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Differential co-expression-based pathway analysis is still limited and not widely used.
In most current methods, the pathways were considered as gene sets, but the
gene regulation relationships were not considered, and the computational speed was
slow. In this article, we proposed a novel Dysregulated Pathway Identification Analysis
(DysPIA) method to overcome these shortcomings. We adopted the idea of Correlation
by Individual Level Product into analysis and performed a fast enrichment analysis.
We constructed a combined gene-pair background which was much more sufficient
than the background used in Edge Set Enrichment Analysis. In simulation study,
DysPIA was able to identify the causal pathways with high AUC (0.9584 to 0.9896).
In p53 mutation data, DysPIA obtained better performance than other methods. It
obtained more potential dysregulated pathways that could be literature verified, and
it ran much faster (∼1,700–8,000 times faster than other methods when 10,000
permutations). DysPIA was also applied to breast cancer relapse dataset and breast
cancer subtype dataset. The results show that DysPIA is effective and has a great
biological significance. R packages “DysPIA” and “DysPIAData” are constructed and
freely available on R CRAN (https://cran.r-project.org/web/packages/DysPIA/index.html
and https://cran.r-project.org/web/packages/DysPIAData/index.html), and on GitHub
(https://github.com/lemonwang2020).

Keywords: dysregulated pathway, enrichment analysis, differential co-expression, gene regulation, differential
expression, differential variability

INTRODUCTION

Over the past three decades, an amount of high-dimensional biological omics data types have
emerged including genomics, sequencing, proteomics, epigenomics, and genome editing (Auffray
et al., 2009). A common use of these data is to gather and compare samples from multiple
conditions, e.g., disease and non-disease, cancer subtypes, drug sensitivity, and drug resistance, in
an attempt to identify some biomarkers to distinguish between different conditions. Currently, the
common methods of comparing samples from different conditions were Differential Expression
(DE) analysis, Differential Variability (DV) analysis, and Differential Co-expression (DC) analysis
(Ho et al., 2008; McKenzie et al., 2016) (Figure 1). In some research, DC gene pair was also called
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FIGURE 1 | Toy example of DE, DV, and DC. (A) The means of gene expression are significantly different between the two conditions, such as case and control,
while the variances are similar. (B) The variances of gene expression are significantly different between the two conditions, while the means are similar. (C) The
correlation coefficients of the two genes are significantly different between the two conditions.

dysregulated gene pair. A range of statistical procedures, such
as linear modeling (Smyth, 2004), SAM (Tusher et al., 2001),
Bayesian methods (Hardcastle and Kelly, 2010; Hardcastle, 2016),
and F test (Cui and Churchill, 2003), have been devised for
accurate and efficient identification of DE and DV genes. Distinct
from DE and DV, the DC methods that emerged to gain insights
into the difference in gene–gene relationships between various
conditions were gene-pair (regulation) centroid methods rather
than individual-gene centroid methods. Currently, most of the
DC methods relied on the Pearson correlation coefficient (PCC),
such as DiffCorr (Fukushima, 2013), link-based DCEA (Yu et al.,
2011), and DGCA (McKenzie et al., 2016). In biological pathways
with gene interactions or regulations, DC gene pairs can also
be considered as dysregulated gene pairs. The Correlation by
Individual Level Product (CILP) was proposed in Lea et al. (2019)
article to identify factors associated with interindividual variation
in correlation. CILP can be used to estimate the dysregulated
status of each gene pair between case and control samples. In the
CILP method, there was a unique score for each gene pair in each
sample, rather than a summary PCC statistic for a group.

Compared with gene-level analysis, pathway analysis can help
in getting an insight into biological mechanisms, drug response,
and disease states (Kanehisa et al., 2012). Classical pathway
enrichment analysis methods, such as DAVID (Huang da et al.,
2009a,b), were based on overrepresented statistical tests (such
as Fisher’s exact test and hypergeometric test) to assess whether
DE/DV genes were overrepresented in a predefined pathway.
As the most popular one in the second-generation methods,
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005)
started with ranking all genes according to their DE levels, and
then used the weighted Kolmogorov–Smirnov statistic to test
whether genes from a prespecified pathway were significantly
overrepresented toward the top or bottom of the ranked gene
list. The similar strategies were used in gene set analysis (GSA)
(Efron and Tibshirani, 2007), Parametric Analysis of Gene set
Enrichment (PAGE) (Kim and Volsky, 2005), and Significance
Analysis of Function and Expression (SAFE) (Barry et al., 2005).
These conventional methods of pathway analysis focused on gene
marginal effects in a pathway and ignored gene interactions that
may contribute to a phenotype of interest. For two genes in a
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pathway, neither of them may have an effect on a phenotype
of interest. However, when they were jointly considered, they
may have a significant effect on the studied phenotype due to
the gene–gene interaction. In the third generation of pathway
analysis methods, such as Signaling Pathway Impact Analysis
(SPIA) (Tarca et al., 2009) and PAthway Recognition Algorithm
using Data Integration on Genomic Models (PARADIGM)
(Vaske et al., 2010), the pathway topology was incorporated into
the analysis. However, this gene regulation information (edge)
was just used to adjust the gene (node) value in these methods.

Since the measures of these methods are mainly based on
individual gene levels, they can be deemed as node (gene)-
centric methods. Although these methods have made success
in identifying significant biological pathways, the gene-pair
relationships have not been fully considered. Obviously, the
regulation relationships among genes were also the fundamental
components of pathways, and their changes may play an
important role in altering the activities of pathways (Liu
et al., 2012). The DC-based pathway analysis aimed to identify
pathways with more gene regulation differences related to the
phenotype of interest. There were several studies focusing on DC-
based pathway analysis. However, it is still not fully considered,
and some improvements are needed.

Choi and Kendziorski proposed Gene Set Co-expression
Analysis (GSCA) to identify differentially co-expressed (DC)
gene sets (Choi and Kendziorski, 2009). Pairwise co-expressions
were calculated for all the gene pairs within a pathway,
then a dispersion index was introduced to quantify the
differences between conditions, and samples were permuted
across conditions to simulate the null distribution of equivalent
correlation between conditions to identify significant DC
pathways. The GSCA approach did not require genes to be highly
correlated under at least one biological condition, but there were
two weaknesses. The first was that the sample sizes of different
conditions were not considered while just using the PCC. The
second was that pathways were considered as gene sets, but the
gene regulations were not considered. For each pathway, all the
possible gene pairs were used to calculate the dispersion index.

Rahmatallah et al. (2014) proposed Gene Sets Net Correlations
Analysis (GSNCA). It was a multivariate differential co-
expression test which accounted for the complete correlation
structure between genes. In GSNCA, weight factors related to the
eigenvector of the correlation coefficient matrix under specific
conditions were assigned to genes in proportion to the genes’
cross-correlations. Samples’ condition labels were permuted to
estimate the significant level. The same as GSCA, a pathway was
considered as a gene set and the gene regulation relationships
were not considered in GSNCA. The correlation coefficient
matrix for all the genes in a pathway was used to calculate
the weight factor.

Zhang et al. (2009) proposed a gene interaction enrichment
analysis method named “Interaction-based Gene Set Analysis”
(IB-GSA). It incorporated knowledge of pathways to identify
enriched gene interaction effects on a phenotype of interest.
In IB-GSA, for each gene pair, the t-test was performed to
compare the Pearson correlations between different conditions,
and the t statistic was transformed to z score. Then the GSA-like

“maxmean” statistic (Efron and Tibshirani, 2007) was adopted
to calculate a pathway score that reflected the degree of gene
interaction enrichment for the pathway. The “restandardization”
permutation method was implied to determine the pathway
significance. At last, the estimated significance level was adjusted
to account for multiple-hypothesis testing through a standard
Benjamini–Hochberg (BH) (Benjamini and Hochberg, 1995)
FDR analysis. The same as GSCA and GSNCA, in IB-GSA, a
pathway was considered as a gene set and the gene regulation
relationships were not considered. The “maxmean” statistic was
calculated based on all the possible gene pairs in the pathway.

Han et al. (2015) proposed a mutual information (MI)-
based Edge Set Enrichment Analysis (ESEA) method to identify
dysregulated pathways. In ESEA, a MI-based Edge Score was
calculated for each regulated gene pair in pathways, then GSEA-
based enrichment scores for pathways were calculated, the
significant P-values were estimated based on permutation, and
lastly the BH-FDR analysis was performed to adjust the estimated
significance level. In ESEA, the background gene-pair set was not
sufficient, the MI-based Edge Score was novel but has less directly
biological meaning than the classic correlation coefficient, and
the computational speed was extremely slow due to the large
pathway gene-pair database.

In this article, we proposed a novel method called
Dysregulated Pathway Identification Analysis (DysPIA) to
overcome these shortcomings. A pathway is represented by
the regulated gene pairs, but not just a set of genes, which
is used in the traditional pathway analysis. We adopted the
idea of CILP into analysis and performed a fast GSEA-like
enrichment analysis. First, we calculated a Dysregulated Gene
Pair Score (DysGPS) for each gene pair of interest, which was
an individual-level-based statistic instead of population-level.
Then, we calculated the Dysregulated Pathway Score (DysPS)
based on a GSEA-like formula. Lastly, permutation-based
significant P-values were estimated and the BH-FDR adjustment
was performed. Compared with the previous methods, DysPIA
provided a much larger and proper gene-pair background, fully
employed all the sample information, and gained more significant
pathways with biological meanings at a faster running speed.

The R package “DysPIA” has been constructed and is publicly
available on R CRAN1, and the R dataset package “DysPIAData”
including gene-pair background and pathway list is also publicly
available on R CRAN2. They are also available on GitHub3.

MATERIALS AND METHODS

Flowchart of DysPIA
The overall procedure of DysPIA consists of two parts. The first
part calculates the dysregulated score for each gene pair, and the
second part calculates the dysregulated score for each pathway
and estimates significance. The details are shown in Figure 2.

1https://cran.r-project.org/web/packages/DysPIA/index.html
2https://cran.r-project.org/web/packages/DysPIAData/index.html
3https://github.com/lemonwang2020
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FIGURE 2 | The flowchart of DysPIA. In the left side, there are the input data, gene expression, combined background, and pathway gene list. From the gene
expression data, the CILP-like gene pair scores are calculated, then the DysGPS and DysPS are calculated in the right side. The results are shown in the bottom.

Part 1: Dysregulated Gene Pair Score (DysGPS)
Calculation
Firstly, for each gene, the gene expression was mean centered
and scaled separately in each group, e.g., case or control. Let
x be the expression value of gene X across individuals in a
population sample, with mean x and variance σ2. Standardization
(z-score normalization) transforms were performed, such that
the resulting distribution has a mean of 0 and a standard
deviation of 1.

x̃ =
x−x
σ

Secondly, for each gene-pair Xi and Xj from the combined-
background set in sample k, the CILP-like statistic which was the

product of these two genes’ standardized expression values was
defined as:

yi,j = x̃ki x̃
k
j =

(xki−xi)(x
k
j−xj)√

σ2
i σ

2
j

where, x̃ki and x̃kj are the standardized expression values for genes
Xi and Xj in sample k, respectively.

Lastly, the dysregulated gene-pair score (DysGPS) was
calculated based on a two-sample Welch’s t-test between groups:

DysGPSi,j =
ycasei,j −y

control
i,j

s
4
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where, s
4
=

√
s21
n1
+

s22
n2

is the standard deviation of yi,j. Here s2i is

the unbiased estimator of the variance of yi,j in each of the two
groups with ni =number of participants in group L.

Part 2: Dysregulated Pathway Score (DysPS)
Calculation and Significance Estimation
A pre-ranked pathway enrichment analysis pipeline was utilized
to calculate the DysPS and estimate the significance.

• Step 1: Rank the N gene pairs in the combined-background
set in descending order based on DysGPS to form a gene-
pair list L =

{
gp1, gp2, · · · ,gpN

}
.

• Step 2: Calculate DysPS for each pathway.

For a given pathway, gene pairs get different weights based
on whether they are in the pathway. We evaluate the fraction
of gene pairs in pathway P(‘hit’) weighted by their DysGPS and
the fraction of gene pairs not in pathway P(‘miss’) present up to a
given position i in L.

Shit (P, i) =
∑

gpj ∈ P
j ≤ i

∣∣∣DysGPSj∣∣∣p
NR

Smiss (P, i) =
∑

gpj /∈ P
j ≤ i

1
Nmiss

where, NR =
∑

gpj∈P

∣∣∣DysGPSj∣∣∣p, Nmiss represents the number of
gene pairs in the list L and not in the pathway P.

Smax = max (Shit (P, i)−Smiss (P, i))

Smin = min (Shit (P, i)−Smiss (P, i))

DysPS =
{
Smax, |Smax| > |Smin|

Smin, |Smax| < |Smin|

DysPS is the maximum deviation from zero of Shit − Smiss.
For a randomly distributed P, the absolute value of DysPS
will be relatively small, but if gene pairs in the pathway were
concentrated at the top or bottom of the list, or otherwise
nonrandomly distributed, then the absolute DysPS will be
correspondingly high.

When p = 0, DysPS reduces to the standard Kolmogorov–
Smirnov statistic; when p = 1, we are weighting the gene pair in
the pathway by its absolute DysGPS normalized by the sum of the
absolute DysGPS over all the gene pairs in the pathway. We set
p = 1 for the examples in this article.

• Step 3: Randomly permute the sample labels, recalculate
the DysGPS in the background, and recalculate the DysPS
for each pathway.

• Step 4: Repeat step 3 for n times (n> 1000 is recommended)
and create a distribution of the correspondingDysPSNULL.
• Step 5: Estimate the nominal P-value for S from DysPSNULL

by using the positive or negative portion of the distribution
corresponding to the sign of the observed DysPS.
• Step 6: Estimate the false discovery rate (FDR)

using the BH method.
In the results, a pathway was said to have a gain of
correlation if the FDR was significant and the DysPS value
was positive, and a loss of correlation if the FDR was
significant and the DysPS value was negative.
Due to hundreds of thousands of gene pairs and thousands
of pathways, a fast-calculation algorithm proposed in
Korotkevich et al. (2019) article was utilized to speed
up the analysis.

The R package “DysPIA” was developed and is publicly
available on R CRAN.

Simulation Data
To assess the power and performance of DysPIA, we performed
several extensive simulations under various conditions. A total
of 100,000 gene pairs were generated as background, and 1,000
pathways were generated in each simulation. For each gene pair,
100 case and 100 control samples were generated using the R
package “MASS.”

Firstly, the gene-pair expression data was generated.
A Bivariate Normal Distribution was supposed for each
gene-pair expression.(

gi, gj
)′
∼ BN

(
(0, 0)′, 6

)
where, 6 =

(
1 rk
rk 1

)
, k = 1, 2 for conditions 1 and 2.

In 100,000 gene pairs, 95,000 (95%) were set to be non-
dysregulated and 5,000 (5%) were set to be dysregulated. In
non-dysregulated gene pairs, the correlation coefficients for
both conditions were set to be equal (r1 = r2) and they were
randomly drawn from a uniform distribution between -1 and 1.
In dysregulated gene pairs, five gradient correlation coefficient
differences (0.4–0.8) between r1 and r2 were selected. In total,
there were 10 groups of gain/loss of correlation dysregulated gene
pairs with different degrees, which made them as much similar as
we can to the real dysregulated gene pairs. The detailed gene-pair
generations are shown in Table 1.

After the gene expression profiles of each gene pair i and j were
generated, their product was set to be the gene-pair CILP score,
and then the T-test-based DysGPS was calculated.

In the pathway generations, two parameters, the proportion
of dysregulated gene pairs (pdysgp) and the pathway size (np,
number of gene pairs in a pathway), were designed. The five
simulations with different proportions (20–60%) of dysregulated
gene pairs were selected and compared. In each simulation, five
different pathway sizes (20, 40, 60, 80, and 100) were selected,
and 200 pathways were generated with each pathway size,
respectively. Strong/weak dysregulated pathways and gain/loss
of correlation dysregulated pathways were designed based on
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different parameters. In total, for each simulation, 1,000 pathways
were generated, and 100 of them were dysregulated. The detailed
pathway generations with a selected pathway size are shown in
Supplementary Table 1.

In each condition, the Receiver-Operating Characteristic
(ROC) curves were drawn based on sensitivity and specificity.
Then the ROC analysis was used to evaluate and compare the
performance of the algorithm under various scenarios.

Gene Expression Dataset
Three gene expression datasets were used to evaluate the
proposed method.

The first dataset was the p53 mutation data which detected
gene expression in response to the status of transcription factor
p53 in 50 NCI-60 cell lines with 17 cell lines carrying the native
p53 status and 33 cell lines carrying the mutated p53 status
(Olivier et al., 2002). This expression dataset for 10,100 genes
was downloaded from the GSEA website, and 6,835 genes were
used in the following analysis after matching the gene names with
HGNC official gene symbols (Braschi et al., 2019). This dataset
was used to compare our proposed method with other methods.

The second dataset was the breast cancer relapse dataset
(GSE2034) (Wang et al., 2005) downloaded from NCBI Gene
Expression Omnibus. There were 14,208 gene expressions
in 286 lymph-node negative breast cancer patients including
179 relapse-free patients (controls) and 107 distant metastasis
patients (cases). The dataset was divided into two groups based on
ER status. There were 209 samples in the “ER+” group, including
129 control samples and 80 case samples. There were 77 samples
in the “ER−“ group, including 50 control samples and 27 case
samples. The results for ER+ and ER− were compared and
literature verified.

The third dataset was an RNA-seq expression dataset for breast
cancer patients with different subtypes in The Cancer Genome
Atlas (TCGA) (Vasaikar et al., 2018). It contained 20,155 genes
in 1,041 breast cancer patients (40 normal breast samples were
excluded). There were four breast cancer subtypes (Luminal-
A, Luminal-B, Basal-like, HER2-enriched) based on the PAM50
model (Cancer Genome Atlas Network, 2012). There were 560

TABLE 1 | The simulation data with 100,000 gene pairs.

Gene pair Number of gene pairs Correlation coefficients

500 r1 ∼ U [−0.6, 1] , r2 = r1−0.4

500 r1 ∼ U [−0.5, 1] , r2 = r1−0.5

GCDG 2,500 500 r1 ∼ U [−0.4, 1] , r2 = r1−0.6

500 r1 ∼ U [−0.3, 1] , r2 = r1−0.7

500 r1 ∼ U [−0.2, 1] , r2 = r1−0.8

NDG 95,000 r1 = r2 ∼ U [−1, 1]

500 r1 ∼ U [−1, 0.6] , r2 = r1+0.4

500 r1 ∼ U [−1, 0.5] , r2 = r1+0.5

LCDG 2,500 500 r1 ∼ U [−1, 0.4] , r2 = r1+0.6

500 r1 ∼ U [−1, 0.3] , r2 = r1+0.7

500 r1 ∼ U [−1, 0.2] , r2 = r1+0.8

GCDG, gain of correlation dysregulated gene pair; NDG, non-dysregulated gene
pair; LCDG, loss of correlation dysregulated gene pair.

Luminal-A samples, 209 Luminal-B samples, 190 Basal-like
samples, and 82 HER2-enriched samples. Dysregulated pathways
between subtypes were identified using DysPIA.

Background Gene-Pair Set and Pathway
List
There were 19,297 genes in HGNC (Braschi et al., 2019) (version
01/31/2020), and it was impractical to use all possible gene
pairs (>372 million) to be the background dataset. Therefore,
a representative subset was critical in the pathway analysis.
A combined background was proposed in DysPIA, including two
parts. The first part was the retrieved gene pairs in the pathways
from public pathway databases, and the second part was the
randomly selected gene pairs.

For each pathway, only the regulated gene pairs are
considered. It is significantly different to GSCA, GSNCA, and
IB-GSA which simply include all n(n-1)/2 gene pairs. Based on
the R package “graphite” (Sales et al., 2012, 2019), direct gene–
gene regulations and metabolite-based propagated gene–gene
regulations were retrieved from the pathways in eight public
pathway databases for Homo Sapiens (version 01/31/2020),
which are Reactome (Matthews et al., 2009), KEGG (Ogata et al.,
1999), BioCarta (Nishimura, 2001), Panther (Mi et al., 2013),
PathBank (Wishart et al., 2020), NCI/Nature Pathway Interaction
Database (Schaefer et al., 2009), SMPDB (Jewison et al., 2014),
and PharmGKB (Whirl-Carrillo et al., 2012). Totally, there were
333,484 gene pairs in 99,984 pathways. The details are shown in
Table 2.

These 333,484 gene pairs formed the first part of the
background set, which was called the observed background gene-
pair set. To avoid redundancy and easily query gene pairs in the
database, in each gene pair, the genes were arranged in ascending
order based on gene symbols, i.e., the first gene was smaller
than the second one.

A total of 700,000 gene pairs were randomly selected from
19,297 genes in HGNC, and 349,915 of them in ascending order
(about half of the selected gene pairs) remained as the random
background gene-pair set. There were 982 gene pairs in common
between the observed background and random background.
Finally, their combination with 682,417 gene pairs was set to be

TABLE 2 | Summary of pathways and gene pairs.

Database name Number of pathways Number of gene pairs

Reactome 1,901 264,867

KEGG 306 60,571

BioCarta 247 5,421

Panther 84 12,951

PathBank 48,593 6,882

NCI 212 14,198

SMPDB 48,581 6,777

PharmGKB 60 2,727

Total pathways 99,984 333,484

Random background NA 349,915

Combined background NA 682,417
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FIGURE 3 | ROC curves in simulation study. (A) ROC curves in the five simulations with different proportions (20–60%) of dysregulated gene pairs. (B) ROC curves of
pathways with different sizes (20, 40, 60, 80, and 100) when the proportion of dysregulated gene pairs is 20%. The group “Pathways with all sizes” means the union
set of pathways with different sizes (20, 40, 60, 80, and 100). (C–F) Similar to (B), ROC curves of pathways when the proportions of dysregulated gene pairs are
30–60%, respectively.

the final background, which was called the combined background
gene-pair set. In this combined background, there were similar
numbers of gene pairs in the observed background and random
background. The evaluation of the combined background is
shown in section “Gene-Pair Background Evaluation.”

In total, there were 99,984 pathways retrieved which can be
used in DysPIA. The KEGG pathways were used as examples in
the following analysis.

RESULTS

Simulation
The Receiver-Operating Characteristic (ROC) analysis was used
to evaluate and compare the performance of the algorithm under
various scenarios (Figure 3). The area under the ROC curve
(AUC) was calculated as the measure for comparison. Firstly,
we compared the ROC and AUC among groups with different
pdysgp (Figure 3A). The overall AUC ranged from 0.9584 to
0.9896 and the AUC increased when the pdysgp increased. Then
within each pdysgp group, the subgroups of different np were
compared (Figures 3B–F). The AUC increased when the pathway

size increased for all the subgroups, and the AUC reached nearly
1 when there were 80 or more gene pairs in the pathway.

This simulation study indicated that DysPIA was able
to identify the causal pathways with strong sensitivity
and specificity.

Gene-Pair Background Evaluation
The gene-pair background was evaluated based on p53 data.
DysGPS was calculated in the observed background and random
background separately, then the absolute scores were compared
between these two groups using the Student T-test. The results
showed that there were significant differences between them
(mean absolute scores: 0.8150 vs. 0.8395, P-value: 2.14e-12).
Therefore, the observed background was not good enough to
be representative of the whole background, and the combined
background was more real and critical.

Then we evaluated the sufficiency and the robustness of
the sampling procedure since it was only about 1h of the
whole gene pairs. We repeated the sampling procedure 20 times
(randomly selected 700,000 gene pairs 10 times and 7,000,000
gene pairs 10 times). Then, DysGPS was calculated, and the
absolute scores were compared between these groups using the
Student T-test. The results showed that there were significant
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FIGURE 4 | The running time comparison of the four methods.

differences between the observed background group and each
random background group (all P-values < 1e-10); no significant
difference between the random background groups with 700,000
gene pairs and the random background groups with 7,000,000
gene pairs; and only 7 significant differences among the random
background groups with 7,000,000 gene pairs under the threshold
P-value < 0.05. The proportion of significant results is lower than
the significance level (7/190 = 0.0368 < 0.05). Based on these
results, we would say that this sampling procedure is robust. The
detailed results are shown in Supplementary Table 2.

To evaluate the sufficiency of this combined background, we
performed DysPIA using the whole background and compared
it with the result using the proposed combined background.
Based on the whole background, it took about 10 h to get the
result with only 1,000 permutations, and we did not get the
result with 10,000 permutations due to the large computational
load, which indicated that it was impractical considering
the whole background. The results using 1,000 permutations
showed high consistency between the whole background and
the combined background. The Pearson/Spearman correlation
coefficient between them was 0.9973/0.9974. Sixteen pathways
were significantly enriched under the threshold P-value < 0.01,
and all of them were in the significant result based on
combined background (17 pathways). The only pathway which
was significant in the result based on combined background but
not in whole background was “Cellular senescence.” Its P-value
was 0.0112 which was close to the significant level. The detailed
results are shown in Supplementary Table 3.

Based on these results, we would say that using a limited set of
random gene pairs is as good as using the whole background.

Computational Speed and Consistency
Since there was no public resource for IB-GSA, we compared
DysPIA with ESEA, GSCA, and GSNCA.

In DysPIA, the idea of fast calculation proposed in FGSEA
(Korotkevich et al., 2019) was applied to shorten the running
time of the program. In p53 data, DysPIA ran significantly faster
than others. Using the same personal computer (MacBook Pro,
macOS Catalina, i5 2.7 GHz, 8G DDR3 memory), it took about
1.82 s for 1,000 permutations while the others took 23.80 min
to 2.03 h (∼800–4,000 times slower). When increasing to 10,000
permutations, the difference became much greater (∼1,700–
8,000 times). The details are shown in Figure 4.

The results of DysPIA with fast procedure were also compared
to the regular calculation while keeping all the other steps the
same. The Pearson (Spearman) correlation coefficient of P-values
between them was 0.9827 (0.9825) under 1,000 permutations.
Therefore, DysPIA with fast calculation kept high consistency
with the regular method while it was much faster.

Number of Permutations
Different numbers of permutations were compared in all
the methods based on p53 data. The Pearson (Spearman)
correlation coefficients of P-values between 1,000 and 10,000
permutations are shown in Table 3. In DysPIA, GSCA, and
GSNCA, the correlation coefficients were around 0.998 while
they were around 0.90 in ESEA. We further compared the
results among 1,000, 10,000, and 100,000 permutations using
DysPIA (Supplementary Table 3). Firstly, there was no difference
among them if a threshold P-value < 0.01 was used. We got
exactly the same 17 significant pathways using 1,000, 10,000,
or 100,000 permutations. Secondly, 10, 9, and 10 significant
pathways were identified if a threshold FDR < 0.05 was
used. Nine of these pathways were the same, and pathway
“Morphine addiction” can be identified in the 1,000 and
100,000 permutation groups (FDR = 0.0323 and 0.0267), but
not in the 10,000 permutation group (FDR = 0.0598, close to
the significant level 0.05). Thirdly, some P-values and FDRs
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were significantly different among them due to the precision
of different permutations. For example, P-values of pathway
“Graft-versus-host disease” were 0.0002, 0.0002, and 2.01e-05
(FDRs: 0.0159, 0.0188, and 0.0024) in 1000, 10,000 and 100,000
permutations; P-values of pathway “Antigen processing and
presentation” were 0.0002, 0.0002, and 2.02e-05 (FDRs: 0.0159,
0.0188, and 0.0024) in 1,000, 10,000, and 100,000 permutations.
In these two pathways, the enrichment scores (ES) based on
the real data were lower than all the ES based on permutation,
and the P-values were significantly different among different
permutations due to different precisions. These results indicated
that the numbers of permutations could affect the P-values
and FDRs and the 1,000 permutation was not good enough
while a large number of pathways were tested. Ten thousand
or more permutations were recommended, and it was still
very fast in DysPIA. The following results were based on
10,000 permutations.

Comparison Between DysPIA and Other
Methods
We compared the results of these methods based on p53 data.
As shown in Table 4, there were low correlations between these
methods. The Pearson (Spearman) correlation coefficients of the
P-values among ESEA, GSCA, and GSNCA were pretty low
(−0.03∼0.05), and the correlation coefficients between DysPIA
and ESEA/GSCA were just a little higher (0.10∼0.19).

When the significant threshold was set to FDR < 0.05,
there were 10 significant dysregulated pathways in DysPIA
(the top 10 items in Supplementary Table 4). However, there
was no significant pathway in ESEA, GSCA, or GSNCA under
FDR < 0.05. Then the significant threshold was relaxed to
p < 0.01; there were 17, 7, 1, and 1 significant dysregulated
pathways in DysPIA, ESEA, GSCA, and GSNCA, respectively,
and only one in common between DysPIA and ESEA. The

TABLE 3 | The correlation coefficients of P-value between 1,000 and
10,000 permutations.

Method PCC SCC

DysPIA 0.9986 0.9983

ESEA 0.9064 0.9037

GSCA 0.9982 0.9976

GSNCA 0.9986 0.9981

PCC, Pearson correlation coefficient; SCC, Spearman correlation coefficient.

TABLE 4 | The correlation of P-values between methods.

Method DysPIA ESEA GSCA GSNCA

DysPIA 1 0.1900 0.1138 −0.1011

ESEA 0.1967 1 0.0516 −0.0308

GSCA 0.1083 0.0531 1 0.0150

GSNCA −0.1100 −0.0308 0.0222 1

The upper triangle above the diagonal (number 1) in Table 4 is the Pearson
correlation coefficient, and the lower triangle under the diagonal is the Spearman
correlation coefficient.

detailed results of DysPIA, ESEA, GSCA, and GSNCA are shown
in Supplementary Tables 4–7, respectively.

The significant dysregulated pathways were further literature
verified. In DysPIA, 16 out of 17 pathways were verified by
previous studies (94.1%), while five out of seven pathways in
ESEA could be verified (71.4%). The significant dysregulated
pathways identified by GSCA and GSNCA were also verified.
Specifically, in this p53 mutation study, pathway “p53 signaling
pathway” can only be identified in DysPIA. These results showed
that DysPIA can mine more dysregulated pathways with a
high confidence.

Dysregulated Pathways in Breast Cancer
Relapse
The dysregulated pathways in breast cancer relapse with different
ER status were identified based on the dataset GSE2034 using the
DysPIA method. Under the threshold of FDR < 0.05, there were
14 and 6 significant dysregulated pathways in the “ER+” group
and “ER-“ group, respectively (Supplementary Tables 8, 9).
However, there was only one pathway (antigen processing and
presentation) in common, which meant the mechanisms of breast
cancer relapse were quite different between the two groups with
different ER status. The literature verification was performed
on these significant pathways. In the ER+ group, 13 out of 14
pathways (92.9%) had been verified by the existing studies, and 5
out of 6 (83.3%) in the ER- group (Supplementary Tables 8, 9).

Dysregulated Pathways Between Breast
Cancer Subtypes
For each pair of subtypes, the number of significant dysregulated
pathways (FDR < 0.05 and FDR < 0.01) are listed in Table 5. The
smaller the number, the more similar between the two subtypes.

Subtypes Her2 and LumB were much closer than others,
followed by LumA and LumB, while subtype Basal was much
different from others. These results were consistent with the
previously reports based on PAM50 gene expression (Bastien
et al., 2012; Hu et al., 2013; Wallden et al., 2015).

To test the robustness of the proposed method, 80% of the
samples in each subtype were randomly selected and used to
identify dysregulated pathways by DysPIA. Then, the FDRs
were compared to the results using the whole dataset based on
correlation analyses. This process was repeated for five times. The
average Pearson (Spearman) correlation coefficient was around
0.8, which showed the robustness of DysPIA. The detailed results
are shown in Supplementary Tables 10, 11.

TABLE 5 | Number of dysregulated pathways between subtypes.

Subtype Basal Her2 LumA LumB

Basal – 53 75 50

Her2 33 – 49 19

LumA 48 20 – 42

LumB 20 10 26 –

The upper triangle above the diagonal (symbol “-”) in Table 5 is the number when
the significance threshold FDR < 0.05, and the lower triangle under the diagonal is
the number when FDR < 0.01.
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DISCUSSION

Compared to DE and DV, DC/dysregulation analysis considers
the dysregulation of two genes between different conditions.
Therefore, the DC-based pathway analysis considered the
gene regulation relationships while most DE and DV-based
methods did not. DC-based pathway analysis can identify some
significant dysregulated pathways related to the phonotype
interest with different mechanisms to the significant related
pathways identified by DE and DV methods.

In DysPIA, the idea of CILP was adopted. There was a score for
each sample and gene pair, then a T-test-based statistic was used
to represent the gene-pair dysregulation level. In this analysis, the
full sample information was used, and sample sizes of different
conditions were considered in the calculation. On the other hand,
in the PCC-based methods, the PCC was first calculated, and the
sample sizes were not considered.

There were regulations or some other relationships between
gene pairs in the pathways, which means they were not randomly
selected. We compared the absolute dysregulated scores between
two groups, the observed gene-pair set from pathways, and
the randomly selected gene pairs. The results confirmed that
there was a significant difference between them. Therefore, the
combined gene-pair background was much sufficient than the
observed gene pairs from pathways only. DysPIA was much faster
thanks to the fast calculation algorithm for pre-ranked data, and
the results confirmed the consistence between the fast method
and the classic method.

Unfortunately, there were only a few common pathways
identified from different methods. There are several possible
reasons. The first was that the gene regulations were not fully
considered in GSCA and GSNCA. In their analyses, the test
statistic was based on all the possible gene pairs between genes
in each pathway. Therefore, the priori regulation knowledge in
pathways was not considered but just considered the pathways
as gene sets. DysPIA and ESEA considered the existed gene pairs
in the pathways in the analysis. The second was that there were
different measures in different methods. While PCC or similar
measures were used in most methods, the MI-based Edge Score
in ESEA was novel but has less directly biological meaning. In p53
mutation data, DysPIA identified more significant dysregulated
pathways than other methods under the same threshold with high
literature validation rate. The pathway “p53 signaling pathway”
can only be identified by DysPIA. In the application of breast
cancer relapse dataset and breast cancer subtype dataset, DysPIA
also identified several dysregulated pathways which can be
verified. Both the simulation and real data results showed that
DysPIA is effective and has a great biological significance.

CONCLUSION

In DysPIA, the gene regulation information in the pathway is
considered, and it provides new insight into pathway analysis
area. Both in simulation study and in real datasets, the results
show that DysPIA is effective and fast and has a great
biological significance. However, there are only a few common
pathways identified from different methods. Therefore, using

different types of pathway analysis, methods are recommended
so that more accurate risk pathways will be identified. The R
package “DysPIA” has been constructed and is publicly available
on R CRAN at https://cran.r-project.org/web/packages/DysPIA/
index.html. Another R dataset package “DysPIAData” containing
the latest gene-pair background and pathway list has been
publicly available on R CRAN at https://cran.r-project.org/web/
packages/DysPIAData/index.html.
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