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Abstract

Genetic association studies have yielded a wealth of biologic discoveries. However, these have 

mostly analyzed one trait and one SNP at a time, thus failing to capture the underlying complexity 

of these datasets. Joint genotype-phenotype analyses of complex, high-dimensional datasets 

represent an important way to move beyond simple GWAS with great potential. The move to high-

dimensional phenotypes will raise many new statistical problems. In this paper we address the 

central issue of missing phenotypes in studies with any level of relatedness between samples. We 

propose a multiple phenotype mixed model and use a computationally efficient variational 

Bayesian algorithm to fit the model. On a variety of simulated and real datasets from a range of 

organisms and trait types, we show that our method outperforms existing state-of-the-art methods 

from the statistics and machine learning literature and can boost signals of association.
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Introduction

Genome-wide association studies (GWAS) have successfully uncovered many associated 

loci. Such approaches typically analyze thousands of nominally unrelated individuals and 

search for correlations between genetic variants and a single trait of interest. However, a 

complete characterization of the etiology of most traits remains elusive. This may be 

because the GWAS approach is quite crude, in that much of the biology between sequence 

and phenotype remains unmeasured. Large scale phenotyping is starting to generate 

invaluable data that can be harnessed by geneticists 1.

This observation motivates the analysis of multiple phenotypes, traits and sub-phenotypes, a 

direction that is increasingly prominent in the literature of human, plant and animal 

genetics 2-5 . The advantages of analyzing multiple phenotypes related to, or underlying, a 

phenotype of interest include boosting power to detect novel associations6, measuring 

heritable covariance between traits 7 and the potential to make causal inference between 

traits 8.

At the same time, harnessing genetic relatedness, even amongst nominally unrelated 

samples, to boost power in association studies is becoming increasingly prevalent. Mixed 

models, re-emerging from the linkage and animal genetics literature9-11 , are now routinely 

used to search for associations in the presence of relatedness or population structure and to 

estimate the additive genetic component of heritability. However, until recently these 

analyses have mostly proceeded one trait at a time.

In this paper, we consider the analysis of multiple correlated phenotypes observed on 

correlated samples, which arises with related individuals, cryptic relatedness, population 

structure or polygenicity. Crucially, the vast majority of methods for multiple phenotypes 

rely on all samples having fully observed phenotypes3,6. However, as the number of 

phenotypes increases the chance that at least one observation is missing increases 

exponentially. Removal of all samples with a missing phenotype will reduce sample size, 

thus attenuating the power of any statistical inference. For example, a range of real studies 

removed between 3%-31%12-17 of samples. Other studies completely removed phenotypes 

with high levels of missing data, and imputed remaining missing data with off-the-shelf 

methods from mainstream statistics 18-20. While re-phenotyping of samples is ideal, it is 

typically expensive or infeasible 21.

We propose a method to impute missing phenotypes in related samples, which will likely be 

a crucial first step for many downstream analyses. In this setting correlations will exist 

between phenotypes and between samples, and both are useful in predicting missing 

observations. We propose a Bayesian multiple phenotype mixed model and use a Variational 

Bayesian (VB) method to fit the model. We assume that the kinship between individuals in a 

study is known a priori from genetic data22 or a pedigree. This information enables the 

model to decompose the correlation between traits into a genetic and a residual component. 

A notable feature of our method is that it can handle hundreds of traits. We call our method 

PHENIX.
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We validate our approach with an extensive simulation study, representative of a variety of 

genetic studies of humans and other organisms. We compare our method to approaches that 

ignore either the correlations between samples or the correlations between traits, and to 

state-of-the-art missing data imputation techniques from mainstream statistics and machine 

learning. We also apply our method to five real datasets on a variety of traits from 

humans2,23, yeast24, rats25, chickens 26 and wheat 27. In all simulated and real datasets we 

show evidence that our method outperforms the competing methods in accuracy and is 

computationally efficient. We also apply the method to a rat GWAS of 140 phenotypes to 

illustrate how the method can be used to boost signals of association. Finally, we discuss the 

usefulness of this approach, the range of relevant datasets that the method could be applied 

to, and how the method might be developed further in the future.

Results

Simulations

We simulated datasets with N=300 individuals and P=15 traits varying the level of 

relatedness between individuals and the heritability of the traits. A standard multiple 

phenotype mixed model (MPMM) was used to simulate phenotypes with an underlying 

genetic covariance, as well as added environmental, or residual, correlation. For the genetic 

covariance between traits we used a model with a range of positive and negative correlations 

between the traits. For the residual covariance we added randomly correlated noise to the 

phenotypes. We varied the heritability of the traits by adjusting the relative contributions of 

the genetic and residual covariance terms. We used two models for relatedness between 

samples: Model 1 used an empirical kinship matrix derived from the Northern Sweden 

Population Health Study (NSPHS) 23; Model 2 simulated 75 independent families of 4 full 

siblings. Missing data was added completely at random at the 5% level. The true values of 

missing data were kept to measure performance. We averaged results over 100 datasets 

simulated under each scenario. More details are given in the Online Methods.

We fit our method (PHENIX) to each of the simulated datasets to infer point estimates of the 

missing phenotypes. We assessed performance by measuring the correlation between these 

imputed phenotypes and their true hidden values. The results are shown in Figure 1 for both 

levels of relatedness. We compared our method to a range of other imputation methods from 

the statistical genetics, mainstream statistics and machine learning literatures (Table 1, 

Online methods). These methods model different aspects of the correlation structure in the 

data, in most cases ignoring genetic or phenotypic correlations; PHENIX models both 

aspects. Results of the methods using a mean squared error (MSE) metric and timing 

information are shown in Supplementary Figure 1 and Supplementary Note.

The overall pattern from Figure 1 is that PHENIX outperforms all other methods over the 

full range of heritability. As heritability increases the difference between PHENIX and the 

next best method increases. A number of other interesting patterns also emerge. Ignoring 

correlations between phenotypes (LMM – green line) is mostly a much worse assumption 

than ignoring correlations between samples (MVN – blue line), except at very high 

heritabilities and high levels of relatedness between samples (Model 2). In fact, ignoring 

correlations between samples does remarkably well, especially considering MVN is the 
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fastest method in our comparisons. However, the performance of MVN suffered in some real 

datasets with high relatedness (Figure 2) so we do not recommend it for general use. 

TRCMA (pink line) and SOFTIMPUTE (cyan line) seem to perform roughly equally well, 

and better than MICE and kNN (brown and grey lines respectively). This is likely because 

the former two methods partially model sample relatedness, whereas the latter two methods 

only model phenotypic correlations. Most methods were fast enough to be practical, 

although we found TRCMA to be prohibitively slow in most settings (Supplementary Note).

Increasing levels of relatedness between samples increases the accuracy of PHENIX and 

LMM. Both of these methods explicitly take account of the relatedness between samples via 

the kinship matrix. For example, when the heritability of the traits is h2=0.3, the imputation 

correlation of PHENIX is 0.63 and 0.67 on Model 1 (NSPHS) and Model 2 (sibs) 

respectively.

As heritability increases the performance of all the best performing methods decreases, but 

then increases slightly again as heritability approaches 1. This occurs because the overall 

correlations between traits are a mixture of genetic and environmental correlations. At 

intermediate heritability the genetic and environmental correlations tend to cancel each other 

out, attenuating the performance of methods that harness phenotypic correlations. To 

highlight this effect we carried out simulations in which genetic and environmental 

covariances are the inverses of each other. At intermediate values of heritability the 

performance of all methods suffers (Supplementary Figure 2).

When the number of samples is increased to N=1000 and phenotypes to P=50 the 

performance of PHENIX improves compared to the other methods, especially for Model 1 

which uses an empirical kinship matrix derived from the NSPHS study (Supplementary 

Figure 3). As the genetic correlation between traits increases, the residual contribution 

becomes less important and thus the utility from partitioning the covariance is attenuated; 

this means the gap between PHENIX and other methods shrinks. Conversely, when the 

genetic correlation shrinks, PHENIX increasingly outperforms the others (Supplementary 

Figure 4). Increasing the missing data rate to 10% degrades performance for all methods, 

especially when there are few close relationships between samples (Supplementary Figure 

5). We investigated the effects of non-random missingness (Supplementary Figure 6), 

unmodelled, shared environmental effects (Supplementary Figure 7) and non-normally 

distributed phenotypes (Supplementary Figure 8), which all act to reduce performance in 

general. However, PHENIX remains the best performing method in all scenarios.

A likely main use of PHENIX is to impute missing phenotypes ahead of association testing 

of phenotypes with genome-wide SNP data. This might proceed by testing phenotypes one 

at a time, or by using a multi phenotype association test. As such it is important to show that 

our approach leads to valid statistical tests. Using simulated phenotype data and real 

genotype data from the NSPHS cohort (described below) we find that association testing 

after imputation results in well calibrated p-values under the null (Supplementary Figure 9).

There is a large literature on multi-phenotype tests 3,6,28-30 and there seems wide consensus 

that these tests can lead to an increase in power over single phenotype tests in many realistic 
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scenarios. We assessed whether imputing missing phenotypes can increase in power when 

testing a SNP for association. We find that imputation can lead to an increase in power when 

testing either one phenotype at a time, or when using a multi-phenotype test (Supplementary 

Figures 10 and 11). Intuitively, one of the main reasons this occurs is that imputation 

increases the sample size used in the test.

Real data

To further illustrate the usefulness of PHENIX we imputed missing phenotypes in several 

real datasets. We applied the method to a range of different organisms to illustrate that our 

method will be useful in a wide variety of settings and across a diverse set of phenotypes 

used in real genetic studies. Animal and plant studies almost always use related samples, due 

to study design constraints, but in some cases, like Arabidopsis, unrelated samples with 

considerable population structure are used.

The datasets are hematological measurements in the UK Blood Services Common Control 

(UKBS) collection that was studied by the HaemGen consortium 2, glycans phenotypes in 

the NSPHS study4,23, phenotypes related to six disease models and measures of risk factors 

for common diseases in outbred rats25, phenotypes measuring growth of yeast under 

different conditions 24, phenotypes relevant to a genomic selection program in a 

multigenerational chicken pedigree26 and traits related to growth and yield in an inter-cross 

population for winter-sown wheat27. Table 2 details the properties of these datasets.

Each of these datasets has a different level of missing data. We created new datasets by 

increasing levels of missing data, keeping the true values to assess imputation performance. 

We applied the various imputation methods to these datasets and measured performance 

using the correlation between the imputed and true values. The results for each of the six 

datasets are presented in Figure 2, where imputation correlation (y-axis) is plotted against 

missing data percentage (x-axis). The true level of missing data is highlighted as a vertical, 

dashed black line.

As in the simulated datasets, PHENIX is the most accurate method across all six of the 

datasets, except at extreme levels of missingness. For realistic levels of missing data, near 

the actual levels in the datasets, PHENIX clearly outperforms the other methods in the yeast 

and chicken datasets, but the difference is smaller on the human, rat and wheat datasets. On 

all six datasets TRCMA, SOFTIMPUTE and MVN perform almost the same. As with the 

simulated data, these 3 methods tend to outperform MICE, which in turn tends to 

outperform kNN.

The single trait LMM method is overall the worst performing method, however it does 

reasonably well on the yeast and chicken datasets, where the trait heritabilities and levels of 

sample relatedness are high and traits are relatively uncorrelated compared to the other 

datasets. Appropriately, these are the datasets where PHENIX substantially outperforms 

TRCMA, SOFTIMPUTE and MVN.

For the human NSPHS and wheat datasets we fit a standard Multiple Phenotype Mixed 

Model (MPMM), with an EM algorithm31, only to those individuals with fully observed 
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phenotypes, and used the estimated parameters to impute missing phenotypes in other 

individuals, following others3. MPMM will not run on the human UKNBS, yeast, chicken or 

rat datasets where the number of phenotypes and levels of missingness produce no samples 

with complete observations. When it is possible to apply this method we observed (Figure 2 

– purple lines) that its performance drops off considerably. As the amount of missing data 

increases the number of samples with completely observed phenotypes will exponentially 

decrease, which will harm parameter estimation and subsequent imputation performance.

Application to Rat GWAS

To assess the utility of our method in the GWAS setting we re-analyzed the data from the 

Rat Genome Sequencing and Mapping Consortium. Specifically, we imputed all the missing 

phenotypes and covariates available in the deposited dataset. We then carried out GWAS for 

the 140 most biologically relevant phenotypes (those mapped in the original study25) at the 

24,196 genomic locations at which HAPPY32 descent probabilities had been calculated (see 

Online Methods). The amount of missing data in these 140 phenotypes varies from 1.5% to 

87% (median=16.6%). We then compared these results to GWAS performed on the 

phenotypes without imputation.

In much the same way that information scores are used when carrying out downstream 

analyses such as GWAS on imputed genotypes33, it is desirable to assess the accuracy of 

phenotype imputation. To achieve this, we added extra missing data, re-imputed the missing 

phenotypes and then calculated an imputation squared correlation (r2) for each phenotype 

using the held out data (see Online Methods). This metric can be automatically calculated 

by the imputation functions in our R package, and experiments suggest that the measure is 

very accurately calibrated (Supplementary Figure 12). To choose a useful threshold for r2, 

we used experience of filtering genotype imputation information scores, which typically 

filter at some value between 0.3-0.4. Ultimately, we used 82 phenotypes with r2 > 0.36. The 

amount of missing data being imputed may also be a useful phenotype summary to consider 

when interpreting imputation results.

Figure 3 compares the results of the imputed and un-imputed rat GWAS for all 140 

phenotypes. To report results we applied a conservative p-value threshold of −log10(p) >10. 

We only plot p-values for genomic locations that are maximal in a 6 Mb window (+/− 3 

Mb). These are plotted against the maximum −log10(p) in the same 6 Mb window in the 

complementary (imputed or un-imputed) GWAS. Grey points are those for which r2 < 0.36. 

The cluster of grey points with imputed −log10(p) <10 and un-imputed −log10(p) >10 all 

correspond to phenotypes with very low r2 and high levels of missing data demonstrating 

that filters on r2 and missingness can identify when imputation results should be viewed with 

caution.

The figure highlights that there are circumstances where phenotype imputation has a good 

imputation r2 and acts to increase the signal of association (red and blue points). A cluster of 

associations (red points) all correspond to three related platelet phenotypes (mean platelet 

volume (MPV), mean platelet count (MPC) and platelet distribution width (PDW)) over an 

extended region of chromosome 9 between 50-80Mb. Figure 4 shows the imputed and un-

imputed GWAS for these three phenotypes in this region, together with histograms of the 
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phenotype data, r2 and missingness metrics. The plot highlights several peaks of association 

that harbor a number of genes related to platelet aggregation, adhesion and function (Igfbp2 
and Igfbp534, Fn135, Epha436, Cps137,38, Ctla439, Hspd140).

An additional association (blue point) in Figure 3 corresponds to a region associated with 

the CD25highCD4 phenotype (Proportion of CD4+ cells with high expression of CD25). 

Figure 5 shows the imputed and un-imputed GWAS for CD25highCD24 as well as two other 

related T cell phenotypes that also show increased levels of association (Abs_CD25CD8 

(Absolute CD25+CD8+ cell count) and pctDP (Proportion of CD4−CD8− T cells)). The 

plots show a clear elevation of association in the region around the Tbx21 (T-bet) gene 

which plays a key role in T helper cell differentiation 41.

Discussion

Missing data is a pervasive feature of the statistical analysis of genetic data. Whether it be 

unobserved genotypes or latent population structure in GWAS studies, partially observed 

genotypes in low-coverage sequencing studies, or unobserved confounding effects in GWAS 

and eQTL studies, accurate and efficient methods are needed to infer missing data and can 

often substantially enhance analysis and interpretation. In this paper, we have proposed a 

general method to impute missing phenotypes in samples with arbitrary levels of 

relatedness, population structure and missingness patterns.

While there exists a range of different methods for imputing missing data in the general 

statistics literature, our method focuses specifically on continuous phenotypes in genetic 

studies, where there is often known, or measureable, relatedness between samples. Our 

method leverages this relatedness to partition the phenotypic correlation structure into a 

genetic and a non-genetic component and to boost imputation accuracy. Using simulated and 

real data we have shown that our method of imputing missing phenotypes outperforms state-

of-the-art methods from the statistics and machine learning literature. In the burgeoning 

literature of papers on mixed models applied to genetics this is the first approach we are 

aware of that allows for missing phenotypes.

Key features of our method are (a) boosting signals of association in GWAS when 

imputation quality is high, (b) not having to discard samples with partially observed 

phenotypes, (c) a way of assessing imputation performance via our r2 metric, and (d) being 

able to handle large numbers of phenotypes in a mixed model framework. Our results of 

applying the method to 140 phenotypes from a rat GWAS study illustrate these key features. 

However, our results also suggest that imputation will not always boost signal, in much the 

same way the genotype imputation does not always increase levels of association. When 

imputation quality is demonstrably poor, and missingness is high, then imputation may 

attenuate the association signal. We recommend filtering phenotype imputation results with 

the same care and attention as is routine in the analysis of genotype imputation.

The method could be further developed to relax the assumption of normality to directly 

allow for heavy tailed distributions, or to explicitly allow for binary and categorical traits. 

However, our simulations have shown that PHENIX remains the currently best performing 
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method in some of these scenarios. In other work (unpublished data; V.I and J.M) we are 

extending the model to test a SNP for association with multiple phenotypes, using a spike-

and-slab mixture prior on effect sizes to allow for only a subset of phenotypes to be 

associated. Incorporating significant SNPs into our model would likely increase imputation 

accuracy, especially in model organisms where loci with large effects are common; multi-

trait extensions of whole-genome regression models that, intuitively, integrate SNP selection 

into an LMM-type model42 could possibly improve accuracy yet further. Higher dimensional 

datasets, such as ‘3D’ gene expression experiments across multiple samples, genes and 

tissues43 also have missing ‘phenotypes’ which may be reliably imputed to boost signal in 

downstream analyses.

This paper addresses single imputation (SI) of phenotypes, and ignored uncertainty in these 

imputed values can, in theory, invalidate subsequent analyses. Multiple imputation (MI), the 

standard solution, propagates imputation uncertainty by performing downstream analyses on 

many imputed datasets, each drawn independently from their posterior. By aggregating 

results over these multiple datasets, MI delivers valid conclusions for any downstream 

analysis, regardless the imputation quality44. Though drawing from our approximate 

posterior is not a solution, as VB provably underestimates posterior covariance, it is possible 

to recover calibrated covariance estimates for the imputed values45; doing this 

computationally efficiently is non-trivial and left to future work. We note that our r2 and 

missingness metrics dramatically attenuate this shortcoming of SI, as we only analyze 

phenotypes where imputation uncertainty is smallest; morever, simulations (Supplementary 

Figure 9) and biologically plausible results (Figures 4 and 5) suggest that SI can uncover 

novel true positive results in our context.

There is increasing evidence that established loci can affect multiple traits at the same time 

(pleiotropy)46 and that this may explain the comorbidity of diseases47. It thus seems likely 

that studies that measure multiple phenotypes, endo-phenotypes and covariates on the same 

subjects will have to become more common if we are to further elucidate the causal 

pathways underlying human traits and diseases. Statistical methods that jointly analyze high-

dimensional traits and integrate multiple ‘omics’ datasets will be central to this work.

Online methods

Matrix Normal Models

We develop our model using Matrix Normal (MN) distributions 55. If an N×P random matrix 

X has a Matrix Normal distribution, this is denoted as

which implies
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where vec(X) is the column-wise vectorization of X, M is the N×P mean matrix, R is an 

N×N row covariance matrix, C is a P×P column covariance matrix, and ⊗ denotes the 

Kronecker product operator.

A Bayesian Multiple Phenotype Mixed Model

We let Y be an N×P matrix of P phenotypes (columns) measured on N individuals (rows). 

We assume that Y is partially observed and that each phenotype has been de-meaned and 

variance standardized. A standard Multiple Phenotype Mixed Model (MPMM) has the form

(1)

where U is an N×P matrix of random effects and ε is a N×P matrix of residuals and are 

modeled using Matrix normal distributions as follows

(2)

In this model K is the N×N kinship matrix between individuals, B is the P×P matrix of 

genetic covariances between phenotypes and E is the P×P matrix of residual covariances 

between phenotypes.

In our Bayesian MPMM (PHENIX), we fit a low-rank model for U, such that U = Sβ , 

where

(3)

where τ is a regularization parameter. We use a Wishart prior for the residual precision 

matrix E−1

(4)

We fit this model using Variational Bayes (VB) 56, which is an iterative approach of 

approximating the posterior distribution of the model parameters. We treat missing 

phenotypes, which we denote as Y(miss), as parameters in the model and infer them jointly 

with S, β and E. We impose that the approximate posterior factorizes over the partition 

{Y(miss), S, β, E}. The full details of the VB update equations are given in the 

Supplementary Methods. We let τ = 0 which leads to the least low rank estimate of U = Sβ 
under our model.

Having fit the model, for each sample with missingness the resulting approximate posterior 

distribution has the form of a multivariate normal distribution

Dahl et al. Page 9

Nat Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(5)

We use the posterior mean μi to impute Yi
(miss),.

Other methods

We applied several other methods for imputing missing phenotypes from the statistical 

genetics, mainstream statistics and machine learning literatures. These methods are 

summarized briefly in Table 1. We provide brief details of each method here and more 

extensive details in the Supplementary Methods.

MVN—We assessed the effect of ignoring relatedness between individuals by fitting a 

simple multivariate normal model of covariance between traits 44. The model is

(6)

where Yi- denotes the ith row of the phenotype matrix Y. We use an expectation-

maximization (EM) algorithm that allows for missing phenotypes to fit the model. This 

method was implemented in R.

LMM—To examine the effect of ignoring correlations between traits we applied a single 

trait linear mixed model (LMM) to each trait separately of the form

(7)

where Y−p denotes the pth phenotype. Missing phenotypes for each trait were predicted 

using the BLUP estimate of the random effect. This method was implemented in R.

MPMM—We directly fit an MPMM (eqns. 1-2) to only those individuals with completely 

observed observations, using an EM algorithm (see Supplementary Methods) and used the 

resulting parameter estimates in the model to impute the missing observations. This method 

was implemented in R.

TRCMA—The transposable regularized covariance model (TRCM) approach54 fits a mean 

restricted matrix normal model of the form

where Ω and Θ are row and column precision matrices respectively. An EM algorithm fits 

maximum penalized likelihood estimates, using L2 penalties on both Ω and Θ, and computes 

expected values for missing entries. TRCMA is a one-step approximation to this EM 
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algorithm and was proposed as a computationally tractable alternative54. TRCMA is much 

slower than all other methods we tried in this paper, especially for large N. To speed it up, 

we performed preliminary simulations to determine a small but useful set of regularization 

parameters to optimize over (5 levels for both the row and column penalties). This method 

was also run on fewer simulated datasets than the other methods when constructing Figure 2 

due to computational reasons. We used the R code from the TRCMA website (see URLs) to 

apply this method.

SOFTIMPUTE—there is a large machine learning literature on matrix completion 

methods 57,58. We picked a competitive approach 51 which estimates a low-rank 

approximation to the full matrix of phenotypes via a penalty on the sum of the singular 

values (or nuclear norm) of the approximation. If H is the set of indices of non-missing 

values in Y then the method seeks an estimate, X, to the full matrix, Y, that minimizes

where ∥X∥* is the nuclear norm of X. We used the R package softImpute to implement 

this method.

MICE—this approach fits regression equations to each phenotype in an iterative algorithm 

(MICE) and has recently been applied to a metabolite study 18. We used the R package mice 

to implement this method.

kNN—We applied a nearest neighbour imputation (kNN) approach which identifies nearest 

neighbour observations as a basis for prediction 52. Specifically, if Yij is a missing 

phenotype then the k nearest phenotypes to phenotype j are found, based on all the non-

missing values. Then Yij is predicted by a weighted average of those phenotypes in the ith 

individual. We used the R package impute to implement this method using the default k 

=10.

Simulations

We simulated data from the following model

where K is the N×N genetic kinship matrix and h2 is the heritability parameter which we 

vary between 0 and 1. For the P×P residual covariance matrix E we simulated from a 

Wishart distribution , which we then scale to a correlation matrix. For the P×P 
genetic covariance matrix B we used an AR(1) model with B(ρ)ij = ρ∣i–j∣. This model 

produces a range of correlations between traits and is controlled by a single parameter ρ. For 

Figure 1 we used ρ = 0.45. For Supplementary Figure 3 we used ρ = 0.275 and ρ = 0.675. 

For the N×N genetic kinship matrix K we used two different models : Model 1 used a subset 
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of the empirical kinship matrix derived from the Northern Sweden Population Health Study 

(NSPHS) 23; Model 2 used a kinship structure with independent sets of 4 sibs. We set N=300 

and P=15 for Figure 1 and N=1000 and P=50 for Supplementary Figure 2. Missing data was 

added completely at random at the 5% level (Figure 1) and 10% (Supplementary Figure 4).

Genotype and phenotype data

We analyzed 6 real datasets from 5 different organisms : humans2,23, rats25, yeast24, 

chickens26 and wheat27.

The human data from the UK Blood Services Common Control, collected by the Wellcome 

Trust Case Control Consortium, include 1,500 individuals with 6 hematological phenotypes 

(hemoglobin concentration, platelet, white and red blood cell counts, and platelet and red 

blood cell volume)2. DNA samples were genotyped using the Affymetrix 500K GeneChip 

array. Unassayed genotypes were imputed using IMPUTE259 and a 1000 Genomes Project 

Phase 1 reference panel. We calculated a genetic relatedness matrix (GRM) using code 

written in R. Following others1, phenotypes were regressed on the covariates region, age and 

sex. Extreme outlying measurements were removed to eliminate individuals not 

representative of normal variation within the population.

The human data from NSPHS23 include 1,021 individuals with 15 glycans phenotypes 

(desialylated glycans (DG1-DG13), antennary fucosylated glycans (FUC-A) and core 

fucosylated glycans (FUC-C)). DNA samples from the NSPHS individuals were genotyped 

using the Illumina exome chip and either Illumina Infinium HumanHap300v2 (KA06 

cohort) or Illumina Omni Express (KA09 cohort) SNP bead microarrays. Unassayed 

genotypes were imputed using the 1000 Genomes Phase I integrated variant set as the 

reference panel. Genotype data were imputed with a pre-phasing approach using IMPUTE 

(version 2.2.2) in the two sub cohorts (KA06 and KA09) separately. We calculated a genetic 

relatedness matrix (GRM) using GEMMA3. We used only those SNPs on either of the two 

Illumina chips with a minor allele frequency > 1%. Following others4, phenotypes were 

regressed on the covariates age and sex and residuals were then quantile normalized. 

Extreme outlying measurements (those more than three times the interquartile distances 

away from either the 75th or the 25th percentile values) were removed.

The yeast data24 was downloaded directly from the web (see URLs) and consisted of 1,008 

prototrophic haploid segregants from a cross between a laboratory strain and a wine strain of 

yeast. This dataset was collected via high-coverage sequencing and consists of genotypes at 

30,594 SNPs across the genome. There are 46 phenotypes in this dataset and consist of 

measured growth in multiple conditions, including different temperatures, pHs and carbon 

sources, as well as addition of metal ions and small molecules24. Traits were mean and 

variance standardized and quantile normalized before analysis. We removed SNPs with 

MAF < 1% or missingness in > 5% of samples and calculated a GRM using code written in 

R.

The wheat data27 was downloaded directly from the web (see URLs) and consists of a 

winter wheat population produced by the UK National Institute of Agricultural Botany 

(NIAB) comprising 15,877 SNPs for 720 genotypes. Seven traits were measured: yield 
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(YLD), flowering time (FT), height (HT), yellow rust in the glasshouse (YR.GLASS) and in 

the field (YR.FIELD), Fusarium (FUS), and mildew (MIL). The population was created 

using a multiparent advanced generation inter-cross (MAGIC) scheme. Traits were mean 

and variance standardized and quantile normalized before analysis. We removed SNPs with 

MAF < 1% or missingness in > 5% of samples and calculated a GRM using code written in 

R.

The chicken dataset26 consists of 11,575 samples across 4 full generations of an animal 

breeding program26 as part of a collaboration with Aviagen. We used genotypes at 52,679 

SNPs. We removed samples that were missing at > 1% of SNPs and SNPs with MAF < 1% 

or missingness > 5% and calculated a GRM using code written in R. There are 14 traits in 

this dataset ((BWT) body weight, (LFI) feed intake in females, (AFI) feed intake in males, 

(WTG) weight gain, (AUS) ultrasound depth, (FL) condition score, (FLMORT) floor 

mortality , (SLMORT) slat mortality 2, (FPD) foot-pad dermatitis, (HHP) egg production, 

(EFERT) early fertility , (LFERT) late fertility 2, (EHOF) early hatchability, (LHOF) late 

hatchability). Each trait was regressed on an appropriate set of covariates, based on 

experience of the ongoing breeding program. Traits were mean and variance standardized 

and quantile normalized before analysis.

The GWAS analysis of the rat dataset involves reconstructing the outbred rat genomes as 

mosaics of 8 founder haplotypes, using the program HAPPY32. We obtained the descent 

probabilities at 24,196 genomic locations based on the Rnor3.4 Rat genome assembly. For 

the GWAS analysis we obtained the set of pre-processed phenotypes used in the Rat 

Genome Sequencing and Mapping Consortium paper25. In total, we used 317 phenotypes to 

carry out phenotype imputation. The original study only carried out GWAS for 160 of these 

traits, deemed to be the most biological relevant traits. We re-analyzed the 140 of these 160 

traits that were analyzed using mixed models in the original study. Each trait was analyzed 

one at a time. For this analysis we used the exact same kinship matrix used in 25. We also 

assessed phenotype imputation accuracy on this dataset in Figure 2. We used exactly the 140 

phenotypes and the kinship matrix from the GWAS.

When adding additional missing data to the five real datasets, we repeated this process 100 

times for each level of missingness, except for the chicken dataset, which is much larger, 

where we used 20 simulations. The results are shown in Figure 2.

To summarize the overall levels of relatedness in each of the five datasets we calculated the 

following measure(Ψ), using the kinship matrix for each dataset

GWAS analysis of outbred rats

To carry out GWAS analysis of the 140 rat phenotypes we used a single-trait mixed model 

implemented in R. The model consisted of fixed effects that are the estimated founder 

descent probabilities and covariates, a single random effect with covariance as a scaled 
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kinship and an uncorrelated residual term. This model was fitted at each of the 24,196 

genomic locations with descent probabilities. Significance was assessed using an F-test for 

presence or absence of the descent probabilities in the model. We carried out this analysis 

twice : before and after phenotype imputation.

Phenotype imputation quality metric (r2)

We use real patterns of missing data to simulate extra missing data. We selected a rat at 

random and then copied its pattern of missing phenotypes to another randomly selected rat. 

This process continued until an extra 5% of phenotypes had been removed from the dataset. 

All missing phenotypes were then imputed and the squared correlation (r2)_between the 

imputed values and held out values is calculated. We repeated this process 1,000 times and 

calculate the mean r2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Yeast data : http://genomics-pubs.princeton.edu/YeastCross_BYxRM/data/cross.Rdata

Wheat data : http://www.niab.com/pages/id/402/NIAB_MAGIC_population_resources

References

1. Marx V. Human phenotyping on a population scale. Nat. Methods. 2015; 12:711–714.

2. Soranzo N, et al. A genome-wide meta-analysis identifies 22 loci associated with eight 
hematological parameters in the HaemGen consortium. Nat. Genet. 2009; 41:1182–1190. [PubMed: 
19820697] 

3. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide 
association studies. Nat. Methods. 2014; 11:407–409. [PubMed: 24531419] 

4. Huffman JE, et al. Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation 
within the human plasma N-glycome of 3533 European adults. Hum. Mol. Genet. 2011; 20:5000–
5011. [PubMed: 21908519] 

5. Lauc G, et al. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies 
HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet. 2010; 6:e1001256. 
[PubMed: 21203500] 

6. O'Reilly PF, et al. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. 
PLoS ONE. 2012; 7:e34861. [PubMed: 22567092] 

Dahl et al. Page 14

Nat Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://mathgen.stats.ox.ac.uk/genetics_software/phenix/phenix.html
http://www.stat.rice.edu/~gallen/software.html
http://genomics-pubs.princeton.edu/YeastCross_BYxRM/data/cross.Rdata
http://www.niab.com/pages/id/402/NIAB_MAGIC_population_resources


7. Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex 
diseases using single-nucleotide polymorphism-derived genomic relationships and restricted 
maximum likelihood. Bioinformatics. 2012; 28:2540–2542. [PubMed: 22843982] 

8. Schadt EE, et al. An integrative genomics approach to infer causal associations between gene 
expression and disease. Nat. Genet. 2005; 37:710–717. [PubMed: 15965475] 

9. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. 
Hum. Genet. 1998; 62:1198–1211. [PubMed: 9545414] 

10. Abecasis GR, Cardon LR, Cookson WO, Sham PC, Cherny SS. Association analysis in a variance 
components framework. Genet. Epidemiol. 2001; 21(Suppl 1):S341–6. [PubMed: 11793695] 

11. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide 
dense marker maps. Genetics. 2001; 157:1819–1829. [PubMed: 11290733] 

12. Hai R, et al. Bivariate genome-wide association study suggests that the DARC gene influences lean 
body mass and age at menarche. Sci China Life Sci. 2012; 55:516–520. [PubMed: 22744181] 

13. Piccolo SR, et al. Evaluation of genetic risk scores for lipid levels using genome-wide markers in 
the Framingham Heart Study. BMC Proc. 2009; 3(Suppl 7):S46. [PubMed: 20018038] 

14. Choi Y-H, Chowdhury R, Swaminathan B. Prediction of hypertension based on the genetic analysis 
of longitudinal phenotypes: a comparison of different modeling approaches for the binary trait of 
hypertension. BMC Proc. 2014; 8:S78. [PubMed: 25519406] 

15. Scutari M, Howell P, Balding DJ, Mackay I. Multiple quantitative trait analysis using bayesian 
networks. Genetics. 2014; 198:129–137. [PubMed: 25236454] 

16. Park SH, Lee JY, Kim S. A methodology for multivariate phenotype-based genome-wide 
association studies to mine pleiotropic genes. BMC Syst Biol. 2011; 5(Suppl 2):S13. [PubMed: 
22784570] 

17. Cui X, Sha Q, Zhang S, Chen H-S. A combinatorial approach for detecting gene-gene interaction 
using multiple traits of Genetic Analysis Workshop 16 rheumatoid arthritis data. BMC Proc. 
2009:S43. [PubMed: 20018035] 

18. Shin S-Y, et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014; 
46:543–550. [PubMed: 24816252] 

19. Suhre K, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 
2011; 477:54–60. [PubMed: 21886157] 

20. Meuwissen THE, Odegard J, Andersen-Ranberg I, Grindflek E. On the distance of genetic 
relationships and the accuracy of genomic prediction in pig breeding. Genet. Sel. Evol. 2014; 
46:49. [PubMed: 25158793] 

21. Schifano ED, Li L, Christiani DC, Lin X. Genome-wide association analysis for multiple 
continuous secondary phenotypes. Am. J. Hum. Genet. 2013; 92:744–759. [PubMed: 23643383] 

22. Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat. 
Genet. 2010; 42:565–569. [PubMed: 20562875] 

23. Igl W, Johansson A, Gyllensten U. The Northern Swedish Population Health Study (NSPHS)--a 
paradigmatic study in a rural population combining community health and basic research. Rural 
Remote Health. 2010; 10:1363. [PubMed: 20568910] 

24. Bloom JS, Ehrenreich IM, Loo WT, Lite T-LV, Kruglyak L. Finding the sources of missing 
heritability in a yeast cross. Nature. 2013; 494:234–237. [PubMed: 23376951] 

25. Rat Genome Sequencing and Mapping Consortium. et al. Combined sequence-based and genetic 
mapping analysis of complex traits in outbred rats. Nat. Genet. 2013; 45:767–775. [PubMed: 
23708188] 

26. Abdollahi-Arpanahi R, et al. Dissection of additive genetic variability for quantitative traits in 
chickens using SNP markers. J. Anim. Breed. Genet. 2014; 131:183–193. [PubMed: 24460953] 

27. Mackay IJ, et al. An eight-parent multiparent advanced generation inter-cross population for 
winter-sown wheat: creation, properties, and validation. G3 (Bethesda). 2014; 4:1603–1610. 
[PubMed: 25237112] 

28. Ferreira MAR, Purcell SM. A multivariate test of association. Bioinformatics. 2009; 25:132–133. 
[PubMed: 19019849] 

Dahl et al. Page 15

Nat Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



29. Galesloot TE, van Steen K, Kiemeney LALM, Janss LL, Vermeulen SH. A comparison of 
multivariate genome-wide association methods. PLoS ONE. 2014; 9:e95923. [PubMed: 
24763738] 

30. Casale FP, Rakitsch B, Lippert C, Stegle O. Efficient set tests for the genetic analysis of correlated 
traits. Nat. Methods. 2015; 12:755–758. [PubMed: 26076425] 

31. Dahl, A.; Hore, V.; Iotchkova, V.; Marchini, J. Network inference in matrix-variate Gaussian 
models with non-independent noise. arXiv.org. 2013. http://arxiv.org/abs/1312.1622v1

32. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine mapping quantitative trait loci 
in outbred animal stocks. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:12649–12654. [PubMed: 
11050180] 

33. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 
2010; 11:499–511. [PubMed: 20517342] 

34. Hers I. Insulin-like growth factor-1 potentiates platelet activation via the IRS/PI3Kalpha pathway. 
Blood. 2007; 110:4243–4252. [PubMed: 17827393] 

35. Cho J, Mosher DF. Role of fibronectin assembly in platelet thrombus formation. J. Thromb. 
Haemost. 2006; 4:1461–1469. [PubMed: 16839338] 

36. Prévost N, et al. Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, 
platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of 
ephrinB1. Blood. 2004; 103:1348–1355. [PubMed: 14576067] 

37. Chen Y-R, et al. Y-box binding protein-1 down-regulates expression of carbamoyl phosphate 
synthetase-I by suppressing CCAAT enhancer-binding protein-alpha function in mice. 
Gastroenterology. 2009; 137:330–340. [PubMed: 19272383] 

38. Shinya H, Matsuo N, Takeyama N, Tanaka T. Hyperammonemia inhibits platelet aggregation in 
rats. Thromb. Res. 1996; 81:195–201. [PubMed: 8822134] 

39. Gilson CR, Patel SR, Zimring JC. CTLA4-Ig prevents alloantibody production and BMT rejection 
in response to platelet transfusions in mice. Transfusion. 2012; 52:2209–2219. [PubMed: 
22321003] 

40. Zufferey A, et al. Unraveling modulators of platelet reactivity in cardiovascular patients using 
omics strategies: Towards a network biology paradigm. Advances in Integrative Medicine. 2013; 
1:25–37.

41. Szabo SJ, et al. A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment. Cell. 
2000; 100:655–669. [PubMed: 10761931] 

42. Zhou X, Carbonetto P, Stephens M. Polygenic modeling with bayesian sparse linear mixed models. 
PLoS Genet. 2013; 9:e1003264. [PubMed: 23408905] 

43. GTEx Consortium. Ardlie KG, Dermitzakis ET. Human genomics. The Genotype-Tissue 
Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348:648–
660. [PubMed: 25954001] 

44. Little, RJA.; Rubin, DB. Statistical analysis with missing data. John Wiley & Sons, Inc.; New 
York: 1987. 

45. Giordano, R.; Broderick, T.; Jordan, M. Linear Response Methods for Accurate Covariance 
Estimates from Mean Field Variational Bayes. arXiv.org. 2015. http://arxiv.org/abs/1506.04088v2

46. Cotsapas C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011; 
7:e1002254. [PubMed: 21852963] 

47. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges 
and strategies. Nat. Rev. Genet. 2013; 14:483–495. [PubMed: 23752797] 

48. Listgarten J, et al. A powerful and efficient set test for genetic markers that handles confounders. 
Bioinformatics. 2013; 29:1526–1533. [PubMed: 23599503] 

49. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. 
Genet. 2012; 44:821–824. [PubMed: 22706312] 

50. Almasy L, Dyer TD, Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-
incident linkages. Genet. Epidemiol. 1997; 14:953–958. [PubMed: 9433606] 

51. Mazumder R, Hastie T, Tibshirani R. Spectral Regularization Algorithms for Learning Large 
Incomplete Matrices. 2010; 11:2287–2322.

Dahl et al. Page 16

Nat Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://arxiv.org/abs/1312.1622v1
http://arxiv.org/abs/1506.04088v2


52. Troyanskaya O, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 
2001; 17:520–525. [PubMed: 11395428] 

53. Buuren SV, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. 
Journal of Statistical Software. 2011; 45:1–67.

54. Allen GI, Tibshirani R. Transposable regularized covariance models with an application to missing 
data imputation. Ann Appl Stat. 2010; 4:764–790. [PubMed: 26877823] 

55. Dawid AP. Some matrix-variate distribution theory: Notational considerations and a Bayesian 
application. Biometrika. 1981; 68:265–274.

56. Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An Introduction to Variational Methods for 
Graphical Models. Machine Learning. 1999; 37:183–233.

57. Liu, D.; Zhou, T.; Qian, H.; Xu, C.; Zhang, Z. Machine Learning and Knowledge Discovery in 
Databases 8189. Springer; Berlin Heidelberg: 2013. p. 210-225.

58. Wang Z, et al. Rank-One Matrix Pursuit for Matrix Completion. ICML. 2014:91–99.

59. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype 
imputation in genome-wide association studies through pre-phasing. Nat. Genet. 2012; 44:955–
959. [PubMed: 22820512] 

Dahl et al. Page 17

Nat Genet. Author manuscript; available in PMC 2016 September 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Simulation results
Model 1 – scenario simulated using an empirical kinship matrix derived from the human 

NSPHS study23. Model 2 – scenario simulated using 75 families of 4 sibs. Datasets were 

simulated at various levels of heritability (x-axis) for the traits. 300 individuals at 15 traits 

were simulated. 5% of phenotype values were set as missing before imputation. 7 different 

methods (legend) were applied to impute the missing values. The correlation of the imputed 

values with the true values is plotted on the y-axis for each method. The lines for TRCMA, 

MVN and SOFTIMPUTE lie almost exactly on top of each other.
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Figure 2. Imputation performance in real datasets
There is one plot for each of the six real datasets. The vertical dotted black line shows the 

true level of missingness in the dataset. Extra missingness was added to each dataset , and 

the x-axis shows the amount of missing data in these reduced datasets. The y-axis shows 

imputation correlation between the imputed missing data and the held out data. The legend 

denotes the different methods that were applied to the datasets. Not all methods were run on 

all datasets. TRCMA and MPMM were only run on the human NSPHS and wheat datasets 

for computational reasons.
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Figure 3. Missing phenotype imputation in 140 rat GWAS
The x-axis and y-axis show the −log10(p) for the GWAS on the un-imputed and imputed 

phenotypes respectively. Each point corresponds to a region in both scans. The dashed black 

lines denote a conservative threshold of −log10(p)>10 that was applied to highlight 

associated regions (large points). Points in grey have imputation r2<0.36. Associations with 

platelet phenotypes on chr 9 and T cell phenotypes on chr 10 are highlighted with red and 

blue points respectively.
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Figure 4. Platelet phenotype associations
GWAS results for un-imputed (blue points) and imputed phenotypes (red points) for three 

platelet phenotypes (MPC, MPV, PDW) measured in rats, on rat chromosome 9 (50-80Mb). 

Genes are shown below the plots, with some (named) genes with relevant annotation to 

platelet function, adhesion and aggregation highlighted in a separate track. Histograms on 

the right show the distribution of observed (cyan) and imputed (purple) phenotypes, together 

with missingness and r2 metrics.
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Figure 5. T cell phenotype associations
GWAS results for un-imputed (blue points) and imputed phenotypes (red points) for three T 

cell phenotypes (CD25highCD4, Abs_CD25CD8, pctDP) measured in rats, on rat 

chromosome 10 (83-89Mb). Genes are shown below the plots, with some (named) genes 

with relevant annotation to T cell phenotypes highlighted in a separate track. Histograms on 

the right show the distribution of observed (cyan) and imputed (purple) phenotypes, together 

with missingness and r2 metrics.
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Table 1
Brief summary of methods applied to simulated and real datasets

Method Description and Properties References

PHENIX Bayesian multivariate mixed model fitted via Variational Bayes This paper

MVN Multivariate normal model of covariance between traits, fit using an EM algorithm. Ignores genetic 
covariance between samples.

44

LMM Single trait linear mixed model, with estimated BLUP used to impute missing values. Ignores covariance 
between phenotypes.

48,49

MPMM Multiple Phenotype Mixed Model, fit using EM algorithm to only samples without missing data. 3,50

SOFT-IMPUTE Low-rank approximation to phenotype matrix via nuclear norm penalty function 51

kNN Nearest neighbour imputation 52

MICE Multivariate Imputation by Chained Equations 53

TRCMA Fits a single matrix normal model to the data by estimating penalized row and column covariances 54
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Table 2
Summary of real datasets analyzed

The relatedness measure (Ψ) is defined in the Online Methods.

Dataset Number of samples Number of phenotypes Missing data (%) Relatedness Measure Reference

Rats 1,407 205 15.8 0.12 25

Yeast 1,008 46 5.2 0.10 24

Wheat 720 7 2.4 0.09 27

Chickens 11,575 12 57.1 0.06 26

NSPHS 1,021 15 0.1 0.05 23

UKBS 1,500 6 14.5 0.03 2
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