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Abstract

Significance: In this review, we discuss the role of nitric oxide (NO) as a key physiological mechanotransducer
modulating both local and systemic heterocellular communication and contributing to the integrated (patho)phys-
iology of the cardiovascular system. A deeper understanding of mechanotransduction-mediated local and systemic
nodes controlling heterocellular communication between the endothelium, blood cells, and other cell types (e.g.,
cardiomyocytes) may suggest novel therapeutic strategies for endothelial dysfunction and cardiovascular disease.
Recent Advances: Mechanical forces acting on mechanoreceptors on endothelial cells activate the endothelial
NO synthase (eNOS) to produce NO. NO participates in (i) abluminal heterocellular communication, inducing
vasorelaxation, and thereby regulating vascular tone and blood pressure; (ii) luminal heterocellular commu-
nication, inhibiting platelet aggregation, and controlling hemostasis; and (iii) systemic heterocellular com-
munication, contributing to adaptive physiological processes in response to exercise and remote ischemic
preconditioning. Interestingly, shear-induced eNOS-dependent activation of vascular heterocellular commu-
nication constitutes the molecular basis of all methods applied in the clinical routine for evaluation of endo-
thelial function.
Critical Issues and Future Directions: The integrated physiology of heterocellular communication is still not
fully understood. Dedicated experimental models are needed to analyze messengers and mechanisms under-
pinning heterocellular communication in response to physical forces in the cardiovascular system (and else-
where). Antioxid. Redox Signal. 26, 917–935.
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Introduction

N itric oxide (NO) is one of the evolutionary, oldest (46),
and best characterized messengers, playing a key role in

local and systemic heterocellular communication. In the
cardiovascular system, NO is constitutively produced within
the endothelium from the enzymatic conversion of L-

arginine into L-citrulline by the type 3 isoform of the nitric
oxide synthase (NOS3), also defined as endothelial NOS
(eNOS; EC 1.14.13.39), according to the first tissues from
where it was isolated (63, 104, 128).

NO carries physicochemical characteristics, making it an
ideal messenger for transferring physiological signals within
cells, through cells, and among tissues. Compared with other
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free radicals participating in redox signaling, for example,
superoxide radical anion (O2

-�), NO is more stable and less
reactive toward biologically relevant thiols,a such as cysteine
and glutathione (53), which are found in millimolar con-
centrations in cells and tissues. Its peculiar reactivity, to-
gether with its lack of charge, allows NO to survive the
reducing thiol-rich environment of the cell, to cross cell
membranes, and to reach its molecular targets outside in the
subluminal and luminal side of the vascular endothelium
(Fig. 1). NO has a high affinity for Fe2+-heme centers and
rapidly reacts with the soluble guanylate cyclase (sGC; EC
4.6.1.2); sGC catalyzes the conversion of guanosine-5¢-
triphosphate (GTP) into the second messenger 3¢,5¢-cyclic
guanosine monophosphate (cGMP), which in turn activates its
downstream signaling cascade (8, 32). Although the chemical
biology of NO-mediated S-nitrosation of biological thiols is
still a matter of debate (27, 69), S-nitrosothiols are found in
low lM concentrations in vascular tissues, with higher con-
centrations in rodents than humans (17, 47, 116, 120). In ad-
dition, NO may exert pleiotropic cGMP-independent effects
via S-nitrosation of key cysteines in enzymes and proteins
modifying their activity (6).

In the endothelium, eNOS activity is tightly regulated by
different mechanisms, including (i) localization of the enzyme
(85, 129); (ii) availability of the substrate L-arginine, of
cofactors such as tetrahydrobiopterin, and Ca2+/calmodulin
(CaM), which are all essential for NOS activity (63); (iii)
phosphorylation at specific amino acids, which may lead to both
activation or inhibition of eNOS activity depending on their
localization in the protein sequence, as well as on the phos-
phorylation map (40, 48, 50); (iv) other post-transcriptional
modifications, such as S-nitrosation (45, 118), glutathionylation
(23), and persulfidation (5), which were shown to modify eNOS
activity; and (v) transcriptional and post-transcriptional regu-
lation, including changes of gene expression, messenger RNA
(mRNA) stability, or microRNA (miRNA)-dependent mRNA
degradation, as extensively revised by Balligand et al. (10).

In addition to the well-known receptor-mediated activa-
tion of eNOS, for example, by agonists such as acetylcholine
(ACh) or bradykinin (BK) (141), mechanical forces are
among the most important physiological regulators of eNOS-
dependent NO production in the endothelium (10, 11, 21, 83),
and multiple pathways of eNOS activation are involved. The
vascular endothelium is exposed to pulsatile flow, conjugat-
ing in a temporally defined manner both tangential and cir-
cumferential mechanical forces (10, 21, 35, 83). Tangential
forces (also defined as shear stress) have been shown to ac-
tivate tightly regulated biochemical responses by activation
of membrane or cytoskeletal proteins (defined as mechan-
osensors), leading to the activation of biochemical pathways,
thus transforming mechanical stimulation into biochemical
signal transduction (a process defined as mechanotransduc-
tion), which elicits highly regulated physiological responses.

Endothelial NO-mediated mechanosensing and mechan-
otransduction are mainly considered as local processes.

However, it is well known that eNOS-derived NO may exert
paracrine effects also via formation of bioactive circulating
metabolites (17, 47, 120), including nitrite (31, 38, 61, 101,
117, 137), and thereby participates in systemic heterocellular
communication (Fig. 1).

In this review, we aim to discuss the role of NO as a main
mechanotransduction messenger in local and systemic het-
erocellular communication. We will review the role of NO in
(i) abluminal heterocellular communication induced by me-
chanical forces, that is, the mechanisms of mechanosensing
and mechanotransduction in the endothelium focusing on
flow-mediated eNOS activation, NO production, and vaso-
dilation; (ii) luminal heterocellular communication, that is,
the NO-mediated communication among endothelial cells
and blood cells; and (iii) systemic heterocellular communi-
cation induced by physical forces, that is, the role of NO-
mediated mechanotransduction in remote communication
involved in organ protection. Moreover, we will discuss (iv)
the clinical implication of shear stress-induced eNOS-
mediated heterocellular communication (Fig. 1). A deeper
understanding of mechanotransduction-mediated local and
systemic nodes controlling heterocellular communication
between the endothelium and other cell types may provide
novel therapeutic strategies to be applied in conditions as-
sociated with endothelial dysfunction and cardiovascular
disease.

Abluminal Heterocellular Communication Induced
by Mechanical Forces

Endothelial cells sense changes in local hemodynamic
patterns by the presence of mechanoreceptors localized on
their membrane (respectively, on the luminal side of the
membrane, in junctional complexes connecting two adjacent
cells, or in focal adhesions in the subluminal side of the
membrane of cells) as well as inside the cells (i.e., the cy-
toskeleton). The endothelial cells respond to the mechanical
signal by activation of biochemical pathways ( = mechan-
otransduction), which lead to physiological effects, including
changes in arterial wall vasomotion, structure, and gene ex-
pression profile. In the following section, we will focus on the
shear-induced signaling pathways activating eNOS-derived
NO formation and heterocellular signaling between endo-
thelial cells and smooth muscle cells (SMCs), thereby regu-
lating vascular tone and blood pressure.

Shear-dependent vasodilatory response

Shear-mediated activation of eNOS activity occurs mainly
via three major mechanisms, which are depicted in Figure 2.
Activation of mechanosensors can lead (i) to mobilization of
intracellular Ca2+ stores, to an increase in intracellular Ca2+

concentration ([Ca2+]i), and to formation of Ca2+/CaM
complexes, which activate eNOS by binding to a short reg-
ulatory sequence between the two subunits of eNOS (18); (ii)
to activation of shear-sensitive protein kinases, phosphory-
lation of eNOS at specific amino acids, leading to activation
or inhibition of the enzyme depending on the phosphorylation
site and on the phosphorylation map (50); and (iii) to regu-
lation of expression levels of eNOS, which is mediated by the
activation of transcription factors, including activator protein
1 (AP-1), nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-kB), early growth response protein 1 (Egr-1),

aThe reaction of NO with thiols is chemically defined as S-
nitrosation and requires the presence of an oxidant leading to oxi-
dation of NO to a nitrosating species (such as N2O3 or NO2) or of
the thiol to thiyl radical, allowing a radical–radical reaction. Al-
though nitrosothiols are found in low lM concentrations in bio-
logical tissues (47), the mechanisms underlining S-nitrosation
reaction in cells and tissues are still under discussion.
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specificity protein 1 (SP-1), GATA-binding protein 6
(GATA6), and Krüppel-like factor 2 (KLF2) (97). In addi-
tion, the expression of eNOS is tightly regulated by post-
translational mechanisms, including mRNA stability and
miRNA-dependent regulation (10). These signaling path-
ways are deeply intertwined and may act simultaneously and
ensure short- and long-term eNOS regulation.

Experimental studies have shown that shear stress affects
NO production and heterocellular communication by eNOS
in two phases. On applying shear stress, there is a first brief
transient Ca2+/CaM-dependent NO burst, which is responsible
for short-term activation of eNOS, whereas activation of
phosphorylation cascades controls eNOS activity to assure
sustained and moderate NO generation (50). NO produced by
the endothelium is then released into the subluminal space and
reaches the SMC, where NO binds reversibly to the prosthetic
ferrous heme group (Fe2+) of the sGC with complex binding
kinetics (150), resulting in a conformational change that acti-
vates the enzyme. The sGC is a heterodimer, consisting of an
a- and a b-subunit, but only the latter contains the prosthetic
group (149), and exists in two isoforms both expressed in the
vasculature (102, 123). The enzyme catalyzes the conversion
of GTP to cGMP, which in turn activates cGMP-dependent
protein kinases (PKG) and other targets (115). In vascular
SMCs (VSMCs), activation of PKG induces vasorelaxation by
multiple mechanisms, including (i) phosphorylation of phos-
pholamban, and sarcoendoplasmic reticulum calcium trans-

port ATPase (SERCA)-dependent decrease in intracellular
Ca2+ concentrations; (ii) phosphorylation of IRAG, decrease in
IP3, and decrease in intracellular Ca2+ concentrations; or (iii)
changes in activity of K+ channels, causing membrane hy-
perpolarization, inhibition of extracellular Ca2+ influx, and
decrease in intracellular Ca+2 concentration, as well as phos-
phorylation of myosin light chain kinase, which then results in
dephosphorylation of myosin light chains (which is also de-
pendent on the activity of a myosin light chain phosphatase),
leading to smooth muscle relaxation. Taken together, shear
stress keeps eNOS-derived NO production constant, thereby
regulating vascular diameter and tone.

Resistance vessels are the main target for peripheral
mechanisms controlling blood pressure. Isakson and co-
workers (133) discovered that NO-mediated heterocellular
communication between endothelium and SMCs in resis-
tance vessels is fine-tuned by the redox state of hemoglobin a
within myoendothelial junctions (membrane structures con-
necting endothelium with SMCs). Thus, if the iron heme of
hemoglobin a is oxidized (Fe3+), NO can diffuse through the
myoendothelial junction and reach the SMC; however, if the
iron heme of hemoglobin a is reduced (Fe2+), NO will bind
to hemoglobin a and this will prevent diffusion of NO in the
SMC. Regulation of the oxidative state of hemoglobin a is
attributed to the enzyme CYB5R3 (133). This work was a
new milestone in understanding eNOS-dependent blood
pressure regulation involving hemoglobin a; this new role of

FIG. 1. The role of NO as a key mechanotransduction messenger in local and systemic heterocellular communi-
cation. (1) Shear stress acts on mechanoreceptors on the endothelium and activates eNOS in endothelial cells to produce
NO. (2) NO participates in abluminal heterocellular communication, inducing vasodilation and thereby regulation of
vascular tone and blood pressure. (3) NO participates in luminal heterocellular communication among endothelial cells,
platelets, and RBCs leading, for example, to inhibition of platelet aggregation (4) NO and its metabolites contribute to
systemic heterocellular communication and participate in complex physiological processes induced by changes in me-
chanical forces, which lead to organ protection; examples are the effects of exercise training and remote ischemic pre-
conditioning. (5.) In clinical and experimental settings, endothelial function is assessed as FMD. This technique is mainly
based on shear stress-dependent activation of eNOS-mediated vasodilation (although other vasodilators/vasoconstrictors are
involved as well). FMD, flow-mediated dilation; RBC, red blood cell. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars
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hemoglobin a within the vascular wall as a direct regulator of
NO-mediated control of vascular tone and blood pressure is
independent from the role of hemoglobin (ab) within the red
blood cell (RBC), which is known to act as scavenger,
transporter, and producer of NO, (discussed in the section
‘‘NO-Mediated Luminal Heterocellular Communication: Endo-
thelium, Platelets, and RBCs’’).

Mechanisms of endothelial mechanosensing

Accumulating evidence indicates that the vascular endothe-
lium, SMCs, and other cell types, including RBCs and platelets
(113, 143), are well equipped with proteins responsible for
mechanosensing and mechanotransduction, able to sense shear
stress, stretch, and other mechanical stimulations.

Mechanosensors involved in eNOS activation can be
found on cell surface, respectively, (i) membrane structures
controlling eNOS localization (caveolae), (ii) on the luminal
side of the membrane, including the glycocalyx, ion chan-
nels, and G protein-coupled receptors (GPCRs) (such as the
BK-2 receptor); (iii) in junctional complexes connecting two
adjacent cells, including the vascular endothelial growth
factor receptor 2 (VGEFR2)/platelet endothelial cell adhe-
sion molecule-1 (PECAM-1) complex; (iv) in focal adhe-
sions in the subluminal side of the membrane of the cells,
including integrins (such as a1b1), or (v) inside cells such as
the cytoskeleton and intracellular tyrosine kinases (Fig. 2).
These are responsible for cells and force specific stimulation
and cellular response (Fig. 2). These pathways are studied
in the emerging field of mechanobiology (6). Shear stress-
dependent stimulation of these receptors leads to the

FIG. 2. Mechanisms of endothelial mechanosensing leading to eNOS activation and local heterocellular signaling
in the vascular wall. Endothelial mechanosensors can be found respectively on the luminal side of the membrane, in
junctional complexes connecting two adjacent cells, or in focal adhesions in the subluminal side of the membrane of cells or
inside cells (such as the cytoskeleton or cytoplasmic TK). The activation of mechanosensors leads to short-term regulation
of eNOS by increase in intracellular Ca2+ concentration and/or by activation of protein kinases, which may lead to both
activation and inhibition of eNOS activity. These mechanisms may initiate long-term transcriptional regulation by acti-
vation of transcription factors (or other transcriptional mechanisms). NO can freely diffuse into the smooth muscle cells,
activate sGC, and induce vasodilation. In resistance vessels, NO diffusion is tightly controlled in the myoendothelial
junction by the redox state of hemoglobin a. AP-1, activator protein 1; CaM, calmodulin; CaMKII, calcium/calmodulin-
dependent protein kinase II; Egr-1, early growth response protein 1; eNOS, endothelial nitric oxide synthase; GATA6,
GATA-binding protein 6; Hb a, hemoglobin a; KLF2, Krüppel-like factor 2; L-Arg, L-arginine; MEJ, myoendothelial
junction; MLC, myosin light chain; MLCK, myosin light chain kinase; NO, nitric oxide; NF-kB, nuclear factor kappa-light-
chain-enhancer of activated B cells; PYK2, proline-rich tyrosine kinase 2; PKA, protein kinase A; PKB, protein kinase B;
PKG, protein kinase G; sGC, soluble guanylate cyclase; SP-1, specificity protein 1; TF, transcriptional factor; TK, tyrosine
kinase. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

920 ERKENS ET AL.



activation of complex, partially interdependent downstream
signaling pathways (Fig. 2). In this study, we focus on the
mechanosensors, which are likely responsible for eNOS ac-
tivation in the endothelium mainly by two mechanisms (i)
increases in [Ca+2]i or (ii) activation of phosphorylation
cascades leading to regulation of eNOS activity.

Caveolae. Caveolae are flask-shaped invaginations of
the membrane with a length of 50–100 nm stabilized by the
presence of caveolin-1 and play a central role in regulation of
cell membrane organization and signaling (97). Sessa and
coworkers demonstrated that caveolae regulate eNOS activ-
ity in response to shear stress (159). Caveolin-1 is known to
directly interact with the eNOS oxygenase domain and in-
hibit enzyme activity. Shear stress promotes formation of
Ca2+/CaM complexes, which bind to eNOS and promote
eNOS dissociation from caveolin-1, and eNOS activation
(85). Mice, deficient of caveolin-1, have impaired shear
stress-dependent regulation of their vessel diameter (159).
This impairment was completely reversed by endothelial-
specific reexpression of caveolin-1 (159).

Glycocalyx. The glycocalyx is a layer of proteoglycans
and glycoproteins on the luminal surface of endothelial cells
(119). The glycocalyx has the ability to change its structural
conformation in response to flow changes, therefore is an
excellent mechanosensor. Since it is directly connected to the
cytoskeleton, it enables transduction of the mechanical signal
from the outside into the cytoplasm; the mechanical signal
can then be redistributed through the cell, influencing other
mechanosensors, including intercellular junctions, the lumi-
nal surface of cells, abluminal focal adhesion sites, and the
nuclear membrane (34). An interesting publication showed
that partial degradation of the endothelial cell glycocalyx
leads to an impairment of NO production (132). A possible
explanation for this phenomenon is that hyaluronic acid,
one main constituent of the glycocalyx, is part of a cascade
activating Ca2+ influx by interaction with the CD44v10/
caveolin complex. Ca2+ influx may on turn activate NO
production and affect cell adhesion and proliferation (132).
Accordingly, it has been shown that the glycocalyx modu-
lates the motility and proliferative response of endothelial
cells (157). Since eNOS-derived NO is known to play a
central role in endothelial cell proliferation, arteriogenesis,
and vasculogenesis, a part of these effects may be dependent
on glycocalyx-dependent eNOS activation.

Ion channels. Shear-sensitive ion channels discovered so
far are potassium, chloride, and calcium-permeable channels
(76, 107). With the onset of shear stress, transient receptor
potential vanilloid 4 (TRPV4) channels open and allow Ca2+

influx into the endothelial cell, leading to the Ca2+/CaM-
mediated activation of eNOS. By this signal, calcium-activated
potassium channels (KCa) open and release K+ leading to cell
membrane hyperpolarization. Likewise, hyperpolarization is
increased by activation of shear-sensitive inward-rectifying
potassium channels (Kir) (106). Hyperpolarization of the
membrane activates hyperpolarization-sensitive Ca2+ channels
and Cl- ion channels in a time-dependent manner and results in
membrane potential depolarization occurring 35–160 s after
onset of shear stress (95, 114).

The mechanism on how blood flow activates these ion
channels is yet not fully understood. Three different theories
were recently proposed (83). One possible explanation is that
ion channels are pushed open due to the drag force. Second,
mechanical forces may change the tensional interactions
among cytoskeletal proteins (see also the section ‘‘the Cy-
toskeleton’’) pulling the channels anchored to the cytoskel-
eton to open. Third, mechanical forces may affect membrane
fluidity by influencing the viscosity of the lipid bilayer. Most
likely, it is a combination of these mechanisms that activates
ion channels in response to shear stress. An indirect regulation
of eNOS activation by mechanosensing channels may also
involve shear-dependent activation of ATP release from en-
dothelial cells, leading to activation of the purinergic P2X4

channel (154). P2X4 triggers Ca2+ influx, increases in intra-
cellular Ca2+ concentration, and activates eNOS. The mecha-
nism responsible for ATP release is still unclear (99).

G protein-coupled receptors. Activation of GPCRs by
shear stress was demonstrated for the first time by liposomes
carrying isolated GPCRs (64). BK is one of the oldest ago-
nists known to regulate eNOS activity in the endothelium.
The classical pathway is characterized by binding of BK to
its receptors, activation of protein kinase C, and increase in
[Ca2+]i in endothelial cells (20). It was shown that shear
stress-dependent activation of BK 2 receptor (B2) results in
changes of eNOS activity independent from the presence of
BK (84). Under physiological unstressed conditions, the B2
receptor and eNOS form a complex, hindering NO synthesis
by eNOS (84). Activation of the B2 receptor leads to disso-
ciation of eNOS from the endothelial B2 receptor, making
eNOS available for NO synthesis.

A further GPCR activated by shear stress is the purinergic
receptor P2Y2. After activation, this Gq/G11-linked receptor
initiates a signal cascade involving the phosphorylation of
PECAM-1, VEGFR2, Src-kinase, and Akt, leading to phos-
phorylation of eNOS at Ser-1177 (154).

Several possible mechanisms of GPCR-mediated shear-
induced changes of membrane bilayer are discussed (20).
Simulations of the lipid bilayer suggest that changes in in-
trabilayer pressures may activate membrane proteins (65).
One further mechanism proposed is the change in bilayer
thickness and thus improved stabilization of the activated
receptor conformation (92).

Junctional complex proteins (VEGFR2/PECAM-1/VE-
cadherin). A mechanosensitive complex consisting of
VEGFR2, PECAM-1, and the adaptor protein VE-cadherin
forms junctional complexes between two adjacent cells.
These have multiple functional and regulatory properties,
playing a role in endothelial permeability and structure (21).
The VEGFR2 has been shown to be activated by shear stress
independently of the presence of its ligand VEGF (81) and
leads to activation of phosphoinositide 3-kinase (PI3K), the
serine-specific protein kinase Akt, which in turn causes
phosphorylation of human eNOS at serine 1177 (40, 81).
PECAM-1 has no mechanosensing properties, but plays an
important role in the delayed Ca2+-independent eNOS acti-
vation in response to shear, which seems to involve Akt-
dependent phosphorylation of eNOS by serine 1177, as
demonstrated in PECAM-1-deficient mice (51, 139).
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Focal adhesions and integrins. Integrins are transmem-
brane proteins regulating cell–cell and cell–matrix interac-
tions and have been shown to influence endothelial response
to shear stress in many studies (127). The a1b1 integrin binds
to collagen and laminin and was involved in shear-dependent
regulation of eNOS activity in resistance vessels and the
microcirculation via activation of PI3-kinase-Akt eNOS
signaling (100). Mice lacking the a1 integrin gene showed an
impairment in flow-mediated dilation (FMD) of mesenteric
resistance arteries (100). A study has shown that a1b1 in-
tegrin is absent in endothelial cells of conduit arteries (37).

Cytoskeleton. In mechanobiology, the cytoskeleton is
considered as a network capable of transmitting forces
throughout the whole cell and simultaneously adapts to me-
chanical forces (77). According to the tensegrity model, the
cytoskeleton comprises elements resistant to compression
and not directly attached to each other, as well as elements
under steady tension (77). In response to shear stress, the
cytoskeleton reorganizes its structure by clustering cyto-
skeletal and membrane molecules directly connected to it,
such as cadherins and integrins. These proteins transmit
mechanical forces throughout the cell from one mechan-
osensing locus to the other, leading to structural rearrange-
ments of cytoskeleton-associated proteins (e.g., resulting in
their activation) as well as functional redistribution of cell
organelles (145).

Cytoplasmic tyrosine kinases. Two cytoplasmic tyrosine
kinases have been shown to participate in shear stress-
induced mechanosensing and regulation of eNOS activity,
the c-Src kinase (82), and the focal adhesion protein proline-
rich tyrosine kinase 2 (Pyk2) (48, 51). The Src-kinase in-
creases eNOS transcription via activation of RAS, MEK1/2,
and ERK1/2 pathway, as well as mRNA stability by an un-
known mechanism (36). Fleming and coworkers have shown
that activation of Pyk2 at Tyr 657 in endothelial cells exposed
to shear flow results in the decrease or complete loss of eNOS
enzymatic activity (35, 48, 51). The mechanisms of shear
stress-induced Pyk2 activation remain controversial, but
several potential mechanisms, including integrin stimulation
(50), Ca2+ influx without integrin activation (158), and shear-
dependent increase in vascular oxidative stress (136), have
been suggested. The negative regulation of eNOS activity
may not only assume a fundamental role for fine-tuning
eNOS activity in healthy vessels, but possibly also participate
in the pathophysiology of endothelial dysfunction and ath-
erosclerosis (35).

Summary and outlook: mechanosensing
and transduction in the vascular wall

Taken together, understanding how mechanosensing and
mechanotransduction in the endothelium regulate hetero-
cellular signaling in the vascular wall and blood is a chal-
lenging task. The complex crosstalk between the different
mechanotransduction and cell–cell communication pathways
contributes to adapt and fine-tune the physiological responses
and keep the human vasculature in a well-balanced state. A
systematical analysis of these pathways will help to identify
the common control nodes regulating short-term and long-

term regulatory mechanisms in the vasculature induced by
mechanical forces.

NO-Mediated Luminal Heterocellular Communication:
Endothelium, Platelets, and RBCs

NO-mediated heterocellular communication among endo-
thelium and blood cells plays a central role in maintenance of
cardiovascular homeostasis. NO produced by the endothe-
lium can be released into the lumen of the vessels and reach
the blood stream, where NO can interact with plasma proteins
and cellular blood components, including platelets and
RBCs. As a result, NO can participate in short-distance het-
erocellular communication; as an example, NO produced by
the endothelium may activate sGC in platelets and thereby
inhibit platelet aggregation (Fig. 3).

In RBCs, plasma, or tissues, NO can be transformed into
bioactive metabolites allowing long-distance heterocellular
communication. RBCs and platelets are both mechanosen-
sing cells (113, 144), and changes in flow conditions strongly
affect heterocellular communication among them. Shear
stress-mediated RBC deformation was shown to cause ATP
release (143). Similar to shear-dependent ATP released from
endothelial cells (described in the section ‘‘Ion Channels’’),
ATP released from RBCs may bind to purinergic receptors on
the surface of the endothelium and activate eNOS to produce
NO (99).

In this paragraph, we will focus on shear-induced NO-
mediated heterocellular communication in the vascular lu-
men, particularly (i) on NO-dependent effects on platelet
aggregation and hemostasis; (ii) on the role of RBCs in NO
metabolism, transport, and production; and (iii) on mechan-
osensing and mechanotransduction in RBCs and the effects
of endogenous and exogenous NO on their mechano-
properties, including RBC deformability.

Platelets, shear, and NO

Very early, it was observed that endothelium-derived NO
inhibits platelet aggregation via activation of the sGC/cGMP/
PKG pathway in platelets (142). Interestingly, platelets carry
high levels of sGC, and are characterized by the highest NO-
stimulated cGMP-forming activity (14) among cells be-
longing to the cardiovascular system, including vascular
cells, cardiomyocytes, and blood cells. The constitutively
shear-induced eNOS-derived NO production by the endo-
thelium inhibits platelet aggregation and thereby contributes
to the regulation of hemostasis in blood (56).

NO was also shown to inhibit platelet recruitment (142).
Recently, a biphasic response to NO in platelets, consisting of
a transient stimulatory response inducing platelet aggrega-
tion, followed by an inhibitory pathway limiting the size
of thrombus formation, was found (13, 160). This work was
criticized by others, who never found any proaggregation
effects of NO (55); instead, these authors presented com-
pelling arguments demonstrating that the NO/sGC/cGMP/
PKG pathway inhibits and does not enhance platelet aggre-
gation (33, 122).

The role of shear stress-mediated eNOS activation in he-
mostasis and inhibition of thrombus formation was confirmed
by observations linking low endothelial shear stress with
downregulation of eNOS and prostacyclin, and increased
thrombogenicity, or by analyzing atherothrombotic events
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induced after endothelial injury (22). Similar results were
shown in ex vivo studies where platelet aggregation was
studied in the presence of cultured endothelial cell mono-
layers in flow chambers (mainly using human umbilical vein
endothelial cells) (130).

NO released by the endothelium in response to shear
stress is only one of the mechanotransducers involved in
heterocellular signaling among platelets, endothelial cells,
RBCs, leukocytes, other blood cells, or microparticles.
Platelets are themselves mechanosensing cells, able to
feel their mechanical microenvironment and dynamically
respond to it (113). Aggregation, disaggregation, adhe-
sion, and recruitment of platelets are strongly affected by
both the nature of mechanical forces acting on them (i.e.,
the flow conditions) and by the presence/absence of ad-
hesion molecules and/or soluble biochemical messengers
in blood, released by endothelial cells and by blood cells
(94, 130).

RBCs and control of NO metabolism, transport,
and production

The role of RBCs in NO metabolism is complex and highly
debated. RBCs may participate in luminal heterocellular
communication by scavenging, transporting, and releas-
ing NO or its metabolites, as described in the following
paragraphs.

NO scavenging by RBCs. In the blood stream, endo-
thelial NO is taken up and inactivated by RBCs by an oxi-
dation reaction catalyzed by oxyhemoglobin (oxyHb or
FeIIO2Hb) producing methemoglobin (metHb or FeIIIHb) and
nitrate according to the following reaction (Eq. 1) (96):

FeIIO2HbþNO! FeIIIHbþNO3
� ½1�

This reaction is very fast (&107 M-1s-1) (41, 96) and
converts NO into nitrate, which was thought to be biologi-
cally inert.b Therefore, this reaction was considered to be
responsible for inactivation of endothelial NO signaling (28),
and RBCs were considered as the major sink for NO in the
circulation. Ex vivo experiments could show that the half-life
of NO in plasma alone is about 1.5–6 min (98) and that the
addition of RBCs decreases this time to 1.8 ms, which is 1000
times slower than the direct reaction of NO with free he-
moglobin. These differences were explained by considering
the behavior of RBCs in the flow and observing that partic-
ularly in conductance artery the RBCs accumulate in the
center of the vessel and create an unstirred layer of plasma,
which decrease the diffusion of NO (39).

NO production by RBCs: hypoxic conditions. The obser-
vation that under hypoxic conditions, coincubation of RBCs
with vascular stripes induced vasodilation (a phenomenon
defined as hypoxic vasodilation), which appeared to be de-
pendent on release of NO/NO metabolites from RBCs (109),
induced a radical change of view in the field. RBCs were
proposed to convert endothelium-derived NO into bioactive
metabolites and to release NO on demand under hypoxic
conditions when the eNOS activity is impaired. The bioactive
NO metabolite acting as NO source in RBCs was proposed
to be s-nitrosohemoglobin (HbSNO), produced within the
RBCs by the binding of NO to the highly conserved b-chain
Cys-93 residue (80). However, the observation that very low
levels of s-nitrosothiols are carried by rodent RBCs (146),
and even nondetectable levels in human RBCs (116), induced
a radical rethink of the proposed mechanism. Later on, it was

FIG. 3. Luminal heterocellular communication. NO may act also on the luminal site of the endothelium and contribute
to luminal heterocellular communication among endothelial cells, platelets, and RBCs. Endothelium-derived NO controls
platelet aggregation and hemostasis. In RBCs endothelium-derived NO can be inactivated by the reaction of NO with
oxyhemoglobin. In addition, NO can form bioactive metabolites and transform NO into a longer living signal, thus allowing
long-distance heterocellular communication and systemic effects. To see this illustration in color, the reader is referred to
the web version of this article at www.liebertpub.com/ars

bNitrate was recently shown to participate in biological signaling,
also by bioactivation. In fact, there is some evidence of a conversion
of nitrate into nitrite by nitrate reductases not only in bacterial flora
but also in mammalian tissues as demonstrated by Lundberg et al.
(101)
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shown that RBCs lacking the hemoglobin Cys-93 amino acid
did not negatively affect hypoxic vasodilation (78); however,
some evidence of the role of Cys-93 was presented recently
(161). More research is needed to define the role of Cys-93 in
hypoxic vasodilation.

Interestingly, it was observed that RBCs carry a bulk of
nitrite (38) and that there is a significant circulating arterial-
venous nitrite gradient (61). Therefore nitrite, and not S-
nitrosohemoglobin, was proposed to be the substrate of
nonenzymatic NO synthesis in RBCs, which is converted into
NO by a reaction catalyzed by deoxyhemoglobin (38, 61,
116, 146). Iron-nitrosylhemoglobin was also proposed to be
responsible for NO bioactivity in RBCs (74). Further mech-
anisms of nitrite bioactivation were proposed to be respon-
sible for the conversion of nitrite into NO. It was proposed
that nitrite reduction into NO can be catalyzed by carbonic
anhydrase (1) or by xanthine oxidase carried by RBCs and
other tissues (58, 148) and even by eNOS (148). Recent ex-
periments carried out by electron paramagnetic resonance
showed that the activity of deoxyhemoglobin is essential for
nitrite-derived NO release from RBCs under hypoxic con-
ditions (96) as treatment of RBCs with carbon monoxide
completely blocked nitrite reduction, while inhibition of
xanthine oxidase, carbonic anhydrase, or NOS did not show
any effects (96).

Nitrite-derived NO production participates in hetero-
cellular communication in blood. Thus, studies have shown
that nitrite bioactivation by RBCs inhibits platelet activation/
aggregation, while nitrite alone has no effects (96, 108).
These data show that nitrite-derived NO production may
participate in heterocellular signaling in the blood stream.
How mechanical forces influence scavenging or production
of NO under hypoxic conditions by RBCs and the hetero-
cellular signaling needs to be further elucidated.

Red cell eNOS-dependent NO production: normoxic con-
ditions. Data from our and other laboratories have demon-
strated eNOS-dependent NO production from RBCs in
normoxia, suggesting that RBCs may contribute to inhibition
of platelet aggregation (88), the circulating pool of NO me-
tabolites (88), and thus to overall tissue protection (155).
Treating RBCs with eNOS inhibitors decreased accumula-
tion of NO metabolites (75, 88) and L-citrulline in the su-
pernatant (88, 155). By applying a multilevel analytical
approach comprising HPLC, LC-MS/MS, flow cytometry,
laser scanning microscopy, and enzymatic assays together
with functional studies, we have recently demonstrated that
human RBCs contain an active eNOS building NO forma-
tion under normoxic conditions (29, 30). To biochemically
characterize the eNOS expressed in RBCs, we established
an immunoprecipitation protocol by using magnetic beads
and a purified mouse anti-human eNOS antibody, which was
chemically cross-linked to the beads. By applying this pro-
tocol, we were able to isolate eNOS from human (30) and
mouse RBCs (153). The identity of human red cell eNOS was
confirmed by ESI-MS/MS (30). The activity of the protein
was assessed by measuring the conversion of 3H- or 14C-
arginine to 3H- or 14C-citrulline catalyzed by the immuno-
precipitated eNOS (30) and membrane preparations of RBCs
(153). We found that the isolated eNOS protein was Ca2+/
CaM dependent (30), could be inhibited in the presence of
NOS inhibitors (L-NAME, L-NIO) (30), and its activity was

absent in RBC membrane preparations from eNOS knockout
(KO) mice (153).

NO was proposed to regulate RBC deformability (15).
NOS inhibitors were shown to decrease RBC deformability
in ektacytometry (15), while low concentrations of NO do-
nors increase RBC deformability (15), membrane fluidity
(138), and RBC filterability (88). However, the role of NO
in human RBC deformability is controversial (12). In the
microcirculation of the chorioallantoic membrane of the
chicken egg, eNOS inhibition and NO donors were shown
to affect RBC deformation and velocity independently of
changes of the vascular diameter (75). The role of red cell
eNOS in RBC signaling is still unknown.

RBCs as NO producers: how does NO survive the reaction
with hemoglobin in RBCs?. According to the findings re-
viewed in the previous paragraphs, there is compelling evi-
dence that RBCs produce NO under both hypoxic and
normoxic conditions. However, taking into account the
chemical biology of the reactions between NO and hemo-
globin, one may conclude that any NO produced within an
RBC will react with hemoglobin under any physiological
condition under consideration, that is, with oxyhemoglobin to
form nitrate and methemoglobin (Eq. 1), as well as with
deoxyhemoglobin to form nitrosylhemoglobin (Eq. 2) (73):

FeIIHbþNO! FeIINOHb 2½ �

Thus, the main open question still to be answered is how
NO produced within the RBC may survive the reaction with
hemoglobin. It was proposed that compartmentalization of
NO production in RBCs by formation of protein complexes
on the RBC membrane (e.g., deoxyHb, AE1/band 3, and
Rh-protein channels) facilitates NO production under hyp-
oxic conditions and its export (60). Recently, it was shown
that deoxyhemoglobin forms a complex with band 3 on the
membrane of RBCs and that the stability of the complex
depends on the oxygenation state of hemoglobin (124). An-
other possibility proposed by us is the presence of specific
protein targets within the RBCs, leading to activation of
downstream signaling and or protection of NO by local
conversion of hemoglobin into methemoglobin (28). More
research is needed to understand how NO may survive
scavenging by hemoglobin as well as to understand the role
of NO production in RBC signaling and heterocellular
communication.

Mechanosensing and mechanotransduction in RBCs

RBCs are mechanosensing cells that respond to mechani-
cal forces by changing their shape. RBC deformation is a
complex dynamic process mediated by aggregation and dis-
aggregation of interactions among cytoskeletal and mem-
brane proteins (52, 143, 144). RBC deformabilityc is required
for an efficient delivery of oxygen and nutrients to the tissues
(19) and contributes to define the rheological properties of
blood (143). RBC deformability may modulate the viscosity

cAccording to literature describing the rheological and mechan-
ical properties of RBCs, the term deformability indicates the
capacity or potential of RBCs to change their shape (which is
studied in rheological devices such as ektacytometers), while the
term deformation describes the dynamical process of shape change.

924 ERKENS ET AL.



of blood and importantly allows the cells to dynamically
participate in the flow by adapting their shape to the different
flow conditions found in conductance and resistance vessels
and in the microcirculation (143). Moreover, RBCs need to
deform to be able to enter and transit the narrowest capillaries
of the microcirculation, which may be even narrower than
their own diameter (143). Capillary blood flow and RBC
velocity in the microcirculation strongly depend on vascular
tone and RBC deformability (143).

It was shown that in response to shear stress, RBCs release
ATP, which may act as a mechanotransducer and bind to the
purinergic receptors on the endothelium, activating eNOS-
derived NO formation and heterocellular signaling leading to
vasorelaxation and increased blood flow (43, 99, 143). Re-
cently, Stone and coworkers applied a microfluidic approach
to study the time-dependent dynamics of deformation-
induced ATP release from RBCs (144) and demonstrated a
link between shear stress-mediated mechanical deformation
of RBCs and release of ATP (52, 144). Several key elements
in the mechanotransduction pathways of ATP release from
RBCs, including GPCR and hemichannels, such as the ubiq-
uitous ATP-releasing channel pannexin-1, have been pro-
posed (144), but not investigated in detail. Recently, it was
found that shear stress activates PIEZO-1 cation channel in-
ducing Ca2+ influx and ATP release from RBCs (26). Note-
worthy, the absence of Ca2+ in the incubation medium did not
fully block ATP release from RBCs, indicating that Ca2+-
independent mechanotransduction pathways are present in
RBCs (26). A methodological article by Sikora et al. proposed
that the experimental conditions described in the literature to
induce ATP release caused hemolysis, and therefore hemo-
lysis and not the activation of signaling pathways in RBCs
(including mechanosensing and mechanotransduction) was
causing the increase in ATP in the supernant of RBC sus-
pensions (131). This article started a lively discussion (87). In
our opinion, the conclusions of this article are not fully jus-
tified by the results provided because of some methodological
issues, including the use of a vortex for inducing shear stress
on RBCs. As pointed out by many authors in the field (26,
143), controlling for hemolysis and effects of vehicle in drug
application is fundamental before driving conclusions about
signaling in RBCs. Indeed, research with RBCs is not without
its pitfalls as we already discussed in a recent review (28).

Considering the central role of eNOS activation in me-
chanotransduction within the endothelium, it is tempting to
speculate that red cell eNOS may participate in mechan-
otransduction in RBCs, inducing intracellular signaling and
NO-mediated regulation.

Summary and outlook: mechanical forces and luminal
heterocellular communication

The role of mechanical forces in NO scavenging, transport,
and synthesis in RBCs and their interaction with platelets and
endothelium is not understood yet. The rheological behavior
of RBCs in the flow of conduit vessels (where RBCs accu-
mulate in the center of the vessel leaving a cell-free zone near
the endothelium) was proposed as one of the mechanisms for
limiting endothelial NO scavenging by RBCs allowing NO to
control vascular tone and blood pressure. Mechanical forces
and flow conditions are known to regulate aggregability and
activation of platelets. Similarly, the action of mechanical

forces on the cytoskeleton of RBCs may regulate their de-
formation, e.g. via modulation of aggregation/disaggregation
of protein complexes regulating deformability, as well as
erythrocrine function, including synthesis, signaling, or ex-
port of NO from RBCs or ATP release. Therefore, investi-
gations on the role of mechanical forces on RBC-mediated
NO production may be of fundamental importance to fully
understand the role of RBCs in NO metabolism and transport
under flow conditions.

Systemic Heterocellular Communication Induced
by Physical Forces

In this paragraph, we will describe how increase of vas-
cular shear may modulate systemic heterocellular signaling,
leading to improvement of cardiovascular function, and will
highlight the role of endothelial NO in initiation and induc-
tion of these favorable systemic changes. The effects of ex-
ercise training and remote ischemic preconditioning are
described as examples of complex systemic physiological
responses to changes in shear (Figs. 4 and 5).

Role of eNOS in vascular adaptation to exercise

Moderate exercise training has proven to be efficient to
prevent cardiovascular disease conditions in a multitude of
observations and studies (126). Regular physical activity
promotes a variety of favorable changes and adaptations of
cardiovascular function, including reduction of blood pres-
sure (16) and inhibition of atherogenesis (111). Exercise
training acutely increases heart rate and blood flow, thus
changing frequency and magnitude of hemodynamic forces
(Fig. 4). During exercise, vascular cells are simultaneously
exposed to very heterogeneous spatial and temporal stresses,
such as shear stress, cyclic strain, and transmural pressure.
In the long-term view, regular exercise training results in
alterations of endothelial gene expression pattern, that is,
upregulation of atheroprotective and downregulation of po-
tentially atherogenic genes (147), which likely lead to pro-
tection of vascular cells against apoptosis, inflammation, and
oxidative stress.

Exercise-induced eNOS upregulation and increased
endothelial-dependent vasodilation were first observed in dog
coronary arteries (54) and then confirmed in many other
studies (59, 66, 135). Likewise, experiments conducted in
different animal models and humans revealed that exercise
activates a complex pattern of intracellular eNOS regulatory
systems, including changes in phosphorylation state, and in-
tracellular localization (59). Furthermore, beneficial effects
of training on vascular endothelial function attributed to the
increased vascular NO bioavailability and upregulation of
eNOS were reported in patients with coronary artery disease
(66) and chronic heart failure (151). Recent studies demon-
strated that high-density lipoprotein (HDL) can modulate the
phosphorylation of eNOS and thereby its activity; interest-
ingly, HDL-mediated eNOS activation was significantly im-
paired in cardiovascular disease patients, but can be restored
by regular exercise (2). Therefore, mild to moderate exercise
training may be beneficial even in conditions previously
considered as contraindications (e.g., heart failure after cor-
onary bypass grafting).

The effects of exercise training on eNOS expression and
phosphorylation profile are influenced by a number of factors
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such as training time, exercise intensity, basal level of physical
activity, and eNOS gene polymorphisms (89). Furthermore,
since blood flow and hemodynamic shear forces strongly de-
pend on the localization and morphology of the vessels along
the vascular tree (22), the effect of exercise on vascular eNOS
may differ in various regions (35). These effects are particularly
evident for regions near arterial branches and curves, which are
characterized by disturbed flow conditions (22). In contrast to
the laminar flow in large conductance arteries, oscillatory shear
can reduce eNOS expression and thus elicit a proinflammatory
endothelial phenotype (35, 89). In fact, these regions are known
to be more prone to development of atherosclerosis (22, 25).
The impact of exercise training on vascular responsiveness and
endothelial function in different regions of the circulation needs
to be investigated in more detail.

Numerous studies provided evidence for exercise-induced
mobilization of endothelial progenitor cells (EPCs) from the
bone marrow to the circulation (93) and thus its contribution
to the vascular regeneration and angiogenesis (9). The mech-
anisms of EPC mobilization from the bone marrow are highly
complex (4) and depend on the activation of eNOS in the
presence of numerous mobilizing factors (e.g., VEGF, pla-
cental growth factor). Experimental studies have shown that
mobilization of stem and progenitor cells in vivo from the bone
marrow stromal cells is substantially eNOS dependent (3) and
due to activation of matrix metalloproteinases 2 and 9 (79).
Interestingly, exercise-induced EPC mobilization is abolished
in the eNOS-deficient mouse strain (91).

Remote ischemic preconditioning

Already in 1986, Murry at al. observed that repetitive brief
periods of occlusion of a coronary artery before cardiac is-
chemia can reduce the infarct sizes in a canine model, a
phenomenon defined as ischemic preconditioning (105).
Przyklenk et al. found that the effects of ischemia were
cardioprotective, even if carried out in another area of the
heart (112). Further studies demonstrated that a pre-
conditioning maneuver is cardioprotective even if performed
in noncardiac tissues (57). It was proposed that brief

FIG. 5. Remote ischemic preconditioning (rIPC). The
picture illustrates the protective effects of rIPC maneuver,
induced by four cycles of 5 min of occlusion, followed by
5 min of reperfusion, inducing a repetitive increase in shear
stress accompanied by mechanotransduction, including
eNOS activation and NO release. The blue arrows indicate
transduction of protective signals from the vessel endo-
thelium of the brachial arteries to the brain, lung, heart,
liver, kidney, and other vessels. To see this illustration in
color, the reader is referred to the web version of this article
at www.liebertpub.com/ars

FIG. 4. Vascular adaptation to exercise. Some of the beneficial cardiovascular adaptations to exercise are attributed to
upregulation of eNOS and systemic increase of NO bioavailability, which may result in a reduction of blood pressure,
decreased atherogenesis, and increase in mobilization of EPCs, as well as in induction of protective genes in the vasculature
and cardioprotection. Whether shear stress also activates red cell eNOS is still under investigation. EPC, endothelial progenitor
cell. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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reversible episodes of ischemia and reperfusion may result in
release of a protective signal from the site of ischemia and
result in cardioprotection (67). Proposed mechanisms include
neuronal transmission (152) [although criticized by others
(90)] as well as may involve humoral mediators such as
adenosine, BK, opioids, angiotensin I, and endocannabinoids
(68). Rassaf et al. observed that nitrite levels in plasma are
increased as a result of the preconditioning maneuver and that
preconditioning is ineffective in eNOS KO mice (117). They
have suggested that preconditioning-activated eNOS-derived
formation of NO in the endothelium (probably via changes
in shear stress) leads to increase of circulating nitrite levels
and cardioprotection via myoglobin-dependent conversion
of nitrite into NO and nitrosation of complex 1 (117). These
studies demonstrate that shear stress-induced NO production
within the endothelium may result in local heterocellular
communication within the vasculature or to the blood cells
upon biotransformation of NO into stable bioactive metab-
olites transported within the plasma or RBCs.

Summary and outlook: systemic signaling induced
local and hemodynamic forces

Taken together, there is evidence that changing frequency
or magnitude of hemodynamic forces by systemic changes
(such as in exercise training) or locally (such as by temporary
arterial occlusion in remote ischemic preconditioning) may
induce short-term and long-term changes in vascular NO
production and lead to protection of heart and vessels, as well
as other tissues (Figs. 1, 4, and 5).

Critical Issues for Experimental Studies

Mechanical forces affect a number of different cell types in
the human body. Our understanding of the complex hetero-
cellular communication induced by mechanical forces in the
organism has evolved from investigations using in vitro, ex
vivo, and in vivo methods. Each of these approaches can
provide only partial information about the complex and in-
tertwined effects of mechanical forces and the induced local
and systemic heterocellular signaling in the organism.

The cellular effects of physical forces were mainly studied
usually by applying nonpulsatile shear stress and by ana-
lyzing the behavior of endothelial cell monolayers in culture
in the absence or in the presence of blood cells in microfluidic
devices (140). These in vitro experiments revealed, for
example, that the laminar flow modulates endothelial cell
morphology, adhesion molecules, and gene expression pat-
terns, secretion of extracellular matrix proteins, and cell–cell
and cell–matrix adhesions and orchestrates collective be-
haviors of adherent cells (10). Similar devices were also
applied for studying platelet aggregation in response to vas-
cular injury involving exposure of the extracellular matrix
found below the endothelium (113, 130).

Microfluidic technology enables studies of cell behavior
from single- to multicellular organism levels. The true po-
tential of the use of microfluidics has emerged recently with
the advent of hydrogel systems, offering increased through-
put, multicellular interactions, substrate functionalization on
three-dimensional (3D) geometries, and simultaneous control
of chemical and mechanical stimulation (140). Applications
of 3D cell culture systems for analysis of cell–cell interac-
tions under flow conditions may provide a proper environ-

ment to study 3D cell–cell interactions and heterocellular
communication in response to mechanical forces.

The isolated/perfused Langendorff heart is traditionally ap-
plied to analyze coronary function and changes in coronary flow
in response to brief ischemia/reperfusion periods or to pharma-
cological stimuli. This technique was also applied to analyze the
effects of RBCs on tissue oxygenation conditions, coronary
vascular response, and myocardial performance and oxygen
consumption (24). Likewise, endothelium-dependent and
-independent coronary flow responses were increased in
RBC-perfused hearts (24). Recently, the cardioprotective
effects of red cell eNOS (via activation of arginase-1) toward
ischemia were demonstrated by application of this method
(156). Foaming, hemolysis, and isolation of the heart, as well
as stability of the preparation, make this technique technically
demanding. Therefore, it is necessary to integrate this set of
heterogeneous information to improve our understanding of
these mechanisms.

In vivo investigations in animal models are the best
available tools for evaluation of systemic hemodynamics and
blood cells/luminal components in shear stress-induced het-
erocellular communication. Modulation of systemic hetero-
cellular communication can be studied by combining genetic
approaches (e.g., eNOS KO mice) with physiological stimuli,
which are known to increase shear/hemodynamic forces, for
example, forced and voluntary exercise (134) and remote
ischemic preconditioning (117). To untangle the role of
vascular and blood components responsible for eNOS-
mediated heterocellular signaling, we created chimera mice
by bone marrow transplantation (103, 153). Applying this
approach, we found that blood cell eNOS participates in
regulation of blood pressure and cardioprotection. Although
useful, this approach presents some methodological limita-
tions, including irradiation-dependent activation of inflam-
matory pathways (which may increase the expression of an
inducible NOS), the possibility of protein transfer from the
blood to the endothelium (due to housing of circulating
EPCs), the presence of low levels of circulating blood cells
from the recipient, and—most importantly—the lack of
blood cell lineage targeting specificity.

Development of inducible and conditional transgenic mice
with tissue-specific target expression or ablation of genes
important for regulation of NO bioavailability and mechan-
otransduction may overcome these limitations.

Taking together, investigations in tissue-specific transgenic
mice applying a wide range of in vitro, ex vivo, and in vivo
approaches represent a future strategy to unravel the complexity
of NO-mediated, shear-induced heterocellular signaling and will
help to identify new potential molecular targets and strategies
for therapeutical, pharmacological, and nonpharmacological
interventions aiming to reduce cardiovascular disease.

Clinical Aspects: Mechanotransduction
in Endothelial Dysfunction

Alterations in endothelial function and the functional
integrity of the endothelium are associated with a variety
of pathological conditions, including hypertension, diabetes
mellitus, hypercholesterolemia, and heart failure (49). Like-
wise, primary and secondary risk factors such as age, smoking,
or hypercholesterolemia have been correlated with a decrease
in endothelial function (Fig. 6 and Supplementary Table S1).
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Measurement of endothelial function allows assessment
of the patients’ risk of cardiovascular events, progression of
atherosclerosis-related conditions, efficacy of lifestyle changes/
pharmacological intervention, and patient stratification (Fig. 6
and Supplementary Table S1). Interestingly, shear-induced
eNOS-dependent activation of vascular heterocellular com-
munication constitutes the molecular basis of all methods
applied in the clinical routine for evaluation of endothelial
function. Assessment of FMD of the brachial artery by high-
resolution ultrasound is one of the most widely applied
methods for noninvasive evaluation of endothelial function
in clinical setting (72). Analysis of changes in reactive hy-
permemic response by laser Doppler perfusion imaging was
proposed for evaluation of microcirculatory function (86).
Clinical studies based on administration of specific NOS
inhibitors have shown that the FMD response is strongly
dependent on eNOS activity (72). Indeed, FMD correlates
with levels of circulating nitrosospecies in plasma (70), and
mice lacking eNOS show no FMD response (44, 125). In-
terestingly, the same experimental setting allowed showing
that low flow conditions (achieved during occlusion) induce
eNOS-independent vasoconstriction, as demonstrated in man
(62) and in mice (44). These data provide a further experi-
mental proof of responsiveness and sensitivity of the endo-
thelium to different acute changes of flow conditions and
highlight the fundamental role played by eNOS in physio-
logical and pathophysiological shear-induced heterocellular
signaling in the human vasculature.

According to the guidelines of the American Heart Asso-
ciation (42) and the European Society of Cardiology (110),
the most effective treatments preventing the development or
progression of endothelial dysfunction are lifestyle changes,
including a low-calorie and low-fat diet, as well as regular
exercise, reduction of alcohol consumption, and smoking
cessation. These strategies, together with pharmacological
interventions aiming to reduce blood pressure or/and hyper-
cholesterolemia, have been shown to decrease morbidity and

mortality of cardiovascular disease (121). Understanding how
mechanotransduction and changes in NO bioavailability
contribute to local and systemic heterocellular communica-
tion will help in identifying novel diagnostic and therapeutic
targets for prevention of cardiovascular disease.

Summary and Future Directions

NO produced by the vascular endothelium is a key me-
chanotransducer for local and systemic heterocellular com-
munication. The endothelium is well equipped with different
mechanosensors found on the luminal side of the membrane
(such as glycocalyx, ion channels, and GPCRs), in the junc-
tional structures responsible for cell–cell interactions (such as
the VEGFR2/PECAM-1/VE-cadherin complex), in focal
adhesion points (such as integrins), or inside cells (such as the
cytoskeleton or tyrosine kinases such as Pyk2). Mechano-
sensors are activated by local changes in blood flow and elicit
transformation of flow-induced mechanical stimulation into
biochemical signals, which are then transduced within the
cells and across cells, finally leading to activation of local and
systemic responses.

Laminar shear stress is now considered as one of the most
important physiological stimuli for activation of eNOS within
the endothelium and it is responsible for NO-mediated local
and systemic heterocellular communication leading to regu-
lation of vascular tone, blood pressure, and blood hemostasis.
Interestingly, not only vascular cells but also RBCs and
platelets are capable of sensing mechanical forces and induc-
ing specific signaling mechanisms to modulate heterocellular
communication in the blood stream and in the vasculature. NO
produced by the endothelium in response to mechanical forces
can be metabolized in RBCs, plasma, and other tissues and
can be transported in the form of different metabolites in the
blood stream; in turn, bioactive NO metabolites allow shear-
dependent systemic heterocellular signaling (Fig. 1).

Exercise training and remote ischemic preconditioning
represent two beneficial examples of effective systemic

FIG. 6. Conditions influ-
encing endothelial function.
Red arrows highlight condi-
tions inducing adverse ef-
fects on endothelial function,
whereas green arrows rep-
resent treatments/conditions
exerting beneficial effects on
endothelial function. Please
refer to Supplementary Table
S1 (Supplementary Data are
available online at www
.liebertpub.com/ars) for litera-
ture references. To see this il-
lustration in color, the reader is
referred to the web version of
this article at www.liebertpub
.com/ars
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NO-mediated heterocellular communication in response to
physiological shear. Systemic shear-induced NO-mediated
communication between the endothelium and other cells is
highly complex and new experimental approaches are needed
to differentiate the specific role of each cell population in
modulation of systemic cell–cell communication and sig-
naling. Under pathological conditions, changes in mechani-
cal properties of the vessel endothelium may limit NO
production/bioavailability affecting systemic hemodynam-
ics, vascular tone, and overall cardiovascular homeostasis.

Future studies are needed to unravel mechanisms underpin-
ning changes in heterocellular communications among endo-
thelium and other cell types in response to mechanical forces.
These studies will help to identify novel therapeutic strategies,
including pharmacological and nonpharmacological interven-
tions, to modify mechanosensing and mechanotransduction-
dependent heterocellular signaling in health and disease.
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Abbreviations Used

Ach¼ acetylcholine
AE1¼ anion exchanger 1

AP-1¼ activator protein 1
ATP¼ adenosine triphosphate

B2 receptor¼ bradykinin 2 receptor
BK¼ bradykinin

CaM¼ calmodulin
CaMKII¼ calcium/calmodulin-dependent protein

kinase II
cGMP¼ 3¢,5¢-cyclic guanosine monophosphate

deoxyxHb¼ deoxygenated hemoglobin
EC¼ endothelial cell

Egr-1¼ early growth response protein 1
eNOS¼ endothelial nitric oxide synthase

EPC¼ endothelial progenitor cell
ESI¼ electrospray ionization

FMD¼ flow-mediated dilation
GATA6¼GATA-binding protein 6
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Abbreviations Used (Cont.)

GPCR¼G protein-coupled receptor
GTP¼ guanosine-5¢ triphosphate

HbSNO¼ S-nitrosohemoglobin
HDL¼ high-density lipoprotein

HPLC¼ high-performance liquid
chromatography

KCa¼ calcium-activated potassium channel
KH-RBC¼Krebs-Henseleit buffer containing

red blood cells
Kir¼ inward-rectifying potassium channel

KLF2¼Krüppel-like factor 2
KO¼ knockout

L-Arg¼L-arginine
LC¼ liquid chromatography

L-NAME¼ l-NG-nitroarginine methylester
L-NIO¼N5-(1-iminoethyl-l-ornithine)

miRNA¼microRNA
MLC¼myosin light chain

MLCK¼myosin light chain kinase
mRNA¼messenger RNA

MS¼mass spectrometer

NF-kB¼ nuclear factor kappa-light-chain-
enhancer of activated B cells

NO¼ nitric oxide

PECAM-1¼ platelet endothelial cell
adhesion molecule-1

PGF¼ placental growth factor
PI3K¼ phosphoinositide 3-kinase
PKA¼ protein kinase A
PKC¼ protein kinase C
PKG¼ protein kinase G

PYK2¼ proline-rich tyrosine kinase 2
RBC¼ red blood cell
sGC¼ soluble guanylate cyclase

SMC¼ smooth muscle cell
SP-1¼ specificity protein 1

TF¼ transcriptional factor
TK¼ tyrosine kinase

TKR¼ tyrosine kinase receptor
TRPV4¼ transient receptor potential vanilloid 4

VGEFR2¼ vascular endothelial growth
factor receptor 2

VSMC¼ vascular smooth muscle cell
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