying classification 
accuracies at different wavelengths, and different texture features at the same wavelength also had varying 
performance. In the ELM models, the classification accuracy values ranged from 33.0% to 62.1%, 33.0% 
to 66.0%, 31.1% to 63.1%, 33.0% to 67.0% and 28.2% to 62.1% at the wavelengths of 442, 508, 573, 696 
and 715 nm, respectively. The highest classification accuracy (67.0%) was obtained by the dissimilarity 
feature at 696 nm. The dissimilarity at 508 nm and 573 nm also performed well with classification accu-
racies of 66.0% and 63.1%, respectively. Thus, the dissimilarity feature performed the best among the 
eight features, and this was corresponding to the result in Fig.  3. The contrast and entropy at 508 nm 
also showed promising results with classification accuracies of 60.2% and 63.1%, indicating that some 
texture features at 508 nm performed better than them at other wavelengths. From the results, it can be 
found that the dissimilarity at 508 nm was the most useful texture feature for identifying early blight and 
blight diseases on tomato leaves. The classification accuracy for total texture feature was 60.2%, which 
was located in the middle of all texture features’ results. This is because some texture features such as 
Variance, Homogeneity, Mean and Correlation may be not useful for diseases detection, directly affected 
the total classification accuracy.

Discussion
This study investigated the feasibility of using hyperspectral imaging technique to identify two different 
diseases on tomato leaves. Both imaging information and spectral information were investigated in this 
study. The ELM model was established to identify the diseased samples. SPA was applied to select useful 
wavelengths, which reduced the raw data. The classification accuracy was 97.1% in the testing set of the 
SPA-ELM model. The number of input variables suggested by SPA was five. Fewer input variables not 
only simplified the model but also accelerated the calculation speed. For the five selected wavelengths, 
reflectance at 715 nm was the most promising with the classification accuracy of 77.7%. Based on these 
selected wavelengths, a multispectral imaging detection system can be potentially designed, which will 
make the detection more efficient.

Using spectral reflectance features to detect plant diseases has been studied previously17–18. However, 
the spatial features were not studied because image information cannot be obtained only by using spec-
tral technique. In our research, eight texture features (image information) extracted from hyperspectral 
images were studied, which has the potential to classify early blight and late blight diseases. For example, 
based on the gray image at the wavelength of 715 nm, the two diseases can be classified at the accuracy 
of 77.7%. Among the eight texture features, three (entropy, dissimilarity and second moment) performed 
well with high classification accuracies (70.0%, 71.8% and 70.9%, respectively). In order to study the 
performance of each texture feature at different wavelengths, the texture feature at each wavelength was 
also used to establish the ELM classification model. From the results, it can be found that the dissimi-
larity at 508 and 696 nm played the most prominent roles in the classification (66.0% and 67.0%). Thus, 
the dissimilarity may be one of the most important factor to detect early blight and late blight diseased 
leaves in this study. Eight texture features were extracted from hyperspectral images at the five selected 
wavelengths. Since there are 512 gray hyperspectral images in each sample, extracting texture features 
from all images is not feasible. There are two main methods to solve this problem. One is extracting 

Textural features

Identification of each wavelength (%)

442 nm 508 nm 573 nm 696 nm 715 nm

Mean 48.5 56.3 54.4 58.3 54.4

Variance 33.0 33.0 31.1 33.0 28.2

Homogeneity 46.6 48.5 55.3 44.7 42.7

Contrast 53.4 60.2 58.3 57.3 54.4

Dissimilarity 58.3 66.0 63.1 67.0 61.2

Entropy 57.3 63.1 63.1 64.1 62.1

Second Moment 62.1 62.1 62.1 59.2 62.1

Correlation 48.5 49.5 31.1 55.3 59.2

Table 2.  Classification accuracies for each texture feature at different wavelengths.
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texture features from several gray images at selected wavelengths, and the other is obtaining texture 
features from the PC images. Extracting texture features from effective images was reported by Pourreza 
et al.19. In that study, the authors selected the texture features from one image at the wavelength of 
591 nm. However, using only one image to extract texture features may not be suitable, because some 
useful texture features may be in those images at other wavelengths. Also, the performance of each 
texture feature at different wavelengths were also not compared. The same texture feature extraction 
method (GLCM) was also studied by Kamruzzaman et al.20. The authors extracted four texture features 
(contrast, correlation, energy and homogeneity) from hyperspectral images at two wavelengths (974 and 
1211 nm). However, other texture parameters such as mean, variance and dissimilarity were not studied. 
Extraction of texture features based on the PC images was reported by Zhu et al.21. PCA is an effective 
method to compress hyperspectral images. Based on the PC images, texture features can be extracted, 
which usually brings a satisfactory result. However, gray images those play the most important roles in 
the identification cannot be determined from PC images. This is because the PC images have no corre-
sponding wavelengths, therefore, the specific gray images cannot be known.

This work demonstrated that: (1) both spectral and texture features could be used to identify the 
two different diseases on tomato leaves; (2) reflectance at 442, 508, 573, 696 and 715 nm were extremely 
important in establishing the ELM model; (3) dissimilarity at 508 and 696 nm played the most prominent 
roles for diseases classification; (4) entropy, dissimilarity and second moment may be the most influential 
texture features to identify early blight and late blight diseases on tomato leaves.

Though the results obtained by texture features were a bit worse than those obtained by reflectance, 
the results were quite promising and encouraging for further study. In future researches, the fusion of 
texture features should be used to improve the classification accuracy. Meanwhile, more samples with 
different infection severities should be taken into consideration for establishing more robust and accurate 
models.

Materials and Methods
Hyperspectral imaging system and software. A visible and near-infrared hyperspectral imaging 
system (Fig. 4) covering the spectral wavelengths of 380–1023 nm was used. It consists of a lens (OLE-
23), an imaging spectrograph (V10E-QE, Specim, Finland), a conveyer belt operated by a stepper motor 
(IRCP0076, Isuzu Optics Corp., Taiwan, China), the light source from a 150 W tungsten halogen lamp 
(DCRIII, Schott Glass Co., Elmsford, N.Y., USA) and a computer. The area CCD array detector of the 
camera (C8484–05, Hamamatsu City, Japan) has 672 ×  512 (spatial ×  spectral) pixels, and the spectral 
resolution is 2.8 nm. The hyperspectral imaging system scans the samples line by line, and the reflected 
light was dispersed by the spectrograph and captured by the area CCD array detector in spatial-spectral 
(x ×  λ ) axes. The system itself is stationary and the sample is moving. One hyperspectral image (hyper-
cube) can be obtained when the sample is scanned by the system. MATLAB R2009a (The Math Works, 
Inc., Natick, USA), ENVI 4.7 (Research System Inc., Boulder, Co., USA) and Unscrambler V9.7 (CAMO 
Process As, Oslo, Norway) software were used.

Plant materials and pathogen cultivation. The variety of Zheza 809 tomato (a variety in China) was 
used in this study. Early blight and late blight pathogens were provided by The Institute of Biotechnology, 
Zhejiang University, China. The two different pathogens were cultivated on potato dextrose agar (PDA) 
media using different glass dishes. When the pathogen grew to about 2/3 of the glass petri dish, the 
hyphae on the edge were used to inoculate leaves. A small round area of about 5 mm in diameter of the 

Figure 4. Schematic diagram of the hyperspectral imaging system (This figure was drawn by Microsoft 
PowerPoint). It includes a camera, a spectrograph, a lens, two light sources, a motor and a computer. This 
system can obtain images in the spectral region of 380–1023 nm.
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hyphae was picked out using a toothpick and covered on the surface of each leaf. Each leaf was manually 
inoculated with a colonized agar plug. Before inoculation, all leaves were sprayed with water mist in 
order to make the hyphae covering the blade successfully. It must be noticed that healthy samples should 
also be inoculated with the agar plug without the fungi. Finally, inoculated samples with and without 
disease were kept in different growth chambers with the same temperature (24 °C) and humidity (90.0%) 
and 12 h light/dark cycle. When small disease spots appeared (about 48 hours after inoculation), a total 
of 120 healthy, 120 early blight and 70 late blight leaves were collected for further study.

Flow of the study. The main steps of the study can be described in Fig.  5. Firstly, hyperspectral 
images of healthy and diseased tomato leaves were obtained by the hyperspectral imaging system in the 
spectral wavelength range of 380–1023 nm. Then, the raw hyperspectral images were corrected accord-
ing to Equation (1). The reflectance values of all pixels in the region of interest (ROI) of the corrected 
hyperspectral images were extracted and treated as X variables. All samples were divided into training 
and testing sets at a ratio of 2:1. The ELM models were established based on full wavelengths and selected 
wavelengths, respectively. Eight texture features at selected wavelengths were extracted. Each texture 
feature was used to establish the identification model. Then, the texture feature at each selected wave-
length was used to build the classification model. Finally, optimal models were identified in terms of the 
detection power (value of classification accuracy).

Images acquisition and correction. Each tomato leaf was placed on the conveyer belt to be scanned 
line by line using the hyperspectral imaging system. The exposure time was 0.065 s while the moving 
speed was 3.3 mm/s. The vertical distance between the camera and the tomato leaf was 38.0 cm. A hyper-
spectral image was generated by using the imaging spectrograph in the spectral region of 380 to 1023 nm 
when the tomato leaf was scanned. The hyperspectral cube had 672 pixels in the spatial dimension and 
512 bands in the spectral dimension. Raw hyperspectral images were corrected into the reference images 
using dark and white reference images based on the Equation  (1). The dark reference image with the 
reflectance factor of about 0% was obtained by turning off the light and covering the camera lens with its 
cap. The white reflectance factor of about 99.0% was obtained from a white Teflon board (CAL-tile200, 
200 mm ×  25 mm ×  10 mm).

Figure 5. Main steps of this study. After hyperspectral images acquisition and correction, reflectance values 
were extracted. Successive projections algorithm (SPA) was applied to identify the effective wavelengths. 
Eight texture features were extracted from the gray images at the five selected wavelengths. Finally, the 
extreme learning machine (ELM) model was established for diseases classification.
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=
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Where C is the corrected hyperspectral image, R is the raw hyperspectral image, W is the white reference 
image, D is the dark reference image.

Data acquisition. Spectral information extraction. In order to reduce the influence of unevenness of 
samples and deviation of different pixels, a ROI with 20 ×  20 pixels was selected manually from each leaf. 
For diseased leaves, the ROIs were located in the symptom areas. And the ROIs were in the correspond-
ing areas for healthy samples. Then, the spectral reflectance values of all pixels in each ROI were averaged 
into one value for representing the spectral data of one sample. A total of 310 values were acquired and 
treated as X variables. Then, the total samples were divided into the training set and the testing set at 
a ratio of 2:1, i.e. one sample was picked out from every three consecutive samples22. Therefore, there 
were 207 samples for the training set (the numbers for healthy, early blight and late blight samples are 
80, 80 and 47, respectively) and 103 for the testing set (the numbers for healthy, early blight and late 
blight samples are 40, 40 and 23, respectively). The spectral features for building classification models 
were extracted using the ENVI 4.7 software.

Texture features extraction. Texture, which is characterized by the relationship of the intensities of 
neighboring pixels, is one of the most important features in image analysis23. The most commonly used 
texture measures are derived from the grey-level co-occurrence matrix (GLCM). In this study, eight 
texture features such as mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment 
and correlation were acquired based on GLCM. In the GLCM matric P (i, j), i and j are the indices of 
GLCM matrix elements of the five gray images. This method has been widely used in previous stud-
ies24–27. The texture information was extracted from a small area with 20 ×  20 pixels which was cropped 
from each image. For each hyperspectral image, eight texture features were extracted at each effective 
wavelength suggested by SPA. The texture formulas were shown in Table 3 28. Thus, a total of 40 texture 
features (8 texture features ×  5 wavelengths) were obtained for each sample. These texture features were 
treated as X variables to establish classification models. The texture features were calculated by the ENVI 
4.7 software (Research System Inc., Boulder, Co., USA). The explanation for each texture feature can be 
seen as follows:

∑= ( , )
( ), =

Mean iP i j
2i j

G

1

Mean stands for the average grey level of all pixels.

∑∑= ( − ) ( , )
( )= =

Variance i u P i j
3i

G

j

G

1 1

2

Variance indicates the rate of pixels’ value changes.

∑∑=
( , )

+ ( − ) ( )= =
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G

j
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2

Homogeneity feature is a standard of image uniformity.

Texture features Equation Texture features Equation
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Table 3.  Expressions of texture features based on gray level co-occurrence matrix (GLCM). 
( , ) = ( , )
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V i ji j
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∑∑= ( − ) ( , )
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2

Contrast measures the local variations in the gray-level co-occurrence matrix.

∑∑= ( , ) −
( )= =

Dissimilarity P i j i j
6i

G

j

G

1 1

Dissimilarity stands for the difference of the grey level.

∑∑= − ( , ) ( , )
( )= =

Entropy P i j P i jlog
7i

G

j

G

1 1

Entropy is the measurement of all the information.

∑∑= ( , )
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Second Moment P i j
8i
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Second Moment reflects the degree of uniformity of the grey level and the size of the texture.

∑∑=
( − )( − ) ( , )

( )= =

Correlation
i Mean j Mean P i j

Variance Variance 9i

G

j

G
i j

i j1 1

Correlation measures the joint probability occurrence of the specified pixel pairs.

Classification model. The ELM classification model has been used in previous studies29–30. This method, 
which is based on a single hidden layer neural network, has good generalization performance for feed 
forward neural networks. It chooses the input weights and the hidden layer biases randomly, and can 
solve problems such as local minima and over-fitting effectively. The learning speed of ELM was faster 
than that of the traditional feed forward network learning algorithm such as the back-propagation (BP)31. 
Compared with the traditional learning algorithms for neural networks, ELM tends to reach the smallest 
training error and norm of output32.

Effective wavelengths selection. The spectral information, covering the spectral wavelengths from 400 to 
1000 nm, was characterized by high dimensionality with redundancy among contiguous wavelengths33. 
Thus, selection of significant wavelengths is very important for spectral analysis34. Effective wavelengths 
selection aims to identify a small subset of spectral features as small as possible to replace the full wave-
lengths. Selected wavelengths, which were conducive to design an optimized multispectral imaging 
inspection system, can produce results that are better than or identical to the ones received using the 
full wavelengths20.

SPA is a robust method for selecting effective wavelengths, which can resolve collinear problems by 
selecting optimal variables with minimal redundancy and has been used in previous studies35–36. It 
applies a projection operation in a vector space for the selection of effective variables with small collin-
earity in training37. For the SPA method38–39, the data are disposed in a matrix X =  (x1, x2, …, xk) of 
dimensions (N ×  K) such that the k th variable xk is corresponding to the k th column vector ∈ Rxk

N. 
Let M =  min (N −  1, K) be the maximum number of selected variables. In the first step, the projections 
are carried on the X matrix, which generate k chains of M variables. Each element in a chain is selected 
to display the least collinearity with the previous ones. The construction of each chain starts from one of 
the variables xk, (k =  1, …, K). The calculation was operated in MATLAB R2009a.
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