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Abstract
Due to growing concern about organic micropollutants and their transformation products (TP) in surface and drinking water,
reliable identification of unknowns is required. Here, we demonstrate how non-target liquid chromatography (LC)-high-resolu-
tion tandem mass spectrometry (MS/MS) and the feature-based molecular networking (FBMN) workflow provide insight into
water samples from four riverbank filtration sites with different redox conditions. First, FBMNprioritized and connected drinking
water relevant and seasonally dependent compounds based on a modification-aware MS/MS cosine similarity. Within the
resulting molecular networks, forty-three compounds were annotated. Here, carbamazepine, sartans, and their respective TP
were investigated exemplarily. With chromatographic information and spectral similarity, four additional TP (dealkylated
valsartan, dealkylated irbesartan, two oxygenated irbesartan isomers) and olmesartan were identified and partly verified with
an authentic standard. In this study, sartans and TP were investigated and grouped regarding their removal behavior under
different redox conditions and seasons for the first time. Antihypertensives were grouped into compounds being well removed
during riverbank filtration, those primarily removed under anoxic conditions, and rather persistent compounds. Observed sea-
sonal variations were mainly limited to varying river water concentrations. FBMN is a powerful tool for identifying previously
unknown or unexpected compounds and their TP in water samples by non-target analysis.

Keywords Identification of unknowns . Molecular networking . Transformation products . Tandem mass spectrometry .

Environmental analysis

Introduction

Due to rising concern about the increasing number of chemi-
cal compounds present in our surface waters, the identification
of organic micropollutants (OMP) and their transformation

products (TP) is necessary [1]. Non-target screening theoreti-
cally allows researchers to detect hundreds of chemical com-
pounds in a single analytical run by chromatography coupled
to mass spectrometry (MS). However, identifying unknown
OMP in environmental water samples is challenging and re-
quires reliable data evaluation [2]. Initially, non-target screen-
ing does not require reference standards as compound anno-
tation usually relies on public spectral reference libraries or in
silico prediction. However, to turn an annotation into an iden-
tification, orthogonal identifiers (e.g., retention time or frag-
ment spectra) are commonly compared to reference standards
[3]. Generally, several approaches for the subsequent steps of
non-target screening, namely feature detection (e.g., MZmine,
enviMass), statistical analysis/prioritization (e.g.,
MetaboAnalyst, Matlab), and compound annotation/
identification (e.g., GNPS, FOR-IDENT, MassBank) in data
evaluation of large MS datasets in this context have been
made. Prioritization of features (defined by mass-to-charge
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ratio (m/z), retention time, and intensity) offers the possibility
to focus on a predefined compound group (e.g., formation
during a process [4]) and therefore enables a pre-selection of
features of interest. A subsequent spectral database search
allows the annotation of compounds [2]. Notably, the out-
come of this approach is dependent on the availability of ref-
erence spectra and therefore falls short for many TP [5]. As a
solution to similar challenges, molecular networking (MN)
was introduced in 2012 [6] and made publicly available
through the Global Natural Products Social Molecular
Networking (GNPS) web-platform (http://gnps.ucsd.edu)
[7]. The recently published MN protocol provides an
introduction to the topic [8]. MN creates networks of nodes,
i.e., fragmentation spectra (MS/MS), which are connected
based on a pairwise spectral alignment and similarity scoring
of all experimental MS/MS spectra in a study, which are often
acquired in data-dependent fragmentation [8]. In a second
step, nodes are annotated by matching against the public
GNPS spectral libraries. This workflow was applied to differ-
ent non-target MS studies in various fields, including ocean
water [9], agricultural [10], forensic [11], and biomedical re-
search [12]. Despite growing MS/MS spectral libraries, anno-
tation rates of only 5% of all experimental MS/MS spectra are
common [8]. Nevertheless, many novel compounds were
identified with this approach [13–15] and annotations can be
propagated throughout a molecular network [16]. The GNPS
platform combines multiple tools to analyze and enrich anno-
tations in molecular networks [8, 17, 18]. Compared to clas-
sical molecular networking, where all MS/MS spectra are
clustered with no regard to retention time, feature-based mo-
lecular networking (FBMN) uses only MS/MS spectra that
originate from features with a chromatographic peak shape
and therefore also considers retention times and peak areas.
FBMN enables the identification of isobaric isomers and a
more precise statistical evaluation of datasets [19].
Nevertheless, FBMN has so far mainly been used in natural
product research and has not been extended towards surface
and drinking water TP identification which is shown in this
study. In environmental analysis, it has been used to identify
TP of anthropogenic source in ocean water [20].

Riverbank filtration (RBF) is a long-used and efficient nat-
ural clean-up technique for the effective removal of OMP,
bacteria, and other unwanted substances from raw water used
for drinking water production [21]. OMP are transported in
the groundwater and either adsorbed, transformed, or degrad-
ed during RBF and, therefore, specifically either removed or
converted to other chemical structures of unknown risk. RBF
performance for OMP removal and degradation is dependent
on a variety of factors, such as redox conditions, travel time
and distance, hydraulic conductivity, or initial OMP concen-
tration [22–25]. Although the behavior during RBF is well
studied for many compounds, e.g., commonly used pesticides
[26, 27] and pharmaceuticals [28, 29], various TP still lack

data on the removal during RBF and suitable removal
conditions.

Therefore, we applied FBMN on a set of seasonal RBF
samples from four sites at two rivers in Germany to identify
unknown compounds and possible TP with non-target liquid
chromatography (LC)-MS analysis. After a spectral database
search, TP were identified by their spectral similarity to refer-
ence standards, data from the literature, and manual spectral
evaluation. Furthermore, the identified compounds were sta-
tistically analyzed regarding their seasonal occurrence and
behavior at the different sites under different redox conditions
and travel distances. Therefore, the aims of this study were (1)
to implement the application of FBMN on environmental
samples and (2) to broaden the knowledge on OMP and TP
behavior during RBF.

Materials and methods

Sample material and study sites

Four RBF sites in Germany, two at the Ems river and two at
the Ruhr river, were investigated (see Supplementary
Information (ESM) Figure S1). These sites were previously
characterized and chemically analyzed by target analysis [25].
Grab water samples were taken from a transect comprising of
river water (R), three groundwater wells (B1-3), and the ab-
straction well (W) at each RBF site at three different sampling
times each: summer 2017 (Su, low discharge), fall 2017 (Fa,
medium discharge), and spring 2018 (Sp, low discharge). The
Ems river sites (Ea and Eb) consist of anoxic silty sand aqui-
fers with medium conductivity (10−4 m/s) and travel distances
of 633 and 89 m, respectively. Oxic gravel aquifers character-
ize the Ruhr river sites (Ra and Rb) with high conductivity
(10−2 m/s) and travel distances of 72 and 42 m, respectively.
The Ems river is predominantly influenced by agricultural
activity and wastewater treatment plants (WWTP), whereas
the Ruhr river is mainly affected by WWTP, industry, and
urban runoff but less agricultural activity. The proportion of
treated wastewater (TWW) at mean minimum discharge
reaches 50–100% at both rivers, being higher in Ems river
[30]. Detailed information on the fraction of treated wastewa-
ter in both rivers and effects of discharge can be found in our
previous study Oberleitner et al., 2020 [25].

Analysis of organic micropollutants

The detailed method is described in Oberleitner et al., 2020
[25]. In brief, the samples were acidified to 0.1% formic acid
(99.8%, FA from Merck, Germany) and centrifuged at 4000g
for 10 min, and 490 μL was directly co-injected with 10 μL
internal standard (d6-sulfadimethoxine (Dr. Ehrenstorfer), d6-
diuron (Campro Scientific), d4-benzotriazole (Chiron AS)) to
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the HPLC system (Prominence UFLC, Shimadzu, Japan). A
binary gradient consisting of acetonitrile (5% water, 0.05%
formic acid) and water (0.05% formic acid) was applied on a
NucleoShell RP 18plus (Macherey-Nagel, Germany)
reversed-phase column and detection was achieved by a
Bruker MaXis 3G qTOF tandem mass spectrometer equipped
with an electrospray ionization source in positive ionization
mode (m/z 50–1000). By injecting a solution of sodium for-
mate directly into the ESI source before each measurement,
mass recalibration was performed. Data-dependent fragmen-
tation was applied, selecting the eight most intensive ions
above 400 counts for fragmentation with 35 eV and active
exclusion after five spectra for 0.15 min. Mass recalibration
and semi-quantitative analysis were performed with
DataAnalysis 4.2 (Bruker Daltonics, Germany). Analytical
standards of valsartan, valsartan acid, irbesartan, candesartan,
olmesartan, telmisartan, 10-hydroxycarbazepine, and 10,11-
dihydro-10,11-dihydroxycarbamazepine were purchased
from Neochema and Merck and diluted to 1000, 500, and
100 ng/L with 5% acetonitrile (0.1% formic acid) and mea-
sured with the same method as the samples.

Data processing and identification of components

Data files were converted to .mzML file format with
CompassXport (Bruker Daltonics, Germany) and processed
withMZmine 2.51 [31]. Detailed information on data process-
ing can be derived from ESM Table S1. All data files were
grouped by the attributes “Sample Type” (either “River” or
“Well”) and “Season” (“Summer,” “Fall,” and “Spring”).
Aligned feature lists were filtered to exclude features lacking
fragmentation spectra or 13C isotope pattern as they would not
match the later applied selection criteria due to signal intensity
or number of fragments. The resulting lists were exported for
FBMN on GNPS. Nevertheless, it cannot be excluded that the
lists still contain e.g. adducts or in-source fragments as multi-
ple signals from only one compound. Primary annotation was
performed by matching experimental MS/MS spectra against
the GNPS spectral database.

FBMN [19] was applied to the samples and features
(nodes) were connected by a similarity score of their MS/
MS spectra (cosine score ≥ 0.7 with at least 4 matched sig-
nals). Default settings given by GNPS for FBMN are cosine ≥
0.7 and 6 matched signals [8]. The default settings are given
for natural compounds of a possible higher mass than anthro-
pogenic substances present in river water. The number of ex-
pectable fragments is lower, though, in smaller molecules.
Therefore, the number of matched signals to enable connec-
tion of features was set to 4. Less than 4 signals would lead to
probably more results, but also reduce the certainty of the
annotated results. Regarding the cosine, the default settings
were chosen since a lower cosine (< 0.7) would again lead
to more connections but less certainty. Cosines above 0.7 can

be individually judged later as they are given for each connec-
tion as the strength of the bond between two nodes.

Evaluation of networks

The resulting networks were exported to Cytoscape [32] and
the depiction of networks was customized. The identified and
unidentified nodes were visualized as squares and circles, re-
spectively, with their size being dependent on their summed
up feature area. The weight of the edges between the nodes
was set according to their cosine similarity score and labeled
with the m/z difference between the nodes. Area variations
between the sample groups, either based on the attributes
“Sample Type” or “Season,” were depicted in pie charts with-
in the nodes.

Quality assurance

To assure the stability of the chromatography and the mass
spectrometry, the abovementioned internal standards were
used. Maximum time deviation of the internal standards
ranged between 0.7 and 1.1% and signal intensity’s relative
standard deviations ranged between 8.4 and 13.1% for the
internal standards (ESM Table S2). Mass accuracy was
<0.005 m/z or 10 Da. Between the measurement of each trip-
licate, laboratory blanks were included in the sequence. For
the subsequent data evaluation, only 10 representative blank
samples were considered. Features appearing in blanks in sig-
nal intensities higher than the tripled noise level were exclud-
ed from the subsequent feature lists of the samples.

Results and discussion

Creation and prioritization of networks

In total, 19,246 feature nodes containingMS/MS spectra were
created for all samples (Fig. 1). Despite filtering 13C isotope
patterns, these nodes include multiple ion adducts and in-
source fragments for one compound and are therefore not
equivalent to the number of detected compounds. In total,
507 networks were created containing at least two nodes out
of which 375 consisted of exactly two nodes. The largest
network contained 86 nodes. A more comprehensive view
on the detected features concerning their total number and
appearance in different seasons as well as a comparison of
the various locations is described in Oberleitner et al., 2020b
[33] (for a detailed view, use the URL provided at the end of
this document to access the annotated network raw data).

Many nodes remained unconnected from any networks ei-
ther because of a lack of similar compounds within the sam-
ples or insufficient quality of their corresponding MS/MS
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spectrum. A minimum of four signals is required for a simi-
larity score. Therefore, most nodes form so-called singletons.

Considering only networks that contained nodes with li-
brary matches (squares), only 256 nodes remained (1.3% of
all feature nodes). Similarly, most annotated nodes were sin-
gletons. The largest network contained 53 nodes with 128
connecting edges with annotations for dibutyl phthalate and
diethyl phthalate. These are expected to derive from contam-
ination during sampling and measurement from tubes contain-
ing phthalate plasticizers. These signals also occurred in blank
samples with significantly lower signal intensity. Therefore,
there might also be phthalate pollution in the samples derived
from the river water . The same can be seen for
triphenylphosphine oxide and triphenylphosphate although
they did only form singletons and not larger networks. Each
network can be rearranged and investigated individually. For
further evaluation, two networks with a maximum size of ten
nodes were chosen exemplarily. Additionally, networks that
contained related annotations (e.g., other sartans) were added
to the view of the respective network.

Carbamazepine and transformation products

The first identified network is depicted in Fig. 2. Three nodes
were annotated as carbamazepine, 10-hydroxycarbazepine,
and 10,11-dihydroxy-10,11-dihydro-carbamazepine.
Carbamazepine was already determined within the samples
in our previous study being mostly persistent during RBF
[25]. 10-Hydroxycarbazepine has a high structural similarity
to carbamazepine (ESM Fig. S2) and was only found within
the river samples; hence, it is well removed during RBF. It is a
metabolite of oxcarbazepine previously detected in surface
waters but not detected in our study [34]. The seasonal distri-
bution showed a typical distribution for wastewater-derived

micropollutants: The highest intensities were detected in sum-
mer 2017 and spring 2018. These two sampling times showed
the lowest sampled discharge (Fig. 2 in [25]), and therefore the
water body consists of a high TWW proportion [30].

10,11-Dihydroxy-10,11-dihydro-carbamazepine is a me-
tabolite of carbamazepine [35] known to be formed during
wastewater treatment [36] with distribution within rivers and
wells comparable to carbamazepine. Both TP have not yet
been investigated concerning their behavior during RBF be-
fore. To verify their identification, 10-hydroxycarbazepine
and 10,11-dihydro-10,11-dihydroxycarbamazepine were
measured as reference standards at three different concentra-
tions (100, 500, and 1000 ng/L). The semi-quantitative anal-
ysis regarding the three calibration steps (exact mass, retention
time, six to seven signals per peak) showed that river concen-
trations were below 100 ng/L for 10-hydroxycarbazepine and
below 150 ng/L for 10,11-dihydroxy-10,11-dihydro-carba-
mazepine. Since 10,11-dihydroxy-10,11-dihydro-carbamaze-
pine is only partly removed during RBF, it is relevant to
drinking water production in these concentrations and should
be observed during the subsequent treatment steps.

Sartans and their transformation products

The second investigated network (Fig. 3) contains nodes an-
notated as valsartan, telmisartan, candesartan, irbesartan, and
their TP valsartan acid by the GNPS database due to their
spectral similarity. Annotation was secured by a search for
diagnostic fragments and later proven by reference standards.
Sartans are a group of antihypertensive drugs with a high
production volume (>100 t/a in Germany [37]) and structural
similarities (ESM Figure S3), such as biphenyl, imidazole, or
tetrazole groups.

networks containing at

least 1 identified node

networks containing carba-

mazepine & metabolites

10-hydroxy-

carbazepine

carbamazepine

10,11-dihydroxy-

10,11-dihydro-

carbamazepine

Fig. 1 All resulting nodes (red dots) and networks for feature-based mo-
lecular networking of river and abstraction well samples (left) with net-
work size decreasing from top to bottom (singletons); abstracted

identified nodes and networks containing at least one annotated node
(middle); networks containing carbamazepine and related compounds
(right)
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Nodes A–E were not annotated during spectral library
search but further investigated in this study and manually an-
notated as a valsartan 13C isotope, olmesartan, an oxygenated
form of irbesartan IRB_442 and a structural isomer (C1),
dealkylated valsartan, and dealkylated irbesartan, respective-
ly. An identification level 2 was achieved for nodes A–E as
described by the metabolomics standards initiative (MSI) and
Schymanski et al. [2]. This means that A–E are probable
structures annotated by diagnostic fragments. For a level 1
confirmed structure, a reference standard would be needed,
often unavailable for transformation products. Compounds at
14.76 and 11.85 min were not annotated in this study and
remain unidentified. Yet, they are very likely sartan-related
compounds that show similar fragment spectra, but are not
yet described in literature.

Identification of transformation products

Node A showed a spectral similarity to valsartan, the same
retention time (15.49 min), and a mass difference of 1.002 Da.

Therefore, it was identified as a valsartan 13C isotope that was
missed during isotope filtering in MZmine.

With an accurate m/z of 447.212 and a retention time of
11.06 min, node B fitted the molecular formula C24H27N6O3

+

(4 ppm tolerance). Literature research identified it as
olmesartan [38] and a spectral mirror match (ESM
Figure S4) confirmed the identification via the spectral library
MassBank of North America (MoNA) [39], although the mea-
sured mass spectrum had a low intensity and only fragments
between m/z 177 and 235.

Node C showed high similarity to irbesartan and a mass
difference of +13.979 Da (tR = 14.14 min). Literature research
towards TP of irbesartan resulted in an oxygenated form of
irbesartan IRB_442 [40]. The annotation was confirmed by a
spectral investigation (ESM Figure S5). The fragment at m/z
235 resulted from a loss of the imidazole structure, followed
by a loss of N2 to a fragment at m/z 207. Fragment m/z 180 is
the biphenyl-structure with a bonded CN part. Node C1 has
the same parent mass and fragments as C but an earlier reten-
tion time (12.81 min). Therefore, we annotated it as a

Fig. 2 Molecular networks contain carbamazepine and related
compounds with distribution in river and abstraction well samples (left)
and seasonal distribution (right). Compounds are labeled with their re-
spective retention time. Edge-width amounts to the cosine score.

Identified compounds are highlighted as squares and labeled with the
respective ion type and m/z value. Arrows mark the m/z difference
direction

Fig. 3 Molecular networks contain sartans and related compounds with
distribution in river and abstraction well samples (left) and seasonal dis-
tribution (right). Compounds are labeled with their respective retention
time. Edge-width amounts to the cosine score. Identified compounds are

highlighted as squares and labeled with the respective ion type and m/z
value. Arrows mark them/z difference direction. A, valsartan 13C isotope;
B, olmesartan; C, IRB_442_C; C1, IRB_442_C1; D, dealkylated
valsartan; E, dealkylated irbesartan
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structural isomer of IRB_442_C as found before by Boix et al.
[41].

NodeDwas annotated by the similarity to valsartan and the
mass difference of −100.052 Da as a dealkylated valsartan
which was previously described as a transformation product
of valsartan [42]. It showed the same diagnostic fragments as
IRB_442_C (ESM Figure S6).

Compound E showed a high spectral similarity to
irbesartan and IRB_442 and a mass difference of
−42.047 Da to irbesartan. Additional to fragments at m/z 207
and 180, fragments atm/z 344 and 153 (ESM Figure S7) were
diagnostic for a dealkylated TP of irbesartan (-propylene)
[41].

The retention behavior of the compounds was compared to
different RP-HPLC-MS studies [38, 41–43] and, except for
candesartan, the elution order of the sartans was conclusive
(ESM Figure S8). Candesartan eluted between irbesartan and
valsartan, but in literature, it was either found to elute before
[38] or after [43] both compounds depending on the applied
column, asmobile phases were the same in both studies (water
and methanol with 0.1% FA). Therefore, we assumed that
candesartan elution was very sensitive to the chosen column
and chromatographic conditions, e.g., the chosen eluents.

The identification via diagnostic fragments and literature
data leads to an identification level of two (probable structure)
for the compounds A–E [2]. Retention behavior was conclu-
sive and the presence of the sartans makes the occurrence of
their TP probable [2]. The identification of valsartan, valsartan
acid, irbesartan, candesartan, olmesartan, and telmisartan was
verified by reference standards to level 1. The semi-
quantitative analysis showed concentrations for all sample
types of <100 ng/L for irbesartan and telmisartan, mean con-
centrations <100 ng/L (maximum 200–300 ng/L) for
candesartan and valsartan, mean concentrations of 400 ng/L
(maximum ~425 ng/L) for olmesartan, and mean concentra-
tions of 200–300 ng/L (maximum 600–700 ng/L) for
valsartan acid. For valsartan, concentrations between 0.5 and
150 ng/L have been reported in British rivers before [44]. For
Bavarian river catchments, mean concentrations in WWTP
effluents of 460 ng/L for candesartan, 1250 ng/L for
irbesartan, 740 ng/L for olmesartan, 680 ng/L for telmisartan,
and 1100 ng/L for valsartan are known [38]. Considering the
dilution of TWW in the Ems river and Ruhr river at different
discharge scenarios and a different proportion of prescribed
sartans per region, this results in comparable river water con-
centrations as mentioned for WWTP effluents. In the Ems
river, telmisartan and irbesartan were frequently detected in
a round robin test, as well as olmesartan, telmisartan, and
irbesartan in the Ruhr river, which is in line with our frequent
detection of the compounds [45]. Nödler et al. (2013) found a
maximum concentration of 2119 ng/L (Creek Gonna) for
valsartan acid (median 65 ng/L of 13 surface water samples
across Germany) in surface water [46], which is a larger range

than our results (<LOD - 700 ng/L) indicating a medium
wastewater impact for the Ruhr and Ems rivers compared to
other German rivers. This is in line with Karakurt et al., cal-
culating a TWW proportion of around 50–100% at low river
discharge and far less than 50% at medium discharge [30].
Valsartan acid was also suggested as a possible wastewater
indicator alongside carbamazepine as it showed persistence
and a correlation to carbamazepine concentration in surface
water. It is concluded that the identified sartans at these con-
centration levels are of particular interest concerning drinking
water production from riverbank filtrate. They should be in-
cluded in routine analysis more frequently.

Seasonal occurrence and elimination during riverbank
filtration under different redox conditions

Valsartan, telmisartan, and compounds A, C1, and D and the
unspecified compound at 14.76 min were almost exclusively
found in the river samples and are therefore not relevant for
drinking water production. Valsartan acid, irbesartan,
candesartan, and compounds B, C, and E and an unspecified
compound at 11.85 min were also found in the well samples
and showed a typical seasonal distribution of wastewater-
derived OMP [47].

Intensities for each of the sartans were normalized to the
corresponding maximum intensity across all samples from the
different locations, which was set to 100%. Matrix effects
were not investigated in this study but in regard to our previ-
ous study (Oberleitner et al., 2020 [25]), major matrix effects
influencing the distribution of the analytes were not expected.
The resulting distribution of the sartans and their TP is
depicted in Fig. 4.

Compounds IRB_442_C1, telmisartan, valsartan, and
dealkylated valsartan are depicted as gray-hatched bars.
Maximum intensities for these compounds were found in the
Ems river at site Ea. At both Ems river sites, intensities de-
creased in fall due to dilution by precipitation (river discharge
ratio summer:fall ~ 1:2) [48]. At the Ruhr river, only
telmisartan and dealkylated valsartan show decreased intensi-
ties in fall, whereas IRB_442_C1 and valsartan show in-
creased abundances in fall. A possible explanation could be
increased photodegradation in spring and summer [46, 47].
However, possible photodegradation was also reported for
telmisartan [49], candesartan [50], and irbesartan [51] which
show a different seasonal distribution. The four compounds
were found in all river samples but were immediately elimi-
nated after entering the hyporheic zone and therefore not or
only in small intensities found in the first groundwater wells
near the bank (B1). In our study, the elimination of these
compounds was not dependent on redox conditions which
was reported for valsartan [52]. Valsartan was also previously
found to be persistent during RBF to some extent, which is
conclusive with our findings [52, 53].
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Irbesartan, dealkylated irbesartan, and IRB_442_C are
depicted in shades of blue and were found in all river samples
in comparable intensities, except for fall river samples of the
Ems river. Here, the before-mentioned dilution is expected to
be responsible. Notably, these compounds were found in the
well samples (B1-W) of the Ruhr river sites in comparable or
slightly decreased intensities in contrast to their presence only
in small intensities in the wells of the Ems river sites. Since the
Ems river sites are both anoxic, it is assumed that the elimi-
nation of irbesartan and its TP is increased under anoxic con-
ditions. In contrast, irbesartan was previously found to be
persistent to some extent independent from the prevailing re-
dox conditions [52]. TP IRB_442_C is not found in the re-
mote wells (B3 and W) of site Ra, which possibly derives
from the longer travel distance (66 m) compared to site Rb
(38 m).

Valsartan acid, olmesartan, and candesartan are shaded in
green and found in all river samples. Decreased intensities are
again found in fall. During RBF, olmesartan and candesartan
are partially removed at sites Ea and Ra but not significantly at
sites Eb and Rb. This coincides with the respective longer

travel distance for both redox conditions. Both have previous-
ly been described to be persistent during RBF [54, 55].
Although valsartan acid shows varying intensities in the wells
at site Rb, intensities tend to decrease during RBF at the oxic
Ruhr river sites and the more anoxic site Ea. Contrary to
literature data [52, 53] where valsartan acid was found to be
persistent independent from redox conditions, in our study,
valsartan acid is partially removed under rather oxic
conditions.

To the best of our knowledge, this is the first report on RBF
behavior for the TP IRB_442_C and C1, dealkylated
valsartan, and dealkylated irbesartan.

Further identified compounds

As a result of the application of FBMNon surface and ground-
water samples from two river systems, a list of 43 components
(ESM Table S3, including the before-mentioned
micropollutants) was annotated by matches with the GNPS
spectral libraries of which five were known targets (metopro-
lol, diclofenac, oxazepam, caffeine, and carbamazepine) from
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Fig. 4 Seasonal distribution of sartans and related compounds in
riverbank filtration systems at Ems river (left) and Ruhr river (right) as
accumulated relative signal intensities. The highest peak area of each
compound was set to 100%. Ea, Ems A; Eb, Ems B; Ra, Ruhr A; Rb,
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fall 2017 not possible due to low groundwater table
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our previous study [25]. Components that were only present in
the river samples, but not in the abstraction wells, are ß-
carboline-1-propionic acid (probably derived from plants
[56]), 10-hydroxycarbazepine, phenylalanine-leucin (dipep-
tide), and flufenacet (herbicide). These components are there-
fore well removed during RBF at all sites. Flufenacet was
reported to be eliminated during RBF up to 60% [57].
Flufenacet was only found at the Ems river as well as
flurtamone (herbicide) and 7-chloro-3-methylquinoline-8-car-
boxylic acid (quinmerac, herbicide), which were also found in
the abstraction wells of the Ems river sites. These
micropollutants are therefore site-specific for the Ems river.
Further pharmaceuticals (e.g., sitagliptin, amisulpride, and
clindamycin), biocides (e.g., terbutryn), and metabolites
(e.g., 2-hydroxyibuprofen and desethylterbutylazine) were
common components for all sites and seasons. Natural organic
compounds (e.g., L-tryptophane and oleoylserotonin) were
found among the identified features. Some of these com-
pounds were previously found to be persistent during RBF
to some extent (compare [58–61]). Diclofenac and tris(3-
chloropropyl) phosphate were identified as the 37Cl isotope
of their monoisotopic masses, emphasizing the importance
of collecting MS/MS spectra of molecules containing two or
more chlorine atoms. Due to the settings in MZmine, the most
abundant isotope was selected for the feature list. In molecules
containing two or more chlorine atoms, this mass is different
from the monoisotopic mass.

Conclusions

FBMN is a powerful tool to promote the identification of
unknowns in environmental water samples at low concentra-
tions. With spectral database search, a total of 43 compounds
was annotated. Additionally, in comparison to other identifi-
cation tools, FBMN enables the annotation of unknown spe-
cies with spectral similarity search based on known annotated
compounds present in the sample. Therefore, it broadens the
annotation of unknowns in non-target analysis towards
(unknown) transformation products at low concentrations that
cannot be identified by database search due to lacking spectral
data. In this case, several transformation products of sartans
were annotated by their spectral similarity to their parent com-
pounds although a spectral database search did not lead to any
hits. Still, it has to be considered that thousands of features
present in the samples could not yet be annotated due to lack
of intensity or fragment spectra and the fact that the GNPS
database is still focused on natural compounds. The number of
annotated compounds could eventually increase by extending
the database towards anthropogenic pollutants.

Another advantage over other molecular networking tools
is the utilization of chromatographic data enabling a

plausibility check of annotated features to their retention time
which in this case confirmed the identification of sartan TP.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00216-021-03500-7.
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