
1Scientific Reports | 5:14730 | DOI: 10.1038/srep14730

www.nature.com/scientificreports

Real time unsupervised learning of 
visual stimuli in neuromorphic VLSI 
systems
Massimiliano Giulioni1, Federico Corradi1,2, Vittorio Dante1 & Paolo del Giudice1,3

Neuromorphic chips embody computational principles operating in the nervous system, into 
microelectronic devices. In this domain it is important to identify computational primitives that 
theory and experiments suggest as generic and reusable cognitive elements. One such element 
is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states 
of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 
‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence 
making attractor dynamics suitable to implement robust associative memory. The initial network 
state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of 
the corresponding memorized prototypical pattern. In a previous work we demonstrated that a 
neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports 
attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using 
a theory-driven strategy for choosing network parameters, we show that autonomous learning, 
following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting 
stimulus-selective attractors. Associative memory develops on chip as the result of the coupled 
stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between 
learning and retrieval phases.

Since its birthdate in 1989, with the publication of Carver Mead’s book1, the field of neuromorphic 
engineering aims at embodying computational principles operating in the nervous system into analog 
VLSI electronic devices. In a way, this endeavour may be seen as one modern instance of an over three 
centuries-long attempt to map forms of intelligent behavior onto a physical substrate reflecting the best 
technology of the day2. The additional twist of neuromorphic engineering is a case for a direct map-
ping of the dynamics of neurons and synapses onto the physics of corresponding analog circuits. Initial 
success was mostly in emulating sensory functions (e.g. visual or auditory perception), and important 
developments are still ongoing in this area3–5. However, it soon became clear that the agenda should 
include serious efforts to emulate, along with such implementations, elements of information processing 
downstream sensory stages, with the ultimate goal of approaching cognitive functions.

To make progress in this direction, beyond special-purpose solutions for specific functions, it seems 
important to identify neural circuitry implementing basic, and hopefully generic, dynamic building 
blocks, to provide reusable computational primitives, possibly subserving many types of information 
processing; in fact, this is both a theoretical quest and an item in the agenda of neuromorphic science. 
Steps in this direction have been taken recently in6, where ‘soft winner-take-all’ subnetworks provide 
reliable generic elements to compose finite-states machine capable of context-dependent computation. 
A review of the electronic circuits involved in such implementations is given in7.

In recurrent neural populations, synaptic self-excitation can support attractor dynamics, point attrac-
tors in the simplest instance on which our approach is based. Point attractors are stable configurations 
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of the network dynamics; from any configuration inside the ‘basin’ of one attractor state, the dynam-
ics brings the network towards that attractor, where it remains (possibly up to fluctuations if noise is 
present). In a system possessing several point attractor states, the dynamic correspondence between 
each attractor and its basin implements naturally an associative memory, the initial state within the 
basin being a metaphor of an initial stimulus, eliciting (even if removed afterwards) the retrieval of an 
associated prototypical information (memory). For a given network size and connectivity graph, the set 
of available attractor states is determined by the matrix of synaptic efficacies weighing the links of the 
graph; Learning memories is implemented through stimulus-specific changes in the synaptic matrix8,9.

The attractor-basin correspondence implements dimensionality reduction. Besides, the 
stimulus-selective self-sustained neural activity following the removal of stimulus that elicited it, can act 
as a carrier of selective information across time intervals of unconstrained duration, only limited - in 
the absence of other intervening stimuli, by the stability of the attractor state against fluctuations8,9. In a 
previous paper10 we demonstrated attractor dynamics in a neuromorphic chip, where synaptic efficacies 
were chosen and fixed so as to support the desired attractor states

If attractor dynamics is to be considered as an interesting generic element of computation and rep-
resentation for neuromorphic systems, we must address the question of how it can autonomously emerge 
from the ongoing stimulus-driven neural dynamics and the ensuing synaptic plasticity; this we do in the 
present work.

To date, sparse theoretical efforts have been devoted in this direction (see11–13), and to our knowledge 
this has been never undertaken in a neuromorphic chip. Here, in line with our previous papers13,14, and 
consistently with the above principles, we focus on the autonomous formation of attractor states as asso-
ciative memories of simple visual objects.

Our setting is simple, in that our VLSI network learns two relatively simple, and non-overlapped, 
visual objects. Still, it is complex, in that learning is effected autonomously (that is, without a supervised 
mechanism to monitor errors and instruct synaptic changes); synapses change under the local (in space 
and time) guidance of the spiking activities of the neurons they connect, which in turn change their 
response to stimuli and their average activity because of synaptic modifications. Such a dynamic loop 
makes the combined dynamics of neurons and synapses during learning quite complex, and controlling 
it a tricky business; even more so in a neuromorphic analog chip, with the implied heterogeneities, 
mismatches and the like.

To gain predictive control on the chips’ learning dynamics, we first characterize the single-neuron 
input-output gain function. Then, we use the mean-field theory of recurrent neural networks as a com-
pass to navigate the parameters space of a population of neurons endowed with massive positive feedback 
and predict attractor states. Finally we measure the rates of change (potentiation or depression) of the 
Hebbian, stochastic synapses as a function of the pre- and post-synaptic neural activities. These three 
characterization measures let us choose the correct settings for a successful learning trajectory. We then 
proceed with experiments on the autonomous learning capabilities of the system and finally, we test the 
attractor property of the developed internal representations of the learnt stimuli, by checking that when 
presented with a degraded version of such stimuli the network dynamically reconstructs the complete 
representation.

To our knowledge this is the first demonstration of a VLSI neuromorphic system implementing 
online, autonomous learning.

Results
Neuromorphic Multi-Chip System.  The neuromorphic system (Fig.  1) is composed of a silicon 
retina15 and of two identical reconfigurable neural chips. Visual stimuli are displayed on a screen; the 
silicon retina captures the dynamic contrast of the stimuli and outputs spike sequences. Those spikes 
are fed into the recurrent learning network implemented on the two neural chips. The network spiking 
activity is streamed to a PC for analysis.

As shown in Fig. 1 the recurrent network consists of 196 Excitatory and 43 Inhibitory neurons phys-
ically distributed over the two identical chips. Retina pixels have been grouped into a grid of 14 ×  14 
macro-pixels, each one generating convergent output to a single excitatory neuron (see also S.I. Fig. 1). 
The recurrent synapses between excitatory neurons are plastic: their efficacy can change depending on 
the ongoing spiking activity (see below). ‘Learning’ is the stimulus-specific synaptic change induced by 
the repeated presentation of stimuli and the ensuing neural activity. Excitatory synapses are binary, in 
the sense that only two state of efficacy are allowed, a Potentiated and a Depressed one. Learning man-
ifests itself as a sequence of transitions between these two states: as usual we name ‘LTD’, long-term 
depression the transition from a Potentiated to a Depressed state, and ‘LTP’, long-term potentiation the 
Depressed →  Potentiated transition.

Recurrent synaptic connections are random and sparse (see Fig.  1). Randomness and sparseness, 
together with average low values of synaptic efficacy, guarantee low correlations among neuronal activity 
and, simultaneously, ensure a mean homogeneous input to all neurons. Under these conditions we can 
approximate the on-chip network behavior with mean-field theory equations (see S.I.) and use predic-
tive theory-inspired tools (i.e. the Effective Transfer Function as explained below) to tune the system 
parameters. Moreover, the homogeneous connectivity is an ideally unbiased initial condition to test the 
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effect of learning: we expect that synaptic plasticity will cluster the connectivity structure in a stimulus 
dependent manner.

We provide here a brief description of the neural chips already described in16,17: the chips are com-
posed each of 128 Integrate-and-fire (IF) neurons and 16384 Hebbian plastic bistable reconfigurable 
synapses. Neurons and synapses are designed as mixed signal analog/digital circuits; the internal dynam-
ics of every element is implemented in continuous-time analog circuitry while communication among 
neurons relies on digital pulses representing the spikes. The entire chip works asynchronously and in 
real-time and does not necessitate any clocks. Every neuron and synapse is implemented in silicon with 
a dedicated circuit, in this way we are able to exploit in parallel all the resources without relying on 
complex multiplexing schemes. Hence the top-level view of the chip is an ordered matrix of 128 ×  128 
synaptic circuits connected to an array of 128 neurons. The drawback of the simplicity of the analog 
implementation is the unavoidable presence of mismatch deriving from the fabrication process. It causes 
distributions of the parameters among nominal identical circuits: one of the challenges faced in this 
work is to gain control over a network of mismatched elements. The analog synaptic circuit implements 
a plasticity model proposed in18, to which we refer the reader for details (see also S.I., section 3); a 
slightly different version was previously implemented in17. As already mentioned the synapse is binary, 
i.e. it has two levels of efficacy Jpot and Jdep – Potentiated and Depressed which are stable in the absence 
of pre- and post-synaptic neural activity; ‘efficacy’ is the amount of change in the membrane potential of 
the post-synaptic neuron per pre-synaptic spike. Plasticity is driven by neural spikes consistently with a 
rate-based Hebbian paradigm, and the changes of efficacy in each synapse are stochastic because of the 
irregularity of neuronal spikes in time. The synaptic connectivity is fully configurable, up to all-to-all 
connectivity. Each synapse can be set to be excitatory/inhibitory, and can be configured to connect two 
neurons on the same chip, or on different chips (including the retina), or to accept synthetic spikes from 
a PC. The communication of spikes from the retina to the neural chips, between the neural chips, and to 
the PC is based on the parallel asynchronous Address-Event-Representation (AER)5,19 and it is managed 
by a custom PCI-AER board20, which also implements inter-chips communication.

Theory-inspired tools to control the neuromorphic system.  As remarked in the Introduction, 
the successful autonomous, unsupervised development of associative representations of stimuli in the 
form of attractors of the network’s dynamics can be challenged in many ways by the interplay between 
neural and synaptic dynamics. Because of this, and given the large network parameter space, setting 
neural and synaptic parameters by trial and error is not a viable route. To gain control over the system 
we proceed in three steps: 1) we tune neuronal parameters by measuring the input-output response 
function of a single-neuron 2) then, to set the synaptic efficacy values, we characterize the response of a 
recurrent sub-population of neurons connected by non-plastic synapses, 3) finally, to choose the settings 

Figure 1.  The neuromorphic system. A visual stimulus is shown on a screen in front of the retina chip. 
The retina, a matrix of 128 ×  128 pixels, outputs spikes to two neural chips configured to host a recurrent 
network with a population E of 196 excitatory neurons and an inhibitory population I of 43 neurons 
(network’s architecture sketched on top). Sparse connections, shown with a solid line, are generated 
randomly: connectivity levels, i.e. the probability of synaptic contact, are 0.25 for E recurrent connection, 
0.5 for I to E connection, 0.3 for E to I and 0.02 from retina to I connection. The retina field of view is 
divided into 14 ×  14 macropixels, each projecting onto a single neuron of E. The network’s spiking activity is 
monitored by a PC.
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for the plasticity circuitry, we measure the LTD and LTP probability of the on-chip synapses when sub-
jected to controlled neuronal activity. For the first and third measures we developed ad-hoc experimental 
procedures (described respectively in the second section of the S.I. and in the next section). To study the 
response of the recurrent neuronal sub-population we faced challenges related to the characterization 
of a system endowed with a massive positive feedback and embedded in a larger network. Relying on 
predictions based on theoretical models and mapping the derived parameters onto the hardware is not 
viable: on one side it requires lengthy calibration procedures and on the other side, anyhow, it is prone to 
fail due to unavoidable differences between the models’ assumptions and analog circuital behavior, which 
easily became critical in presence of a massive positive feedback. As an alternative, we used the method 
introduced and validated in10 to identify regions in the parameter space compatible with the desired net-
work behavior: the coexistence of (two, in our case) stable, stimulus-selective collective attractor states; 
in the SI, section 2, we briefly summarize the procedure, and describe the results for the present sys-
tem. The method instantiates the dimensional reduction of the mean-field theory for a multi-population 
network (proposed in21) in a self-consistent procedure on chip, allowing us to estimate the ‘Effective 
Transfer Function’ (ETF) of a population of neurons of interest (one selective excitatory population in 
our case). From an engineering point of view the ETF can be seen as the open-loop transfer function of 
the sub-population of interest, taking into account the feedback provided by the rest of the network. As 
detailed in the S.I. the ETF allows us to predict, within certain approximations, the mean firing rate of 
attractor states of a single sub-population for different levels of its recurrent synaptic potentiation. Since 
learning implies selective changes in the ratio of the potentiated/depressed synapses in the network, the 
study of ETF for the sub-populations which will be affected by the stimuli offers a predictive tool for 
expected learning histories.

Synaptic plasticity.  The analysis based on the ETF gives an estimate of the expected changes in 
the average firing rates of the network’s attractor states, as the ratio of potentiated/depressed synapses 
changes as a result of learning. In turn, expected rates of synaptic changes evolve depending on changes 
in the network’s populations average activities. It is therefore relevant to derive an estimate of the LTP 
and LTD transition probabilities as a function of the pre- and post-synaptic firing rates (νpre, νpost); the 
procedure is described in Materials and Methods section.

The contour plots in Fig. 2, panel B confirm that the silicon synapse implements, as desired, Hebbian 
LTP, (its probability increases as νpre and νpost both increase) and heterosynaptic LTD (i.e., synaptic 
depression probability increases with increasing νpre, and only occurs for low νpost).

The joint information from the analysis of the ETF and the LTP/LTD transition probabilities allowed 
us to approximately predict the ‘working point’ of the plastic synapses at successive stages of learning 
(the prediction is expected to be more reliable for slow learning, such that the network evolves through 
quasi-equilibrium states, which are difficult to obtain for a small and heterogeneous network like the 
one on chip). Such knowledge allows to promote ‘learning trajectories’ with balanced LTP/LTD changes, 
which is another important stability factor13.

Figure 2.  Long Term Potentiation (LTP) and Depression (LTD) probability. On the x axis we report the 
pre-synaptic neuronal mean firing rate νpre, on the y axis the post-synaptic neuronal firing rate νpost. Details 
on the experimental procedure are reported in methods.
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Autonomous learning: forming stimulus-selective attractor states.  Two visual stimuli were 
repeatedly presented on a LCD screen, acquired in real time by the silicon retina, and mapped onto 
the recurrent network distributed on two neural chips; our goal was to achieve autonomous associative 
learning leading to the formation of stimulus-selective attractor states as internal representations (‘mem-
ories’) of the stimuli. Hence, after learning, for every stimulus we expect a specific network response that 
should persist even after the removal of the stimulus.

Visual stimuli, (a ‘happy’ and a ‘sad’ face shown in panel A of Fig. 3), were orthogonal (zero overlap) 
and their coding level (fraction of activated macro-pixels, see S.I.) is fixed at about 1/3; Hence each 
stimulus will activate about 5460 retina neurons and, correspondingly, about 65 excitatory neurons. the 
implications of this for more realistic situations are discussed in the Discussion section.

Learning proceeds as a sequence of transitions between the Jpot and Jdep synaptic states, depending 
on the activity of pre- and post-synaptic neurons induced by stimuli, as explained below. Notice that no 
explicit control is imposed on synaptic dynamics depending on the network being stimulated or not, 
and no distinction is made between ‘learning’ and ‘retrieval’ phases; the network just evolves based on 
the incoming flow of stimuli, and its own feedback: our system’s learning is completely autonomous and 
does not require any supervision.

According to the Hebbian learning that synapses implement (as from Fig.  2), each stimulus pres-
entation is expected to provoke changes in a fraction of synapses as follows (we remind that learning 
is stochastic, to the extent that neural activities are): LTP in synapses connecting neurons activated at 
high rates by the same stimulus; LTD in synapses connecting neurons activated by different stimuli, or 
connecting neurons activated by stimuli to neurons never activated by any stimuli (we named them the 
‘background’ neurons); statistically little or no changes in synapses connecting pairs of ‘background’ 
neurons.

In the above scenario, because of autonomous learning, excitatory neurons get partitioned in three 
populations (two selective to stimuli, and the background), which both under stimulation and in the 
absence of it show an evolving pattern of relatively stable firing rates; as remarked in the Introduction, 
during this unsupervised evolution the network could well drift to undifferentiated high activity or qui-
escence states. Balance between LTP and LTD is essential to guarantee a successful learning trajectory14. 
LTP should eventually grow high enough to support stable selective attractor states; however, if this is 
not counterbalanced by LTD along the way, and especially in the early stages of learning, the learning 
trajectory can easily lead the network to globally unstable states; knowledge of the LTP/LTD probabilities 
of Fig.  2 is important to obtain robust learning trajectories. This is where the predictive power of the 
ETF, and knowledge LTP/LTD curves, come into play, hinting at safe paths in the large parameter space.

Our main results are described in Fig. 3, which illustrates a typical successful ‘learning history’, and 
in Fig. 4, which describes the underlying evolving micro-structure of the synaptic matrix.

Panels A,B,C of Fig.  3 describe respectively the sequence of stimuli, the average firing rates of the 
two selective populations and a two-dimensional representation of the network’s output to match the 
representation of stimuli. It is seen that: 1) initially, each stimulus provokes a response in its target 
neural population (which, through the induced inhibitory activation essentially silence the other pop-
ulations, up to small noise); this activity is rapidly extinguished when the stimulus is removed, and no 
noticeable activity is present during the inter-stimulus interval 2) during each stimulation, a fraction 
of synapses changes, according to the (stochastic) scheme already explained, and this is reflected in the 
slow increase in the firing rates under stimulation 3) after many repeated stimulations, the build-up 
of synaptic self-excitation determines the appearance of a high-activity (meta)stable state for each of 

Figure 3.  Learning Dynamics. (A) Sequence of input visual stimuli each active for 1 sec. as highlighted by 
the orange bands. (B) single-trial firing rates of the excitatory sub-populations responding to the happy (red) 
and sad (green) faces. (C) system output, i.e. network activity during the inter-stimulus intervals shown as a 
two-dimensional image, constructed from the map of the macro-pixels to the neurons. (D) degraded version 
of input stimuli and (E) corresponding network output.
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the two selective sub-populations (the equivalent of the ETF passing from 1 to 2 stable fixed points in 
Fig. 3 in S.I.), and after the stimulus is released, the corresponding selective sub-population stays in a 
self-sustained state of elevated activity: the attractor state propagating the memory of the last stimulus 
across the inter-stimulus interval; sometimes this reverberant state is destabilized by the next incoming 
stimulus, while in other cases it decays spontaneously, due to finite-size fluctuation53. Correspondingly, 
in a phase of mature learning, the output the of the network during the inter-stimulus interval well 
matches the input stimuli.

A sample history of the synaptic changes underlying the learning history of Fig. 3 is given in Fig. 4, 
Panels A, B. Panel A illustrates the time course of the fraction of synapses in the potentiated state, for 
the different synaptic groups (identified by colour); synapses are inspected every 2 presentations of the 
same stimulus (4 stimulations in the alternate sequence). Consistently with expectation: synapses con-
necting neurons affected by the same stimulus get potentiated, actually approaching saturation, such that 
the average potentiation level remain essentially stable for t >  300 s; LTD is visible in the initial stage of 
learning; synapses connecting neurons in the background stay essentially unaffected.

Figure 4.  Synaptic evolution. (A) Fraction of potentiated synapses. Traces named inter-selective, selective to 
bkg and bkg to selective refer respectively to the average fraction of potentiated synapses in the connections 
between the two selective sub-populations (happy and sad), from the two selective sub-populations to the 
background, and from the background to both happy and sad. (B) Hamming distance over time between 
two successive recordings of the synaptic matrix. (B–D) snapshots of the excitatory recurrent connection: 
gray (black) dots are depressed (potentiated) synapses between the pre-synaptic neurons (plotted on the 
x-axis) and post-synaptic ones (on the y-axis). Neurons responding to the same stimulus are grouped 
together. In red we highlight the group of synapses connecting neurons strongly reacting to the happy face. 
They get potentiated during learning. The group of synapses highlighted in blue are those connecting sad to 
happy population: as expected they get depressed during the initial learning stages.
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Panel B shows the Hamming distance between the network synaptic matrices sampled as in panel 
A. We see here that the seemingly steady situation reached in panel A for the selective ‘sad to sad’ and 
‘happy to happy’ synapses actually conceals a dynamic balance; for this to happen, again, LTP and LTD 
probabilities should be properly balanced. The evolution of the synaptic matrix is further illustrated in 
panels C–E of Fig.  4. The pictures are, from top to bottom, snapshots of the synaptic matrix taken at 
the beginning of learning, after 30 seconds, (2 presentations of each stimulus), and after 300 seconds (40 
presentations).

The snapshot in panel C just reflects the random choice of 5% potentiated synapses as the initial 
condition of the network; in panel D we see that the synaptic matrix getting the expected structure, for 
the chosen index labelling: two blocks of mainly potentiated synapses (LTP), corresponding to synapses 
connecting neurons responsive to the same stimulus (remember that the stimuli are orthogonal, hence 
the non-overlapping ‘potentiated squares’); ‘whitened’ blocks of depressed synapses (LTD) connecting 
neurons responsive to different stimuli, or those connecting neurons responsive to either stimuli to 
background neurons; one strip on the extreme right, of synapses connecting neurons in the background, 
which stay essentially unaffected. Such features get further sharpened in the mature learning phase of 
panel E.

Error Correction properties.  In order to check that the developed selective, self-sustaining states 
of elevated activity are indeed attractors of the network dynamics, 1) we observe their persistence after 
removal of the stimulus and 2) we check that the network is able to perform error correction of a degraded 
stimulus: in a mature stage of learning, for initial conditions (stimuli) close to one of the ‘memories’, the 
network spontaneously relaxes to the corresponding attractor state.

This we show in panel D of Fig 3, in which the stimulus is degraded by removing 20% of its active pix-
els. The network quickly reconstructs the complete, learnt memory, thanks to the selective feedback. We 
remark that systematically exploring the error-correction ability, by varying the amount of degradation of 
the stimuli, would allow to give an estimate of the basin of attraction of the attractor states. Indeed, this 
we showed in10 (in which the selective synaptic structure was imposed and not self-generated).

Discussion
We demonstrated a neuromorphic network of spiking neurons and plastic, Hebbian, spike-driven syn-
apses which autonomously develops attractor representations of real visual stimuli acquired by a silicon 
retina. Attractor dynamics results in stimulus-selective, elevated activity after removal of the stimulus, 
and error correction properties. Detailed inspiration from mean-field theory is used to implement on 
chip a search strategy in the large parameter space of the network, which works at the level of the net-
work’s input-output gain function, without having to delve into the single circuits level.

Within the limitations of the chosen scenario, which we discuss in the following, what we achieved 
takes a step along a most needed line of development, if neuromorphic systems are ultimately to act as 
autonomous and adaptive dynamic systems interacting in real time with their environment (for which, 
of course, much more than just building associative representations will be needed).

In view of further progress, some of the simplifying choices we made, and some limitations must be 
discussed and put in perspective.

First, it would be tempting to compare the performance of our neuromorphic network with theoreti-
cal predictions about the limit of capacity, i.e. the maximum number of networks configurations that can 
be embedded as retrievable memories. Hebbian dynamic learning with bounded (two-states in our case) 
synapses entail a capacity scaling as the logarithm of the number of synapses22 (as opposed to the linear 
scaling of the Hopfield network8,23 or its equivalent realization with spiking neurons24); this limit can be 
partially overcome by making learning stochastic (as in our case) or lowering the coding level (see25 for a 
discussion and further developments). However, a quantitative comparison with the theoretical estimates 
is affected by several factors (for the chip and largely for simulations as well), e.g. the fact that the proba-
bility of synaptic changes is not really constant along the learning history; that mismatch in the synaptic 
circuits effectively creates - at any stage of learning - a distribution of probabilities of synaptic changes 
across the network (notice that we do not compensate for mismatch modulating the connectivity among 
neurons as suggested in26); that finite-size effects influence synaptic dynamics through the distribution 
of firing rates they induce13.

Empirically, the memory capacity of our small VLSI network is three patterns, beyond which learning 
becomes unstable; of course the small size of the network prevented us from checking how the capacity 
scales with the number of synapses. From the hardware point of view, achieving higher capacity with 
larger network hits at a scalability issue. Designing new chips that embed more neurons and synapses 
would provide a limited option for scaling up (unless radical changes in the implementation technology 
are considered - e.g. memristors). The other natural approach would be to combine many neural chips; 
this would face challenges related to the bandwidth for inter-chip communication, that would need to 
ensure reliable real-time AER-like spike delivery.

Second, we choose orthogonal stimuli (also with the same coding level) to be learnt by the network, 
which clearly facilitates learning by minimizing the interference induced on synaptic changes by differ-
ent stimuli. A natural question then arises, as to the implication of including more naturalistic stimuli 
with arbitrary overlaps (and possibly coding levels). As for overlaps, a computationally effective, and 
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biologically motivated, modification of synaptic dynamics was proposed in27; for the same stochastic, 
bistable Hebbian synaptic model here implemented, a regulatory mechanism was there introduced, pre-
venting further potentiation or depression of a synapse when the post-synaptic neuron was recently 
highly active or poorly active, respectively. Such modified ‘stop-learning’ synapses were implemented 
and successfully demonstrated in neuromorphic chips17,28, and would provide a good option to make the 
development of attractor representations more robust to the spatial structure of the stimuli. Allowing for 
different coding levels is instead essentially a matter of size of the network, allowing, even for low coding 
level, for a good averaging of synaptic mismatches across the dendritic tree of each neuron.

Putting our work in the context of previously published work, the attempt to embed learning capabil-
ities in hardware devices is of course not new in general, starting from the supervised ‘adaptive pattern 
classification machine’ described by Widrow and Hoff29 in the 60 s.

Not exhaustively: one of the first steps towards learning microchips was taken in the 80 s by Alspector 
and colleagues30, who demonstrated unsupervised learning in a feed-forward network (for a broad review 
of pioneering works see31). More recently32, demonstrates a feedforward architecture to classify patterns 
of mean firing rates imposed by synthetic stimuli. A complex neuromorphic chain including visual sens-
ing and processing (convolution filters) was described described in33.

Massive efforts have been devoted to develop various kinds of plastic synaptic circuits (using stand-
ard CMOS34–44 or with new memristor devices45–48; for a recent review of technologies employed for the 
purpose see49).

Still, very few works demonstrated learning in neuromorphic hardware at the network level. As 
mentioned above, Hebbian stop-learning synapses27 have been used in pure feed-forward networks17,28 
trained in a semi-supervised way to discriminate among syntethic patterns of mean firing rates, while50 
demonstrates how Spike-Timing-Dependent-Plasticity increases synchronicity in a network with local 
connectivity among neighboring neurons.

To our knowledge, learning synthetic stimuli in a spiking recurrent network with massive feedback 
has been dealt with only off-chip in51, reporting a digital implementation.

In the domain of recurrent spiking networks implementing associative memories this work takes a 
significant step towards the conditions of autonomous operation in naturalistic conditions by removing 
- as we did - the artificial separation between a ‘learning phase’, in which pre-computed synapses are 
‘downloaded’ to the chip, and a ‘retrieval phase’, in which the associative memory is tested with frozen 
synapses.

Finally, concerning the prospective interest of point attractor networks as ‘reusable building blocks’ 
of neuromorphic systems (see Introduction) we would like to remark that, in the face of the rich reper-
toire of dynamic states exhibited by the brain (and neural networks), attempts are under way to bridge 
such elementary point attractor dynamics and the complexity of neural dynamics over multiple time 
scales (see52 and references therein), and the domain of application of the attractor concept has gradually 
evolved to include models of working memory, information integration, decision making, multi-stable 
perception. This provides, we believe, a prospective rich context for the implementation reported here.

Materials and Methods
Procedure for estimating LTP and LTD probabilities.  We choose 64 excitatory neurons, and for 
each one we set up 128 input synapses, all configured as ‘AER synapses’, of which 64 are configured to 
be non-plastic (efficacy set to 0.05), the remaining 64 were plastic, with efficacy set to zero (in this way 
they do not affect the neuron’s firing, but the synapse can still perform transitions between its two binary 
states). In this way, firing νpost of each neuron is driven by input from the 64 non-plastic AER synapses, 
receiving on their pre-synaptic terminal synthetic spike trains through the PCI-AER board; the plastic 
AER synapses are pre-synaptically driven by synthetic spike trains with average rate νpre. To explore the 
(νpre, νpost) plane, for each νpost (i.e. for each average rate of external spikes to the non-plastic synapses), 
νpre (the average rate of external spikes to the plastic synapses ) is varied. For each (νpre, νpost) pair, the 
initial state of the synapse (i.e. the value of the internal variable X(0)) is set (high, to measure LTD, low, 
to measure LTP), and its binary state is checked after 1 sec.
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