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Abstract

Background: Despite advances in treatment, acute myocardial infarction (MI) is still associated with significant morbidity
and mortality, especially in patients with extensive damage and scar formation. Based on some promising preclinical
studies, there is interest in the use of mesenchymal stromal cells (MSCs) to promote cardiac repair after acute MI.
However, there is a need for a systematic review of this evidence to summarize the efficacy and safety of MSCs in
preclinical models of MI. This will better inform the translation of MSC therapy for acute MI and guide the design of a
future clinical trial.

Methods/design: A systematic literature search of MEDLINE, Embase, and BIOSIS Previews will be conducted. We will
identify comparative preclinical studies (randomized and non-randomized) of myocardial infarction that include animals
given MSC therapy versus a vehicle/placebo. The primary outcome will be left ventricular ejection fraction. Secondary and
tertiary outcomes will include death, infarct size, measures of cardiac function, biochemical outcomes, and MSC retention
and differentiation. Risk of bias will be assessed using the Cochrane Risk of Bias Tool. Subgroup analyses will be performed
to measure how various sources of preclinical study heterogeneity affect the direction and magnitude of the primary
outcome. We will meta-analyze data using inverse variance random effects modeling.

Discussion: This systematic review of preclinical evidence will provide a summary of the efficacy and safety of MSCs in
animal models of MI. The results will help determine whether sufficient evidence exists to conduct a clinical trial in
humans and inform its design.

Keywords: Mesenchymal stromal cells, Mesenchymal stem cells, Perioperative myocardial infarction, Myocardial infarction,
Preclinical, Systematic review protocol

Background
Cardiovascular disease is the leading cause of mortality
in the western world [1]. Acute myocardial infarction
(MI) can lead to permanent loss of cardiomyocytes and
scar tissue formation and, in the event of a large area of

injury, may result in heart failure and life-threatening
arrhythmia. Despite advances in treatment such as
coronary revascularization, some MI patients are left with
extensive cardiac damage and a poor prognosis, highlight-
ing the need to develop novel therapies to repair non-
functional myocardium.
Over the past decade, mesenchymal stromal cells

(MSCs)—also known as adult stem cells, marrow stromal
cells, or mesenchymal stem cells—have emerged as a poten-
tial new therapy for acute MI. These cells can be isolated
from a variety of tissues including bone marrow, adipose
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tissue, and the umbilical cord and (because they appear to be
relatively immune privileged) can be subsequently delivered
as an allogeneic product to patients [2]. In individual studies
using preclinical models of acute MI, MSCs have been dem-
onstrated to augment tissue repair, improve cardiac function
[3], dampen the inflammatory response [4], and potentially
reduce mortality [5]. However, these preclinical studies have
not been systematically summarized to examine the efficacy
of these cells in acute MI. Members of our group and others
have demonstrated that MSC therapy acts via a myriad of
paracrine pathways to dampen inflammation and augment
cytoprotection [6–8]. Moreover, MSCs can improve cellular
energetics by transferring mitochondria [9]. This is unlike
drug-based therapeutics which largely act via “lock-and-key”
mechanisms in which a specific substrate binds to a single
active site matching its structure.
We are particularly interested in perioperative MI, which

is an MI that occurs in the setting of inflammation and in-
creased oxygen consumption induced by surgery [10, 11].
Perioperative MI is associated with poor outcomes,
including a 30-day mortality of ~ 12% (vs. 2% for post-
surgical patients without perioperative MI) [12]. Given the
cytoprotective effects of MSCs, they may be particularly
beneficial in the highly pro-inflammatory and catabolic
setting of perioperative MI (see Fig. 1). Prior to considering
a first-in-human clinical trial of MSC therapy for

perioperative MI, we propose a comprehensive synthesis of
the published literature. These data will determine whether
additional evidence gaps remain to warrant further preclin-
ical work, as well as future directions of MI research.
The specific aims of this systematic review are as follows:

1. To systematically compare the efficacy and safety of
MSC therapy versus control in preclinical MI. Our
primary outcome is left ventricular ejection fraction.
Secondary endpoints include death, other measures
of cardiac function, inflammatory markers, and
vessel density. Tertiary endpoints will include
cellular retention and differentiation.

2. Threats to internal validity will be evaluated using a
modified version of the Cochrane Risk of Bias Tool
for preclinical studies [13]. We will determine
whether risk of bias influences the magnitude and
direction of the primary endpoint.

3. External validity will be evaluated using subgroup
analyses to measure how various sources of
preclinical study heterogeneity (e.g., type of MI
model, animal species, severity of MI) affect the
direction and magnitude of the primary outcome.

4. Construct validity will be examined to evaluate the
degree preclinical studies of MSC therapy for MI
incorporate elements of clinical perioperative MI

Fig. 1 Therapeutic mechanisms of mesenchymal stromal cells in myocardial infarction
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(e.g., pathophysiological elements), as this will be the
focus of our future clinical trial.

Methods and design
Protocol
This systematic review protocol is reported in accordance
with the Preferred Reporting Items for Systematic Review
and Meta-Analysis Protocols (PRISMA-P) reporting guide-
lines [14]. A summary of the protocol will be listed on the
Collaborative Approach to Meta-Analysis and Review of
Animal Data from Experimental Studies (CAMARADES)
website (http://www.camarades.info). The final review will be
reported using the PRISMA guidelines [15].

Data sources
We will search the following databases Ovid MEDLINE®,
Ovid MEDLINE® In-Process & Other Non-Indexed
Citations, Embase Classic + Embase, and BIOSIS. In
addition, a manual review of the bibliographies of selected
articles (e.g., reviews) will be performed.

Search strategy
Search strategies will be developed by our research team
in collaboration with an information specialist. Prior to
final implementation, all strategies will undergo Peer
Review of Electronic Search Strategies (PRESS) by another
senior information specialist [16, 17]. Search strategies will
use controlled vocabulary (e.g., Mesenchymal Stromal
Cells) and keywords (e.g., MSCs) with adjustment for each
database. We will apply preclinical filters to increase
search efficiency [18–20]. Duplicate citations will be re-
moved. The example search strategy (see Additional file 1)
was used to search in MEDLINE.

Eligibility criteria
Eligible studies include controlled comparative studies of
preclinical MI or cardiac ischemia-reperfusion injury. We
will include studies in which true randomization is per-
formed using a method with a low risk of selection bias
(such as computer random number generators and random
number tables), as well as those that are quasi-randomized
(i.e., by day of week or alternation) and non-randomized.
This broad range of comparative studies will be included in
order to answer our study question as terminology and
methodology that is commonplace in clinical studies is not
routinely employed in preclinical studies, and previous re-
views have shown that randomization is reported in a third
or less of animal studies [21]. Only peer-reviewed publica-
tions will be eligible with no restriction to publication year.

Population
We will include all preclinical in vivo models of experimen-
tally induced MI that mimic pathophysiological aspects of
clinical MI (see Table 1). Included studies will be

perioperative (i.e., anesthetic provided before or concurrent
to acute MI). In vitro studies, ex vivo studies, and neonatal
MI models will be excluded.

Intervention
Studies using MSCs will be included; the International
Society of Cellular Therapy consensus statement defin-
ing criteria for MSCs will be used as a guide [22]. We
will include MSCs from xenogeneic, syngeneic, or allo-
geneic sources of any tissue origin. All delivery routes,
including direct myocardial injection, intravenous and
intra-arterial, will be considered. To be eligible, MSCs
must be administered as a pretreatment or no later than
7 days following the induction of MI. This timing has
been chosen to reflect the possible interventional win-
dow for a perioperative clinical trial.
Our focus will be on non-manipulated cells as this will be

the intervention in a potential future trial. We will exclude
differentiated MSCs (e.g., differentiated into a myocyte),
genetically engineered MSCs, and MSCs administered by a
scaffold system. Studies using MSCs only modified for cel-
lular identification (e.g., reporter gene systems or nanoparti-
cles) will be included. We will also exclude studies that
investigate another novel agent as a co-treatment.

Comparator
All studies with a control arm of animals that have had
experimental MI or cardiac ischemia-reperfusion injury
(diseased control animals) induced and were treated
with placebo/vehicle will be included.

Outcomes
Primary endpoint
Left ventricular ejection fraction (LVEF), measured as a
continuous variable at specific time points after MSC or
control intervention, will be the primary endpoint. LVEF is

Table 1 Preclinical models of perioperative myocardial
infarctiona

Class Example

Ligation of the left
coronary artery

Open chest, closed chest

Ischemia-reperfusion Global ischemia-reperfusion model

Cryoinjury Liquid nitrogen cooled copper probe used to
injure coronary vessel

Microembolism Injection of automicrothrombotic particulates
into coronaries

Electrocauterisation Direct electorcauterization of a coronary vessel

Pharmacological
induction

Isoproterenol

Genetic model Watanabe heritable hyperlipidemic rabbits with
acute induced infarction

aAll included models must provide an anesthetic either pre-induction or
concurrent with the induction of myocardial infarction
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a clinically meaningful endpoint since it has been linked to
mortality following MI [23]. Physiologically, LVEF deter-
mines stroke volume, which together with heart rate deter-
mines cardiac output. It is also a feasible outcome as it is
the most commonly reported cardiac function measure in
preclinical studies [24, 25]. Various techniques are used to
measure LVEF including two- or three-dimensional echo-
cardiography, magnetic resonance imaging, and computed
tomography. In our review, we will include and describe all
techniques of LVEF measurement.

Secondary outcomes
Secondary outcomes will be a combination of dichotomous
and continuous measures. A detailed listing of secondary/
tertiary outcomes is provided in Table 2. Given the large
number of outcomes, these results will be considered
exploratory and interpreted cautiously. Secondary
endpoints will include measures of cardiac function by

echocardiography (e.g., cardiac output, fractional shorten-
ing, left ventricle end diastolic diameter, left ventricle end
systolic diameter) and cardiac catheterization (e.g., left ven-
tricular end diastolic pressure, left ventricular end systolic
pressure, mean pulmonary artery pressure, right ventricular
systolic pressure), biochemical outcomes (e.g., cytokines),
infarct size, and vessel density. These measurements will
provide additional support as to whether MSCs preserve
ventricular function and prevent the pathological remodel-
ing that occurs after MI. Furthermore, data on biochemical
markers will help elucidate the role MSC therapy plays in
regulating cellular and molecular mechanisms involved in
the pro-inflammatory state following MI. Death will also be
recorded; however, few studies use this endpoint due to
considerations for animal welfare [26]. The occurrence of
adverse events/negative effects with MSC administration
will be recorded.

Tertiary outcomes
Tertiary endpoints will include MSC retention and differ-
entiation (see Table 2). While our primary and secondary
endpoints focus on measures that evaluate the efficacy of
MSCs, the homing and potential differentiation of MSCs
in myocardial tissue is also of interest.

Timing
The primary outcome of left ventricle ejection fraction
and secondary biochemical outcomes and death will be
collected at baseline, < 6 h, 6–24 h, > 24–72 h, > 72 h–
1 week, > 1–3 weeks, > 3–4 weeks, and > 4 weeks after the
administration of MSCs versus controls. These detailed
intervals reflect the evolution of inflammation and remod-
eling in MI, described by our group and others [27–31].
In preclinical models of myocardial infarction, robust in-
creases in expression of cytokines such as TNF-α, IL-1β,
and IL-6 have been noted immediately after myocardial
injury and up to 24 h later [32]. This is followed by a
chronic remodeling phase in which cardiomyocytes are re-
placed by granulation tissue and a scar is formed at the in-
farct. Scar formation has been demonstrated by
approximately day 14 post-infarct in mice, while a canine
infarct is still evolving at this time point [29]. Therefore,
our prespecified time intervals will capture outcomes dur-
ing the post-infarct inflammatory response and repair of
cardiac function in both small and large animal models of
MI. All other secondary outcomes of cardiac function and
tertiary outcomes of retention and engraftment will be
collected at the latest time point, > 4 weeks after adminis-
tration, to capture these measurements after the pro-
inflammatory state and repair has occurred.

Study selection and data extraction
Studies will be screened independently by two reviewers
using dedicated cloud-based software (DistillerSR, Evidence

Table 2 A priori defined secondary and tertiary outcome
measures

Outcomes Comments and/or Examples of specific measures

Secondary outcomes:

Death Rarely used an outcome due to ethical concerns
regarding animal welfare

Infarct size Variety of quantifiable techniques (e.g. histological
staining, nuclear imaging)

Cardiac
function

Echocardiography

cardiac output

left ventricle end diastolic diameter

left ventricle end systolic diameter

fractional shortening

Cardiac catheterization

cardiac output

left ventricular end diastolic pressure

left ventricular end systolic pressure

mean pulmonary artery pressure

right atrial pressure

Biochemical
outcomes

Proinflammatory cytokines

interleukin-1beta, 6

tumour necrosis factor-alpha

Anti-inflammatory cytokines

interleukin-10

transforming growth factor-beta1, 2, 3

Vessel density Histological staining and quantification of vessels in
cardiac tissue

Tertiary outcomes:

Cellular
retention

Imaging and quantification of labelled cells in host
tissue

Cellular
differentiation

Measurement of cardiac troponin in donor cells
retained in host tissue
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Partners, Ottawa, Canada). Using the previously described
a priori inclusion criteria, first level screening (title/abstract)
will be liberal with both reviewers needed to exclude an art-
icle and one reviewer needed to include. We will be using
an accelerated screening method for the title and abstracts
in which the second reviewer will review records excluded
by the first reviewer [33]. Second level screening (full study)
will be performed independently in duplicate. If there are
disagreements, the two individuals involved will review the
case. If they cannot come to an agreement, a senior team
member will provide the final decision. Reasons for exclu-
sion will be recorded to enable a transparent selection
process [34, 15].
Information from included studies will be collected on

electronic data extraction forms. General categories in-
clude study characteristics (e.g., design), study population
(e.g., species), MI model (e.g., cryoinjury), intervention
and comparison (e.g., MSC dose), co-interventions (e.g.,
immunosuppressants, antibiotics, and cardiac medica-
tions), and preclinical outcomes (e.g., ejection fraction).
Data extraction forms will be prepared a priori, and a cali-
bration exercise will pilot five studies to refine the forms
and ensure inter-rater consistency. Examples of data col-
lection elements can be seen in Table 3.

Risk of bias assessment
As there is no validated tool to assess risk of bias in animal
studies, we will describe potential biases using a modified
version of The Cochrane Risk of Bias Assessment Tool
[13]. Items include concealment of allocation, random se-
quence generation, blinding of personnel and endpoint
measurements, and completeness of endpoint reporting.
We will include additional domains relevant to animal
studies such as source of funding, conflict of interest, sam-
ple size calculations, similarity of groups or adjustment for
confounders at baseline, random housing of animals, and
animal selection at random for outcome assessment. Risk
of bias assessment will be carried out in duplicate by two
independent reviewers. Disagreements will be resolved
using the same process listed above. Each criterion will be
assigned a value of low, high, or unclear risk of bias for each
included study. A summary for all included studies will be
presented in a table format. We have planned an analysis to
determine the effects of high vs. low risk of bias on the
effect size of the primary outcome.

Assessment of external and construct validity
In preclinical studies, external validity describes the ability to
generalize findings to different experimental conditions.
External validity will be assessed by subgroup analysis of the
primary outcome based on species, strain, age, sex, presence
of intercurrent illness, MI model, ischemic time (if an
ischemia-reperfusion model), MSC source (animal/tissue),
timing of MSC administration (pretreatment vs. rescue)

administration route, type of control, use of co-interventions
(antibiotic, immunosuppressant, antihypertensive, statin, β-
blocker, antiplatelet, anticoagulant therapies, all yes vs. no),
and single versus multicenter study. Given the large number
of analyses planned, they will be used in an exploratory
manner and the results interpreted with caution. Examining
the effect of differences in experimental design will inform
aspects of a future clinical trial.
In preclinical studies, construct validity refers to the ex-

tent an animal model corresponds to the clinical entity it
is intended to represent [35]. Construct validity will be
assessed in relation to the extent the experimental systems
model the clinical entity of perioperative MI using a
framework based on expert opinion (see Table 4). It will
help determine whether the included studies enable reli-
able causal inference and generalization to a potential
clinical study of MSCs for perioperative MI.

Strategy for data synthesis
Search results will be presented in a PRISMA study flow
diagram [15]. Categorical variables will be summarized by

Table 3 A priori defined data collection elements

Data collection
element

Items

Study
Characteristics

Author

Year of publication

Funding support

Country

Study design

Total number of animals used

N per independent intervention group

Species

Strain

Gender

Weight

Mean age

MI model (i.e. LAD ligation, ischemia reperfusion,
cryoinjury, microembolism)

Intercurrent illness of animal

Anesthetic administered

Intervention
Characteristics

Route of MSC delivery (intravenous, intracoronary,
intramyocardial)

Timing of MSC delivery

Frequency of MSC delivery

Source of MSCs (syngenic, allogeneic, xenogenic)

Tissue origin of MSCs (bone marrow, adipose,
Wharton’s jelly)

Condition of MSCs (fresh, cryopreserved)

Vehicle

Defining criteria for MSCs
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frequencies/percentages, and continuous variables will be
summarized by means and standard deviations or median
and interquartile ranges, depending on data distribution.
Dichotomous endpoints (e.g., death) from each included

study will be pooled and described as odds ratios and 95%
confidence intervals. Results from outcomes with discrete
data will be pooled, and meta-analysis will be performed
with inverse variance random effects modeling. Continu-
ous endpoints will be pooled using the ratio of weighted
means method with inverse variance random effects mod-
eling [36]. Ratio of means allows for pooling of outcomes
expressed in different units and comparisons of effect
sizes across interventions. As ratio of means is well suited
for the small sample sizes of animal studies, and provides
a result in a form similar to a risk ratio, we have chosen
this method because of its simplified clinical interpret-
ation. Statistical heterogeneity will be examined using I2

tests with 95% uncertainty intervals [37]. Planned sensitiv-
ity analyses will examine heterogeneity of the primary out-
come. These will be carried out according to risk of bias
assessments. Selective outcome reporting will be assessed
using the excess significance test (comparing the expected
percentage of significant results vs. actual reported effects)
[38]. An evaluation for the presence of publication bias
will be conducted with funnel plot techniques and Egger’s
regression test [39].

Knowledge translation
Several knowledge users of the results of this systematic
review have been identified. These include the Canadian
Perioperative Anesthesia Clinical Trials (PACT) Group,
a network of academic perioperative medicine re-
searchers that develop team-based approaches to investi-
gate perioperative clinical and basic science questions
(www.canadianpact.ca). Our other knowledge users in-
clude the Canadian Council on Animal Care, Canadian
Society for Atherosclerosis Thrombosis, and Vascular
Biology (www.csatvb.ca) and the Stem Cell Foundation
of Canada (www.stemcellfoundation.ca). Through these
users, our research will reach key perioperative re-
searchers, preclinical and translational scientists, and
health professionals as well as the lay community.
This work will identify gaps in the current knowledge of

MSC therapy of MI. Publication of our results will also
identify potential future directions of MSC for MI research
as they specifically relate to perioperative MI. Most import-
antly, the publication of key findings of the review and
meta-analysis will directly inform a potential clinical trial.

Discussion
This review proposes to systematically identify and
summarize preclinical evidence that exists regarding
MSC therapy in myocardial infarction models, using a
rigorous methodology. We will assess the effect of MSC

Table 4 Checklist of construct validity for preclinical
perioperative myocardial infarction (PeriopMI)

Construct
validity
domain

Criteria from
guidelinesa,b

Specific
application to
PeriopMI

Justification Yes/
No

Animal
Subjects

Matching
model to age
of patients in
clinical setting

Middle aged to
elderly animal
model used

Incidence of
PeriopMI
increases over
age 50; age
>75 is an
independent
risk factor for
PeriopMI [46]

Matching
model to co-
morbidities in
clinical setting

Animal model
has ≥ 1 co-
morbidity risk
factor for
PeriopMI, either
chronic or
acute (e.g.
atherosclerosis,
diabetes,
chronic kidney
disease,
hypotension,
acute blood
loss)

Co-morbidities
listed are
independent
risk factors for
PeriopMI [47]

Outcome
Measures

Matching of
outcome
measure to
clinical setting

Late outcome
measures
performed (e.g.
>3 weeks
when scar
formation and
acute changes
are complete)

A longer
follow-up
duration may
reflect chronic
effects of an
acute therapy
for PeriopMI

Modeling of
Disease

Matching
model to
human
manifestation
of disease

Model reflects
elements of
Type 1 MI (e.g.
plaque rupture)
and/or Type 2
(e.g. supply
demand
imbalance)

Clinical PeriopMI
displays aspects
of Type 1 and
Type 2 MI [30,
42]

A pro-
inflammatory
state is
reported

Clinical
PeriopMI has a
large
inflammatory
burden [19]

Administration
of Intervention

Treatment
response
along
mechanistic
pathway

Therapy given as
a pretreatment
(i.e. preventative)
or within the first
48 h after
anesthesia

Majority of
PeriopMI
occurs within
the first 48 h
after surgery

Environment Address
confounds
associated
with setting,
experimental
setting

Post-operative
analgesia
provided

Inadeqaute
post-operative
analgesia
increases
systemic
inflammation

Abbreviations: MI myocardial infarction, PeriopMI perioperative myocardial
infarction
aRecommendations to reduce threats to construct validity were identified by
Henderson et al. [19]
bConstruct validity criteria suggested by ≥40% of included guidelines included
in checklist
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therapy on clinically important outcomes including car-
diac function, infarct size, inflammation, and death.
In our pilot searches, we have identified two published

preclinical reviews that investigated stem cells in both
acute and chronic ischemia models [24, 25]. Our proposed
preclinical review differs significantly from these studies in
several respects. Both previous studies combined results
from various stem cell types and were restricted to large
animal models, whereas our review will focus on MSCs
and consider both small and large animal models. The
search strategies used in these papers identified 39 studies
that used MSCs; however, based on our pilot search using
a comprehensive strategy, we have identified approxi-
mately 200 studies to be included in our review. Most im-
portantly, the data from these reviews included cell
therapy for chronic heart failure (48% of studies); therapy
of established chronic heart failure has little construct val-
idity for the acute treatment of MI. Thus, our review will
provide novel evidence to determine if a clinical study of
MSCs for MI is warranted.
Given that less than 5% of high impact preclinical re-

ports are clinically translated [40] and only 11% of clin-
ically tested agents receive licensing, rigorous appraisal
of preclinical data is needed prior to clinical testing of
novel therapeutics. Historically, failed translation (pre-
clinical to clinical) of specific therapies for stroke [41]
and heart failure [42] could have been predicted by
systematic reviews of animal data. Thus, our review is
critical prior to conducting a resource intensive trial.
Furthermore, since the design of these preclinical

studies wil include administration of anesthetic and
disease induction that likely differs from spontaneous
MI, this review also provides a unique opportunity to
determine if MSCs may have efficacy in clinical peri-
operative MI. This question is of particular interest to our
group as therapies that are effective in prevention of non-
operative MI have failed to show benefit in perioperative
MI [43–45] and there are currently few therapies for
established perioperative MI. Given what is known about
the mechanism of action of MSCs, they may be highly ef-
fective in the pro-inflammatory state that occurs with
perioperative MI.
In summary, this review will be the first to provide an es-

timate of efficacy and safety of MSC therapy in preclinical
models of MI. This will ultimately help determine whether
sufficient evidence exists to support a first-in-human evalu-
ation of MSC therapy for perioperative MI. Additionally,
the results of this study will identify knowledge gaps and
potential future areas of study in MI research.

Additional file

Additional file 1: Description: representative search strategy. (DOCX 13 kb)
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