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Simple Summary: Men of African descent are twice as likely to die of prostate cancer than other
men. While equal access to care is the key target to improve cancer survival, it is now known that
there are differences in disease biology and risk factor exposure across population groups. These
differences could be causatively linked to the existing prostate cancer health disparities. In this
review, we will discuss the candidate role of inflammation and the immune response as contributing
factors to the excessive burden of lethal prostate cancer among men of African ancestry. Furthermore,
we will introduce the concept that these immunogenic vulnerabilities could be exploited to address
the adverse outcomes experienced by these men. Lastly, we will summarize how these immunogenic
and inflammatory differences could be targeted using current treatments to improve survival for
men of African descent.

Abstract: Despite substantial improvements in cancer survival, not all population groups have
benefitted equally from this progress. For prostate cancer, men of African descent in the United
States and England continue to have about double the rate of fatal disease compared to other men.
Studies suggest that when there is equal access to care, survival disparities are greatly diminished.
However, notable differences exist in prostate tumor biology across population groups. Ancestral
factors and disparate exposures can lead to altered tumor biology, resulting in a distinct disease
etiology by population group. While equal care remains the key target to improve survival, additional
efforts should be made to gain comprehensive knowledge of the tumor biology in prostate cancer
patients of African descent. Such an approach may identify novel intervention strategies in the era of
precision medicine. A growing body of evidence shows that inflammation and the immune response
may play a distinct role in prostate cancer disparities. Low-grade chronic inflammation and an
inflammatory tumor microenvironment are more prevalent in African American patients and have
been associated with adverse outcomes. Thus, differences in activation of immune–inflammatory
pathways between African American and European American men with prostate cancer may exist.
These differences may influence the response to immune therapy which is consistent with recent
observations. This review will discuss mechanisms by which inflammation may contribute to the
disparate outcomes experienced by African American men with prostate cancer and how these
immunogenic and inflammatory vulnerabilities could be exploited to improve their survival.

Keywords: prostate cancer; African American; inflammation; health disparity

Although cancer death rates have declined in the United States and other countries [1],
disparities in cancer risk and outcomes persist, disproportionately affecting the system-
atically underserved and race/ethnic minoritized populations [2,3]. Prostate cancer is a
key example of this with men of African descent in the United States and England contin-
uing to have 2–3 times higher rates of fatal disease than other men [2]. Studies suggest
that when there is equal access to care, survival disparities in prostate cancer are greatly
diminished [4,5]. However, these investigations do not explain the notable differences
in prostate cancer incidence, nor did they consider the now well-known differences in
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tumor biology across population groups. As shown recently, ancestral factors and disparate
exposures may lead to distinct tumor biology in prostate cancer patients, resulting in a
population-specific disease etiology [6–9]. While equal care remains the key target to
improve survival, additional efforts should be made to gain comprehensive knowledge of
the tumor biology in prostate cancer patients of African descent. Such an approach may
identify novel intervention strategies for high risk groups in the era of precision medicine.

A growing body of evidence supports the hypothesis that inflammation plays a
fundamental role in prostate cancer disparities. Key differences in activation of immune–
inflammatory pathways between African American and European American men with
prostate cancer are emerging and these biological processes may influence how African
American men respond to therapy, as suggested by recent findings from clinical trials with
the cancer vaccine, Sipuleucel T [10]. It is the aim of this review to discuss the candidate
role of inflammation and the immune response as contributing factors to the excessive
burden of lethal prostate cancer among men of African ancestry (Figure 1). Furthermore,
we will introduce the concept that these immunogenic vulnerabilities could be exploited to
address the adverse outcomes experienced by the high-risk African American population.
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1. The Mutational and Immune–Oncologic Landscape of Prostate Tumors Differs
between Populations

Prostate cancer displays large geographical differences in occurrence, with low in-
cidence rates in East Asia and high rates in Western countries. Recognized risk factors
for the disease include age, family history of the disease, race/ethnicity, and germline
genetics [11–14]. It has been assumed that modifiable risk factors such as diet and lifestyle
account for the majority of prostate cancers globally [15]. There is strong evidence from
migration studies that the environment modulates prostate cancer risk [16,17]. Yet, there
are few environmental factors that have consistently been linked to prostate cancer [11,18].
Notably, while prostate cancer is the leading cause of cancer death among men in many
countries globally, sub-Saharan Africa and the Caribbean have more than double the
age-standardized rates of mortality compared to other regions of the world, including
North America and Europe [3,19]. This observation led to the hypothesis that ancestral
factors may predispose men of sub-Saharan African ancestry to prostate cancer and a
more aggressive disease [3,19]. Recent observations revealing the association of genetic
ancestral factors with prostate cancer risk support this hypothesis [20–24]. Moreover, men
of African ancestry are at an increased risk of developing fatal prostate cancer in the United
States and England [2] and present with more aggressive disease in the Caribbean and sub-
Saharan Africa [3,25]. The causes of the observed global prostate cancer health disparities
are still being investigated but certainly include delayed diagnosis and lack of access to
health care, ancestral, lifestyle, and environmental risk factors, and likely tumor biological
differences [21,26,27].

Prostate cancer is a heterogeneous disease, in which inherited factors may account for
about 40 to 50% of the cases [28]. Several familial susceptibility genes have been described,
including RNASEL, BRCA1, BRCA2, and HOXB13 [28–32]. RNASEL, or ribonuclease L,
encodes a component of the interferon-regulated 2–5A system that functions in the antiviral
roles of interferons [33], suggesting the importance of immune function in prostate cancer
susceptibility. Most of the inherited risk for prostate cancer arises from common genetic
variants [14]. More than 200 disease susceptibility loci are now known [24], but not all of
them confer risk in men of African ancestry [34]. Numerous studies have examined the
possibility of low penetrance genes contributing to the excessive burden of prostate cancer
in African American men. To date, the best characterized risk locus for prostate cancer is
located at 8q24. Multiple common variants within this locus increase the risk of prostate
cancer in many populations [13,35–38]. As shown by several studies, this locus confers
an even higher risk for prostate cancer in men of West African ancestry, when compared
with men of European and East Asian ancestry, partly explained by variants that were only
found in men of African ancestry [13,20,34,35,39,40]. Thus, the 8q24 region accounts for
some of the excessive disease risk among men of African ancestry.

Prostate cancer can be classified into genomic subtypes, such as those with ETS-fusion
gene arrangements and other subtypes that are negative for ETS-fusion gene arrangements,
and either overexpress the SPINK1 oncogene or carry SPOP, FOXA1, or IDH1 mutations,
or represent a triple-negative subtype (negative for ERG- and other ETS-fusions and
SPINK1-negative) [6,41]. Early-stage prostate cancer contains few recurrent mutations
in cancer-related genes (e.g., ETS gene fusions) [42,43]. Instead, prostate tumors are
characterized by allelic gains of the MYC gene and deletions of the NKX3–1, PTEN, Rb,
and TP53 tumor suppressors [44]. Yet, there is strong evidence of prominent population
differences in the acquisition of genetic alterations for prostate cancer. Reports showed that
prostate tumors from patients of either European, African, or Asian descent exhibit notable
differences in acquired chromosomal aberrations (e.g., ERG fusion and PTEN loss) and
subtype distribution [6–9], indicating disparities in disease etiology and mutational events
among these population groups. Comparing African American with European American
patients [6,45–47], significant differences were observed in the frequency of TMPRSS2–ERG
fusions (about 25% African American vs. 40–45% European American), SPOP mutations
(about 20% African American vs. 10% European American), and PTEN deletions (about
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10–15% African American vs. 30% European American). Chinese prostate cancer patients
acquire mutations in FOXA1 at a high frequency (about 40%), as shown by a recent
report [9]. This gene is infrequently mutated in European-ancestry populations (<10%).

Chronic inflammation has been described as a prostate cancer risk factor that is
associated with aggressive disease [48,49]. We found that aspirin use significantly reduces
the risk of advanced prostate cancer in African American men [50]. Yet, no study has
assessed whether these men commonly develop a systemic inflammatory process that
increases the risk of prostate cancer progression and mortality. While environmental
exposures, such as infections, promote systemic inflammation, ancestral factors may also
influence inflammatory processes and the response to infections [51,52].

2. Inflammation as a Possible Driver of Aggressive Prostate Cancer in African
American Men

The immune–inflammation signature that was initially described by Wallace et al. to
be prevalent in prostate tumors of African American patients is central to the hypothesis
that inflammation is a candidate driver of prostate cancer disparities [53]. Subsequently
observed by others [54] and validated in TCGA [55], this signature includes upregulation
of genes in the interferon (IFN) signaling pathway and contains elements of a viral mimicry
signature. Further investigations of this signature in prostate tumors from African Amer-
ican men describe a signature which corresponds to a previously described “interferon-
related DNA damage resistance signature”, also termed IRDS [56,57]. Detection of IRDS
is a marker of decreased disease-free survival in prostate cancer and has been linked to
acquired resistance to radiation and chemotherapy in breast cancer. Thus, upregulation
of this signature in African American tumors indicates a mechanism by which either in-
flammatory ancestral factors or a yet unknown infectious agent may contribute adversely
to prostate cancer outcomes. Even though the presence of IRDS in a tumor may indicate
an adverse outcome, this signature may also constitute a vulnerability. Tumors with an
interferon-stimulated gene signature were reported to be highly susceptible to inhibition of
adenosine deaminase acting on RNA (ADAR1) [58,59].

Despite the fact that we know it occurs about twice as often in African American
prostate tumors when compared to European American tumors [56], the precise origin
of this immune inflammation signature remains unknown. However, presence of the
signature is associated with an interferon-λ4 ∆G genotype [56]. This genotype is responsible
for production of the interferon lambda 4 protein (IFNL4) and is most common in people
of West African ancestry and influences host viral response [56,60]. In this context, the
signature may have origins in either infection history [61], pro-inflammatory diets [62],
changes to the epigenome [63], or reactivation of endogenous retroviral sequences which
have been reported in African American prostate cancer patients [64].

Multiple studies reported upregulation of inflammatory mediators in the tumor
microenvironment (TME) of African American prostate cancer patients, many of which
have implications for disease prognosis [65–69]. Gillard et al. investigated the role of the
stroma in prostate cancer disparities by isolating prostate fibroblasts from the TME of
African American and European American men and culturing prostate cancer cell lines in
conditioned fibroblast media [65]. They found enhanced expression of proinflammatory
mediators including TrKB, BDNF, VEGF, and IL6 by tumor cells when the conditioned
media was obtained from fibroblasts of African American origin as compared to European
origin. This implicates the stromal environment in African American men as a potential
driver of prostate cancer progression through elevation of inflammatory mediators. Weiner
et al. report higher immune content in the TME of prostate tumors from African American
men compared to European American men with the proportion of plasma cells contributing
the greatest difference in quantity across three independent cohorts [68]. These high intra
tumoral counts of plasma cells were further associated with increased metastasis-free
survival in both a Johns Hopkins Medical Institute and the TCGA cohort, implicating
plasma cells as candidate regulators of the immune responsiveness in African American
men with prostate cancer. High plasma cell levels correlated with increased IgG expression
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and IFN signaling, and B cell and natural killer (NK) cell activity in tumors of these
patients, showing a possible link between high plasma cells and increased immune activity.
High IgG expression and NK cell activity also showed clinical significance as they were
associated with increased metastasis-free survival. Our group previously detected a B cell
signature in prostate tumors from current smokers, but smoking is thought to increase the
risk of metastasis [70]. Collectively, these findings suggest a regulatory network between
intratumor immune cells, inflammatory cytokines, and cells in the TME. Such a network, if
clearly defined, may have potential as a biomarker of responsiveness to immunotherapy
and targets to improve outcomes among African American patients.

In support of these findings, Awasthi and colleagues reported distinct changes in
immune pathways including overall higher immune cell content, enrichment of immune
oncological pathways, and lower DNA damage repair in prostate tumors of African
American men compared to European American men [66]. After exploring discovery and
validation cohorts of immune-related genes, the authors focused on 38 genes that were
differentially expressed between the two population groups. Of these genes, 26 with the
most robust gene expression differences were identified as being consistently associated
with major immune biological pathways, including IFN signaling and cytokine signaling
based on discovery and validation with two separate pathway analysis tools. As a stand-
out, the proinflammatory gene IFITM3 (IFN inducible transmembrane protein 3) was the
only gene overexpressed in African American prostate tumors that predicted increased
risk of biochemical recurrence only for African American men with prostate cancer, but not
European American men.

The cause of this elevated immune–inflammation response is still under investigation.
Numerous studies have shown that population differences in genetic ancestry can con-
tribute to population differences in cancer susceptibility through processes that may involve
inflammation. Genetic ancestry and natural selection are known to contribute to popula-
tion differences in immune response to pathogens [52,71]. Furthermore, relationships of
ancestry with expression levels of inflammatory cytokines are well documented in human
populations [72,73]. As a modifiable risk factor, a pro-inflammatory diet that associates
with high-grade prostate cancer is more commonly consumed by African American than
European American men [62] and may lead to systemic inflammation. Other inducers of
systemic inflammation may include stress exposures. Stress signaling transduces its biologi-
cal effects through hypersecretion of the corticotrophin-releasing hormone and activation of
the peripheral autonomic and sympathetic nervous system, which has direct effects on tu-
mor biology and immune response, promoting inflammation, angiogenesis, mesenchymal
differentiation, and metastasis [74]. As a final example, co-morbidities including chronic
infections and diabetes can be excessively high in African American men [75–77]. They
are frequently associated with increased inflammatory processes which could contribute
to cancer development. This suggests that there could be a role for both biological and
environmental factors in the elevated immune–inflammation pathways that are reported
in the prostate tumors from men of African descent, as previously discussed [78].

3. African American Men May Have a Differential Response to Certain Therapies for
Metastatic Prostate Cancer

The peer-reviewed literature now provides some evidence that men of African descent
may respond differently across the gamut of both standardized and emerging options
of care for prostate cancer, including radiation, hormone therapy, chemotherapy, and
immunotherapy. Differences in immune response may play a key role in many of these
observations. Metastatic castration-resistant prostate cancer (mCRPC) is a main cause of
lethal prostate cancer and therefore remains a key focus for research. Despite patients with
mCRPC having multiple treatment options targeting a variety of mechanisms (Figure 2),
median overall survival is still only around 3 years [79]. This further highlights the need
for inclusion of diverse biospecimens in scientific studies and historically understudied
populations in clinical trials to determine who is benefitting optimally from these currently
approved treatments.
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(AA) and European American (EA) patients with metastatic castration-resistant prostate cancer
(mCRPC). Current approved treatment modalities for mCRPC, how clinical responses may differ
between the two patient groups, and where additional studies are warranted. For PARP inhibitor use,
the pathologic role of germline variants of unknown significance in DNA repair genes that commonly
occur in AA men needs to be investigated.

4. Radiation

Radium-223 is an approved therapeutic option for mCRPC patients with symptomatic
bone metastases. Zhao et al. examined the response to radium-223 treatment in men
from a Veteran Affairs cohort with mCRPC [80]. With equal access to care across the
cohort, this group found that African American men may have a better response to this
treatment compared to European American men, resulting in a 25% decreased risk of
mortality in this equal access to care study. African American men in this study were more
likely to have received docetaxel beforehand and the improved response to therapy was
despite the African American cases being more likely to not start radium treatment until
further along in the disease course. Patients harboring DNA damage repair mutations
have prolonged overall survival after radium-223 treatment compared to patients who do
not have these alterations [81–83]. This is also the subject of another clinical trial currently
in the recruitment stage (NCT04489719). With Awasthi et al. reporting decreased DNA
damage repair capacity in prostate tumors of African American men, it can be speculated
that inactivating mutations that decrease the DNA damage repair capacity in tumors
from African American men may contribute to the positive outcomes post treatment with
radium-223 [66].

A recent, small, phase II trial (NCT02463799) found combining radium-223 treatment
with Sipuleucel-T increased progression-free survival and overall survival in men with
mCRPC [84]. Now that studies have shown better responses from African American
men treated with radium-223 and Sipuleucel-T separately [10,80], a planned larger trial
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may inform on whether African American men may benefit synergistically from this
combination approach.

5. Immunotherapy

Immunotherapy has not been as successful in treating prostate cancer as with other
hematologic or solid cancers and clinical trials show a modest [85] to no effect [79,86,87] on
survival. This has been attributed to prostate cancer not being as immunogenic as other
cancers. However, recent studies indicate a potential role for immunotherapy in certain
patient groups with prostate cancer. Precision medicine strategies targeting immunotherapy
to those men with the best response is the preferred goal. Evidence is currently being built
to support the hypothesis that African American men may have a differential and perhaps
superior response to certain treatments due to changes in immune cell response and a
differing tumor biology.

Tumors from men of African descent may have a heightened response to immunother-
apies, and specifically to cancer vaccines, as assumed from the presence of an interferon
signature in their tumors and increased immune content in the TME [56,66]. Studies have
shown that young people who self-report as African American mounted an increased
immune response to vaccination [88,89]. Sartor et al. recently reported that African Amer-
ican men with mCRPC who were treated with the cancer vaccine, Sipuleucel-T, in the
PROCEED trial/registry, had significantly better survival than the European American
patients [10]. Median overall survival was 35.3 months for African American men com-
pared to 25.8 months for European American men, in a PSA-matched set. This difference
became even greater when measured in patients with a baseline PSA below the median,
with median overall survival of 54.3 months in African American men versus 33.4 months
in European American men. Increased activation of dendritic cells is a proposed mech-
anism of action of the vaccine and in agreement with this, activated dendritic cells in
localized tumors have subsequently been associated with improved distant metastasis free
survival [90]. Mechanistically, evidence points towards a complex interplay of immune
cells with tumor biology which may predict prognosis and response to therapy. However,
the lack of tumor specimens from African American men means that more work must
be done to capitalize on the differences in the immune landscape which may improve
response to treatment in this population.

Generally, poor immunogenicity has resulted in little success for PD-L1 blockade in
treatment of prostate cancer [87,91]. This has been attributed in part to relatively low PD-L1
expression from tumor cells [92,93]. However, this is not consistent across the literature,
with studies also reporting increased PD-L1 expression and association with biochemical
recurrence [94] and shorter metastasis free survival [95]. Petitprez et al. provide preliminary
evidence that a composite assessment of both PD-L1 and CD8 expression in localized
prostate cancer may be a good strategy for predicting outcomes in mCRPC [95]. A group
in Norway reported high PD-L1 expression in post-prostatectomy, hormone-naïve tumor
epithelial cells with a non-significant trend towards an inverse association between PD-L1
expression and biochemical failure-free survival [96]. However, clinical trials investigating
the effect of PD-L1 inhibition reported no significant clinical benefit. Yet, they have typically
not included men of African descent [87].

Recent work has focused on PD-L1 expression on tumor-infiltrating immune cells.
Bishop et al. reported enzalutamide-resistant prostate cancer patients showing increased
PD-L1 expression on dendritic cells and high PD-L1 T cells when compared to enzalutamide-
sensitive or treatment-naïve patients [97]. African American ethnicity and an aggressive
cancer phenotype have been associated with prediction of tumor PD-L1 positivity in
hormone-naïve tumors [98], suggesting a potential benefit for immunotherapy in African
Americans at high risk of aggressive disease, but this has not been replicated yet [66]. When
tumors are enzalutamide-sensitive, McNamara et al. preliminarily reported increased over-
all survival for African American, chemotherapy-naïve men with mCRPC treated with
abiraterone or enzalutamide compared to European American men [99]. Overall survival
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was 918 days for African Americans compared to 781 days for European Americans. This
study in a Veteran Affairs population was retrospective in design, again pointing to the
value of equal access to care across populations. Thus, additional work is warranted,
including measurement of PD-L1 in tumor samples from African American men post
various treatment regimens to account for increased immunogenic response to therapy.

6. Other Treatment Opportunities

Historically, participation of African American men in clinical trials has been low.
Reasons for this are multifactorial but include historical mistrust of the medical profession
as a result of systemic racism and major ethical breaches in the past [100]. A higher
prevalence of comorbidities and a lack of access to academic medical centers involved
in trials may also prevent access to trials [100–102]. This prevents generalizability across
population groups when reporting clinical trial data. A recent example highlights the
need to include diverse population groups and possibly stratify clinical trial participants
by race to get a fuller picture of treatment response. Halabi et al. completed a meta-
analysis of survival outcomes for African American versus European American men in
phase III clinical trials treating mCRPC with docetaxel [103]. With just 6% of African
American participants, they reported that while overall median survival was similar, a
pooled hazard ratio of 0.81 (95% CI, 0.72 to 0.91) post adjustment for baseline prognostic
factors estimated that African American men may have a significantly decreased risk
of death compared to European American men. This was despite African American
men having baseline characteristics known to be prognostic of overall survival including
statistically significantly worse performance status, higher testosterone levels, higher PSA
levels, and lower hemoglobin levels.

It is assumed by many that the prostate cancer biology in men of African ancestry
is intrinsically more aggressive—at least for a subset of patients—leading to a survival
health disparity in the population [104]. Yet, this does not mean that African American
men would not respond as well as European American men to most standard therapies. In
fact, it appears that the treatment responses of African American and European American
men are mostly similar. Yet, tumors in African American men could still respond better
to certain therapies compared to the average response among European American men.
Some of the treatments or combination treatments discussed in this review were the subject
of small clinical trials and so these therapeutic options might not be widely offered yet
in the clinic. Therefore, the findings require further evaluation in larger studies but do
suggest that there is a potential role for these treatments in reducing the survival disparities
observed in prostate cancer. African American men are less likely to be recruited into
clinical trials and may not have the opportunities to avail of these new therapeutic options.

7. Germline and Somatic Mutations in DNA Repair Pathways

A proposed feature of prostate tumors in African American men that may play a
prominent role in differential response to treatment is a deficiency in DNA damage repair
capacity. Both germline and somatic alterations to DNA damage repair pathways have
now been found in prostate tumors across multiple studies [66,105–107]. Tumors from
African American men were reported to have a significantly lower level of DNA repair
capacity when compared to those from European American men. Notably, these tumors
seemed to have an increased radiosensitivity [66].

Germline mutations in DNA repair genes have a higher occurrence in metastatic
prostate cancer when compared to localized prostate cancer [105,106]. BRCA1/2 pathogenic
variants have been associated with more aggressive prostate cancer and adverse survival
outcomes [108,109]. DNA repair gene mutations may contribute to aggressive disease in
African American men. Acquired somatic mutations may differ among patient groups, with
Yadav et al. reporting that prostate tumors from African American men were twice as likely
to have at least one mutation in nucleotide excision repair pathway genes compared to
European American (89% vs. > 40%) [107]. Petrovics and colleagues reported that germline
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variants in DNA repair genes of unknown significance had an increased frequency in
African American men (4.6%) compared to European American men (1.6%) [110]. As the
significance of these is undetermined, there is an opportunity to investigate whether they
play a pathogenic role in prostate cancer. The same authors also reported that just 0.7%
of men with localized prostate cancer carried pathogenic variants of BRCA1/2 mutations,
but this increased over 4-fold to 3.1% in patients with metastatic and advanced disease,
indicating that the presence of known BRCA1/2 pathogenic variants is linked to disease
status [110]. Because the FDA-approved PARP inhibitors, olaparib and rucaparib, have
shown success in prolonging overall survival in mCRPC patients with mutations in these
DNA damage response genes [111–113], they should be made available to all African
American men with prostate cancer who carry these mutations.

Altered DNA damage repair pathways may sensitize tumors to immunotherapeutic
approaches. Several clinical trials across many cancer sites including metastatic prostate
cancer are currently underway, targeting DNA damage repair-deficient tumors with check-
point inhibitors (extensively reviewed by Bever et al.) [114]. Mechanistically, in prostate
cancer, the stimulator of the IFN genes (STING) pathway has been linked to the recruitment
and activation of interferon-related genes in vitro, increasing sensitivity to the immune
checkpoint inhibitor PD-L1 in DNA repair-deficient tumors [115–118]. As a low DNA repair
capacity may increase tumor genomic instability and tumor mutational burden, this again
might constitute a vulnerability to immunotherapeutic strategies [119]. It has been sug-
gested that enhancement of this genomic instability through use of radiation, chemotherapy,
or PARP inhibitors could augment the immunotherapeutic response [114,120,121].

8. Anti-Inflammatory Drug Aspirin for Prevention of Adverse Outcomes in African
American Men with Prostate Cancer

While the research community plays catch-up with ensuring proper representation
of population groups in clinical trials and precision medicine studies, strategies for the
prevention of lethal prostate cancer and reduction in adverse outcomes are of paramount
importance to men of African descent who continue to experience a disproportionally high
mortality from prostate cancer. An extensive body of evidence including both preclinical
and clinical studies led the United States Preventative Services Task Force to recommend
the anti-inflammatory drug aspirin for prevention of colorectal cancer for an albeit narrow
category of adults [122–124]. In keeping with the hypothesis that inflammation is one
of the drivers of the prostate cancer disparities, our group explored the link between
regular use of aspirin and prostate cancer in African American men. We found that regular
aspirin use significantly reduces the risk of both advanced prostate cancer and disease
recurrence in these men [50]. The finding is consistent with a similar observation in a
previous study [125]. Inhibition of the pro-inflammatory cyclooxygenase/thromboxane A2
pathway has been identified as a potential mechanism of action for aspirin in the prevention
of metastatic cancer [126]. Using a retrospective cohort, we found a distinct association
between high urinary 11-dehydrothromboxane B2 (the stable metabolite of thromboxane
A2) and aggressive prostate cancer as well as adverse survival outcomes for African
American men. Importantly, our ongoing research showed high 11-dehydrothromboxane
B2 was inversely correlated with aspirin use, indicating a potential benefit of aspirin in
preventing lethal prostate cancer through inhibition of TXA2 synthesis.

Lastly, data prospectively obtained in the Southern Community Cohort Study sug-
gested that aspirin use is tentatively associated with a reduced prostate cancer mortality
in African American men [127]. Hurwitz et al. also observed this inverse relationship
between aspirin use and prostate cancer mortality in both African American and European
American men using the ARIC cohort [128], again pointing to the potential benefit of
aspirin use for men at high risk of fatal prostate cancer.

9. Conclusions

Elevated inflammatory processes in African American men with prostate cancer are a
candidate biological driver of disparate disease risks. There is a need for more clinical trials
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specifically focused on the treatment response of African American men with metastatic
prostate cancer [129]. Improved inclusion of minority populations in trials is essential
to further enhance our knowledge of how inflammation and the immune response and
alterations to molecular pathways may govern the response to emerging therapies across
all patient groups. With evidence now building that suggests increased clinical benefit with
certain therapies among African American men when compared to European American
men, targeting inflammatory processes and the immune system could be an important
strategy to reduce lethal disease in high-risk populations such as men of African ancestry.
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