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Abstract

Inflammation is known to play a key role in preterm and term parturition. Cell-free fetal DNA (cff-DNA) is present in the maternal 
circulation and increases with gestational age and some pregnancy complications (e.g. preterm birth, preeclampsia). Microbial DNA 
and adult cell-free DNA can be pro-inflammatory through DNA-sensing mechanisms such as Toll-like receptor 9 and the Stimulator of 
Interferon Genes (STING) pathway. However, the pro-inflammatory properties of cff-DNA, and the possible effects of this on 
pregnancy and parturition are unknown. Clinical studies have quantified cff-DNA levels in the maternal circulation in women who 
deliver preterm and women who deliver at term and show an association between preterm labor and higher cff-DNA levels in the 
2nd, 3rd trimester and at onset of preterm birth symptoms. Together with potential pro-inflammatory properties of cff-DNA, this rise 
suggests a potential mechanistic role in the pathogenesis of spontaneous preterm birth. In this review, we discuss the evidence linking 
cff-DNA to adverse pregnancy outcomes, including preterm birth, obtained from preclinical and clinical studies.
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Introduction

Preterm birth (PTB), defined as delivery before 37 weeks 
of gestation, is the leading cause of neonatal morbidity 
and mortality (Goldenberg et al. 2008, Blencowe et al. 
2012). Spontaneous preterm birth (spPTB) contributes 
to 70% of preterm births (Goldenberg et al. 2008). The 
pathogenesis of spPTB is largely unknown and worryingly, 
the incidence of PTB is rising globally (Blencowe et al. 
2012). There are no effective therapies or markers to 
predict PTB. Indeed, only three preventative treatments 
have proposed potential benefit, and evidence of clinical 
effectiveness is conflicting (Stock & Ismail 2016). A 
better understanding of the pathogenesis of spPTB is 
urgently required to develop more effective therapies.

It is recognized that parturition is an inflammatory 
event. Inflammatory cells and pro-inflammatory 
cytokines are found in maternal and fetal tissues 
during labor (Christiaens et  al. 2008, Goldenberg 
et al. 2008, Bollapragada et al. 2009, Cappelletti et al. 
2016). Pro-inflammatory cytokines initiate a cascade 
of inflammatory mediator production, including matrix 
metalloproteinases and prostaglandins, which in turn lead 
to cervical dilation, rupture of membranes and uterine 
contractions (Christiaens et al. 2008, Goldenberg et al. 
2008, Bollapragada et  al. 2009). Recently, interest has 
grown in the potential of Cell-free fetal DNA (cff-DNA) to 
elicit inflammation and the parturition cascade (Phillippe 
2014, Nadeau-Vallée et al. 2016, Herrera et al. 2017).

In 1997, fetal DNA was found in the maternal 
circulation by quantifying the male SRY gene in 43 
different pregnant women (Lo et  al. 1997). This new 
finding led to the development of the non-invasive 
prenatal test (NIPT), a test used to detect chromosomal 
abnormalities in the fetus by sampling of maternal 
blood. More recently, it has been shown that cff-DNA 
is increased in maternal blood in association with 
pregnancy complications including early pregnancy 
loss (Lim et al. 2013), preeclampsia (Contro et al. 2016), 
fetal growth restriction (Hahn et al. 2005, Taglauer et al. 
2014) and preterm labor (Leung et al. 1998, Farina et al. 
2005, Illanes et al. 2011, Jakobsen et al. 2012, Sifakis 
et al. 2015, Quezada et al. 2015, Dugoff et al. 2016). 
This has led to research into the potential for cff-DNA 
concentrations to be used as a biomarker for pregnancy 
complications (Bauer et  al. 2006, Sifakis et  al. 2015, 
Contro et al. 2016, Dugoff et al. 2016, Nadeau-Vallée 
et al. 2016). The putative mechanisms linking cff-DNA 
to the pathogenesis of pregnancy complications are also 
a new area of investigation (Scharfe-Nugent et al. 2012, 
Goulopoulou et  al. 2016, Nadeau-Vallée et  al. 2016, 
Conka et al. 2017).

The aim of this review is to examine the role of cff-DNA 
in the pathogenesis of spPTB. We will present evidence 
relating to (a) the biological and pro-inflammatory 
activities of cell-free DNA; (b) cff-DNA concentrations 
in the circulation of women who deliver preterm and 
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(c) preclinical studies which examine the causative link 
between cff-DNA and preterm birth.

Cell-free DNA in physiology and pathology

The human body releases cell-free DNA (cfDNA) into 
the circulation through cell death. In healthy people 
cfDNA, principally of hematopoietic origin, can be 
found circulating in both the plasma and serum (Jung 
et  al. 2010). Indeed, circulating cfDNA may have 
biological functions, such as messaging functions after 
transcription to RNA (Jung et al. 2010). Although cfDNA 
is found free in the circulation, the majority is adherent 
to the surface of blood cells (Jung et  al. 2010, Hahn 
et  al. 2014). cfDNA has been shown to have a short 
half-life in the body and can be cleared as quickly as 
half an hour (Lo et  al. 1999). Detection of cfDNA in 
healthy individuals is therefore normal, and a cutoff to 
distinguish ‘pathogenic’ from ‘normal’ values has not yet 
been established, as values between 6 and 650 ng/mL 
have been measured in healthy men (Jung et al. 2010). 
This is in part due to high intra-patient variance, but 
also due to different methods of cfDNA quantification 
that are used (Fernando et  al. 2010, Jung et  al. 2010, 
Manokhina et al. 2014).

High levels of cfDNA have been reported in infectious, 
ischemic, malignant and autoimmune diseases, obesity 
and during pregnancy (Jung et al. 2010, Dwivedi et al. 
2012, Nishimoto et al. 2016). This likely relates to high 
levels of tissue necrosis (e.g. in sepsis) or abnormal high 
cell turnover in tissues (e.g. from tumors, or from the 
placenta in pregnancy) (Enninga et al. 2015).

A protective host response to ‘non-self’ or pathogenic 
DNA (viral or bacterial DNA) is essential for an adequate 
host defence response and underpins the aspects of our 
immune systems. However, inappropriate inflammatory 
responses against ‘self-DNA’ can be detrimental, and 
break immunological tolerance, leading to autoimmune 
diseases (Bauer 2006, Ori et al. 2017). Humans therefore 
have critical mechanisms to discriminate between ‘self’ 
and ‘non-self’-DNA. Nevertheless, in certain in vivo 
models, cfDNA originating from tumor cells and from 
adipocytes has been shown to elicit an inflammatory 
response on epithelial cells and by attracting 
macrophages to adipocytes, respectively (Fűri et  al. 
2015, Nishimoto et  al. 2016). These data suggest that 
under certain conditions cfDNA can bypass protective 
mechanisms and be pro-inflammatory.

DNA-sensing mechanisms – TLR9 and 
STING pathways

There are two primary DNA-sensing pathways in cells 
that have been linked to cfDNA sensing: the Toll-like 
receptor (TLR) 9 pathway and the Stimulator of Inteferon 
Genes (STING) pathway (Fűri et al. 2015).

TLR9

TLRs are pattern recognition receptors (PRRs), which 
activate the innate immune response when they sense 
damage-associated molecular patterns (DAMPs) 
(O’Neill et al. 2013). TLR9 is an intracellular receptor 
that senses DNA, specifically hypomethlated CpG 
DNA sequences found in high frequency in viral and 
bacterial DNA. Hypomethylated microbial DNA can be 
identified by membrane receptors, such as Fc Receptors, 
and transported to the intracellular compartment where 
it can be sensed by TLR9 (Bauer 2006). Under normal 
conditions, adult vertebrate DNA is a poor TLR9 ligand 
(Marsman et  al. 2016). However, placental and fetal 
DNA is more hypomethylated than adult DNA and may 
therefore have the potential to be a TLR9 ligand (Scharfe-
Nugent et al. 2012, Phillippe 2015). Other changes in 
DNA morphology can also influence TLR9 affinity, such 
as bending of the DNA backbone of vertebrate DNA 
(e.g. by nucleosomes found in cell-free DNA or binding 
to antibodies or antimicrobial peptides). In addition, 
when ‘self-DNA’ is artificially transfected into dendritic 
cells (DC), it can induce a TLR9 response (Yasuda et al. 
2006). A number of mechanisms may introduce DNA 
into the cell cytoplasm (Fig.  1), including binding to 
antimicrobial peptides (human-beta defensin-3 or 
human cathelicidin LL-37), anti-DNA antibodies, DNA-
like receptors (RAGE) or histones (Nakagawa & Gallo 
2015, Marsman et al. 2016, McGlasson et al. 2017).
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Figure 1 DNA sensing through STING and TLR9. (1) DNA enters the 
cells through a variety of mechanisms, including interactions with 
C1q, antimicrobial peptides (AMPs) and receptor for advanced 
glycation end-products (RAGE). (2) This DNA can then be sensed by 
binding to STING directly or by firstly biding to cyclic GMP-AMP 
synthase (cGAS). STING activation produces type 1 interferons 
through transcription factor interferon receptor factor 3 (IRF3) and, to 
a lesser extent, pro-inflammatory cytokines via activation of NF-κB. 
(3) TLR9 is found in the endosome and unmethylated DNA (CpG) or 
DNA with a modified back bone are typical ligands. TLR9 activation 
produces type 1 interferons and pro-inflammatory cytokines through 
IRF7 and NF-κB. (4) Pro-inflammatory cytokines are hypothesized to 
elicit a potent inflammatory response that can lead to the parturition 
cascade. (5) Type 1 interferons are known to play a role in 
inflammation and immunomodulation.
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Successful activation of TLR9 by DNA will recruit 
the myeloid differentiation primary response gene 88 
(MyD88). This associates with interleukin-1 receptor-
associated kinase (IRAK) 4 and IRAK2 and subsequently 
recruits tumor-necrosis factor-α receptor factor 6 (TRAF6). 
This leads to the activation of pro-inflammatory signaling 
cascades including NF-ĸB activation, by transforming 
growth factor-β-associated kinase 1 (TAK1), mediated 
phosphorylates of IĸB (Krieg 2006, Vollmer 2006). These 
pathways result in changes in gene transcription and the 
production of pro-inflammatory cytokines (Krieg 2006, 
Vollmer 2006). The specificity of these responses is cell 
dependent, with activation of TLR9 in plasmatocytoid 
DC, for example, resulting primarily in interferon-α 
production, through recruitment of interferon regulatory 
factor-7 (IRF-7) (Vollmer 2006, Nakagawa & Gallo 2015).

STING

Activation of the STING pathway has been implicated 
in viral, bacterial and ‘self’-DNA-mediated stimulation 
and is independent of TLR9 activation (Barber 2015). 
STING is an intracellular protein that is expressed in 
hematopoietic cells (including T cells, macrophages 
and DC) as well as endothelial and epithelial cells. DNA 
activates the STING pathway by binding to cyclic GMP-
AMP synthase (cGAS) and the subsequent production 
of cyclic dinucleotides. In addition, double-stranded 
DNA can directly bind to STING (Fűri et  al. 2015). 
Once activated, STING changes in conformation and 
complexes with TANK-binding kinase (TBK1). TBK1 
in turn phosphorylates transcription factors IRF3 and 
NF-ĸB. This results in the release of IFN-β and IFN-α, 
and other pro-inflammatory mediators, dependent upon 
cell type and stimulation (Barber 2015). Similar to TLR9, 
DNA must be transported into the cytosol in order to 
activate STING and these downstream cascades (Fig. 1).

Both TLR9 and STING therefore present mechanisms 
by which the detection of cfDNA might be pro-
inflammatory. However, there is little direct evidence 
that cff-DNA actually does stimulate TLR9 and whether 
cff-DNA can elicit inflammation through other pathways, 
including STING, remains unknown. As such, the effect 
of these pathways on spPTB remains to be determined.

Cell-free fetal DNA

Cff-DNA originates from the placenta via cell death, 
likely by apoptosis in normal pregnancies (Masuzaki 
et  al. 2004, Reddy et  al. 2008, Manokhina et  al. 
2015, Nadeau-Vallée et  al. 2016) or necrosis during 
infection (Hahn et  al. 2005) in the syntiotrophoblast 
and cytotrophoblast layers. In addition, an association 
between cff-DNA and placental microparticles (such as 
exosomes) is clear, with various studies having found 
that these microparticles can release cff-DNA and 
demonstrating fetal DNA in, or bound to, placental 

microparticles (Orozco et  al. 2008, Tong & Chamley 
2015). In contrast, cfDNA (from non-fetal origin) is 
known to be present unbound and free in the plasma 
(Gold et al. 2015). It is however unknown how much 
the contribution of placental microparticles (bound or 
released by) contributes to the total cff-DNA found in 
the maternal plasma. Recently, placental extracellular 
vesicles have been shown to activate endothelial cells 
in a TLR9-dependent manner (Tong et al. 2017). Further 
clarity on the state of cff-DNA in the maternal circulation 
is required, as this may influence the manner in which 
cff-DNA can interact with immune cells and receptors 
(Tong & Chamley 2015).

In normal pregnancies, cff-DNA steadily increases 
throughout gestation (Birch et al. 2005) and is cleared 
as quickly as two hours after delivery of the placenta 
(Lo et  al. 1999). An increase in non-fetal cfDNA was 
associated with labor, where 75.3% of the cell-free DNA 
is found to be maternal (quantified by whole-genome 
bisulfite sequencing) compared to 73.8% in term non-
labor (Herrera et al. 2017). The percentage of cff-DNA 
in total cfDNA is estimated to be about 19–26.2% in 
normal, non-labouring pregnancies between 10 and 
36  weeks (Hui & Bianchi 2011, Herrera et  al. 2017). 
Pregnancies complicated with placental pathologies 
such as IUGR and preeclampsia have increased amounts 
of cff-DNA in the maternal circulation (Hahn et  al. 
2005, Reddy et al. 2008, Taglauer et al. 2014, Contro 
et al. 2016).

Cell-free fetal DNA concentrations and preterm birth: 
evidence and study limitations

Within a year of the discovery of cff-DNA in the 
maternal circulation, high cff-DNA concentrations in 
maternal circulation were correlated with spPTB (Leung 
et  al. 1998). In this first report, cff-DNA levels were 
calculated using the SRY gene quantification (whereby 
a quantification could be done of cff-DNA from women 
pregnant with a male fetus) method in 32 women with 
spPTB symptoms. Women who delivered preterm had 
significantly higher cff-DNA levels than those who did 
not (Leung et  al. 1998). In a similar study, Farina and 
colleagues quantified cff-DNA levels of 50 women at 
onset of spPTB symptoms and found an association of 
increased cff-DNA levels and spPTB deliveries (Farina 
et al. 2005).

Subsequently, eight studies have investigated the 
association between cff-DNA and adverse pregnancy 
outcomes in asymptomatic women, with quantification 
from first trimester (concurrent with prenatal testing for 
fetal anueploides) up to 25 weeks of pregnancy (Table 1).

Four studies have quantified cff-DNA in early 
pregnancy (<16  weeks average gestational age at cff-
DNA quantification) (Bauer et  al. 2006, Poon et  al. 
2013, Quezada et al. 2015, Thurik et al. 2016). These 
included a total of 5729 women with 159 spontaneous 
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preterm deliveries (defined as either <34 (Poon et  al. 
2013) or <37 weeks (Bauer et al. 2006) of gestation at 
delivery (Quezada et al. 2015, Thurik et al. 2016)). No 
association between cff-DNA levels and subsequent 
spPTB was seen in any of these studies; however, three of 
the four studies only looked for an association between 
cff-DNA and overall adverse pregnancy outcomes and 
were not sufficiently powered to specifically detect 
an effect of cff-DNA on spPTB. Two of these studies 
found associations between maternal parameters and 
cff-DNA. Thurik et  al. found an inverse association 
between cff-DNA and maternal obesity and smoking 
(Thurik et  al. 2016). Bauer et  al found an association 
between increased cff-DNA and fetal abnormalities, 
HELLP syndrome, IUGR, gestational diabetes (Bauer 
et al. 2006, Thurik et al. 2016). An important potential 
confounder in these associations was gestational age 

at sampling – as neither of these studies adjusted for 
gestational age in their calculated associations with 
pregnancy outcomes, despite the well-recognized 
relationship between gestational age and amount of cff-
DNA (Birch et  al. 2005). In the largest study of early 
gestational cff-DNA, Quezada and colleagues were 
limited to the gestational age of 11–13 weeks and also 
found no association between cff-DNA and spPTB <34, 
34–37 and <37 weeks, although the quantification used 
combined cff-DNA and cfDNA levels to quantify the 
fetal fraction (Quezada et al. 2015).

Quantification of cff-DNA levels at later points in 
gestation have provided conflicting evidence regarding 
the relationship between cff-DNA and spPTB. Illanes and 
colleagues investigated the predictive value of cff-DNA 
for spPTB in 56 women by quantifying the DYS gene (a 
gene found on the Y chromosome) at 22–24 weeks of 

Table 1  Publications investigating the association between cell-free fetal DNA (cff-DNA) and adverse pregnancy outcomes including 
spontaneous preterm birth (spPTB).

 
 
Publication

Total N and 
(spPTB 
cases)

 
 
Study setup

 
 
Methods

 
 
Main findings

Leung et al. 
(1998)

32 (20) Prospective cohort study to 
assess association with 
cff-DNA and spPTB

Quantification of SRY gene in 
maternal plasma at onset of PTB 
symptoms

Significantly higher SRY detection in 
women who deliver preterm 
(P = 0.042). Lower concentration of 
cff-DNA associated with successful 
tocolytic therapy (P = 0.017)

Farina et al. 
(2005)

71 (50) Cross-sectional study of 
women at high risk for 
spPTB

Quantification of DYS1 gene in 
maternal serum at onset of PTB 
symptoms

Higher DYS1 detection in women who 
deliver preterm, by regression 
analysis of cff-DNA and gestational 
age at delivery (P = 0.003), significant 
maker when using cutoff of 1.82 
MoM DYS1 gene

Bauer et al. 
(2006)

84 (7) Prospective analysis for 
Cff-DNA as an indicator for 
adverse pregnancy 
outcomes

Quantifying the SRY gene and short 
tandem sequence from maternal 
plasma at amniocentesis (average 
15 weeks) with blood sample

No significant increase in women who 
later delivered preterm (gestational 
age of 15.7 ± 0.5 at time of Cff-DNA 
quantification)

Illanes et al. 
(2011)

56 (14) Case-control study to assess 
cff-DNA and risk of spPTB

DYS gene quantification from 
maternal plasma at 22–24 weeks 
in combination with a cervical 
length measurement

No correlation between cff-DNA levels 
and gestational age at delivery 
(r = −0.23; P = 0.07)

Stein et al. 
(2013)

611 (76) Prospective cohort study to 
assess cff-DNA and adverse 
pregnancy outcome in low 
risk pregnancies

RhD gene quantification at 25 weeks 
(mean gestational age at 
quantification)

No significant increase in women who 
delivered preterm

Jakobsen et al. 
(2012)

876 (19) Prospective cohort study to 
assess association with 
cff-DNA and spPTB

RhD gene quantification at 25 weeks 
of gestation

Strong association between cff-DNA 
levels above the 95th centile and 
subsequent spPTB (odds ratio of 6.3; 
95% confidence interval: 1.9–20.9)

Poon et al. 
(2013)

1949 (20) Prospective cohort study to 
assess cff-DNA and adverse 
pregnancy outcome

Chromosome selective assay at 
11–13 weeks of gestation

No significant increase in regression 
analysis (20 deliveries <34 weeks of 
gestation P = 0.46)

Quezada et al. 
(2015)

3169 (103) Cross-sectional study to assess 
cff-DNA and prediction of 
spPTB

Fetal Fraction quantified at 
10–14 weeks with chromosome 
selective assay

No significant increase in women who 
deliver preterm

Dugoff et al. 
(2016)

1653 (119) Retrospective cohort study at 
increased risk for 
aneuploidy

Methylation method and regional 
read depth counts from autosomes 
generated by whole-genome low 
coverage massively parallel 
single-end sequencing at 
10–20 weeks

Elevated fetal fraction levels at 
14.1–20 weeks were significantly 
associated with incidence of preterm 
birth (adjusted odds ratio, 4.59;  
95% confidence interval, 1.39–15.2)

Thurik et al. 
(2016) 

527 (49) 
 

Nested case-control study to 
assess cff-DNA and adverse 
pregnancy outcome

Quantification of DYS14 gene at 
8–14 weeks of gestation 

No association with spPTB  
(49, P = 0.19) 
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gestation in combination with cervical length screening. 
They found no correlation between cff-DNA levels 
and gestational age at delivery (P = 0.07) and showed 
that this was not a predictive marker in combination 
with cervical length measurement (Illanes et al. 2011), 
although the numbers of spPTBs were small. Stein and 
colleagues reached a similar conclusion after quantifying 
cff-DNA using RhD fetal-specific PCR in 611 low-risk 
pregnancies between 19 and 32  weeks of gestation. 
No statistically significant difference in cff-DNA levels 
was seen in women who developed preeclampsia 
(n = 44), IUGR (n = 22) or PTB (n = 76) compared to 
those who had uncomplicated pregnancies (Stein 
et  al. 2013). However, no adjustment for gestational 
age at sampling was made. A study by Jakobsen and 
colleagues investigated a larger group of women, but 
was limited to the gestational age of 25 weeks, found 
a lower prevalence of spPTB (19 cases) and observed 
a strong association between cff-DNA levels above the 
95th centile and subsequent spPTB (P = 0.002). This 
raises the possibility that gestational age at sampling 
might be critical. To assess this, another study directly 
compared the fetal fraction levels between 11–14 weeks 
and 14–20  weeks. This quantification calculates the 
ratio of cff-DNA to total cell-free DNA. In this study, 
only the latter group showed a significant association 
between high levels of cff-DNA and the likelihood of 
spPTB (Dugoff et al. 2016).

It is difficult to conduct a formal comparative analysis 
and make accurate conclusions of the studies described 
above due to the substantial heterogeneity, not only 
in participants, but also in the methodologies used to 
extract and quantify cff-DNA. Furthermore, given that 
here is currently no consensus on the normal range 
of cff-DNA at any point in gestation, adjustments for 
gestational age are difficult to make.

Participants

Studies had different inclusion and exclusion criteria. 
Many studies were small, and not able to adjust for 
variables known to influence the levels of cff-DNA, 
which include gestational age at sample collection, 
intra-uterine growth restriction, preeclampsia, smoking 
status and obesity (Urato et al. 2008, Wang et al. 2013, 
Taglauer et  al. 2014). It will be important that future 
studies are sufficiently well powered to enable detailed 
interrogation, and ideally, allow longitudinal sample 
collection across multiple gestational ages.

Extraction method

The method of cff-DNA extraction is not standardized, 
and different methods were used in these studies, 
including commercial DNA extraction kits (Qiagen), 
quantification directly from the maternal serum or 
plasma and chemagic magnetic separation. Different 

blood tubes were used for blood collection and storage 
(EDTA, sodium citrate, lithium heparin), and cff-DNA 
was analyzed from either fresh or stored samples, 
and cff-DNA was quantified from either serum or 
plasma. Recently, these factors have shown to have an 
influence on the total cff-DNA yield in different fields 
(Fernando et al. 2010, Manokhina et al. 2014). Direct 
comparisons of different methodologies on the same 
samples and subsequent standardization of approach 
will be necessary to enable more effective conclusions 
in the future.

Quantification

A further complication to meta-analysis is the use of 
different measures of DNA quantity. For example, 
some studies use the fetal fraction (ratio of fetal DNA 
to total DNA) while others measure the total amount of 
cff-DNA in maternal plasma (Manokhina et  al. 2015, 
Dugoff et al. 2016). The method of quantification also 
varied between studies. Initial studies limited their 
approach to researching only pregnancies with male 
fetuses in order to differentiate cff-DNA (DNA from the 
Y chromosome) from maternal DNA. However, more 
recent methodologies include using placenta-specific 
methylation characteristics (Manokhina et  al. 2014, 
Dugoff et  al. 2016) or cff-DNA-specific short tandem 
repeats (Bauer et  al. 2006). Both these methods have 
capacity to quantify cff-DNA irrespective of fetal sex or 
blood group status. Furthermore, molecular techniques 
used in quantification have also varied; including 
PCR, massively parallel single-end sequencing and 
chromosome selective assays. These differences have 
the potential to impact the yield of cff-DNA and 
consequently alter findings.

In summary, cff-DNA has been measured throughout 
pregnancy. Four out of ten studies concluded a 
significant increase in cff-DNA levels in women who 
delivered preterm when compared to women who 
delivered at term, when measurements were made 
in the 2nd and 3rd trimester or at the onset of spPTB 
symptoms. However, these studies have generally 
looked at small populations with numbers that were 
insufficient to confirm the prognostic ability of cff-DNA. 
Nevertheless, these higher levels of circulating cff-
DNA detected in later gestation and in labor (including 
preterm labor in four studies described above), do raise 
the possibility of role in the onset of parturition (Birch 
et al. 2005, Phillippe 2014, 2015, Herrera et al. 2017). 
In this context, in additional to further, more definitive 
studies, it is important to consider potential mechanisms 
of action, if indeed this is indeed a causative, not simply 
associated, phenomenon. It has been hypothesized 
that cff-DNA is pro-inflammatory and can stimulate, 
or contribute to the stimulation of, the inflammation-
parturition cascade, following detection by intracellular 
DNA receptors, including TLR9 (Scharfe-Nugent et  al. 
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2012). Studies aiming to evaluate this mechanistically in 
vivo in the context of pregnancy and spPTB have been 
conducted in animals (Thaxton et  al. 2009, Scharfe-
Nugent et  al. 2012, Sun et  al. 2013, Lin et  al. 2014, 
Conka et al. 2017).

Cell-free fetal DNA as a pro-inflammatory stimulus

We found no studies that have investigated the role of the 
STING pathway in adverse pregnancy outcomes in vitro 
or in vivo. However, six studies have investigated the 
effects of TLR9 activation in pregnancy and parturition 
in mice, with varied results.

Our group has investigated the effect of time to 
delivery by intra-uterine injected mouse placental DNA 
(van Boeckel et  al. 2017). Ultrasound-guided intra-
uterine injections of 3–300 μg/dam of mouse placental 
DNA was administered on day 17 to wild-type C57Bl/6 
mice. We found no significant decrease in time to 
delivery in the mouse placental DNA administered 
groups, while mice treated with 1 μg of LPS all delivered 
preterm (P < 0.0001), similar to previously published 
findings (Rinaldi et al. 2015). We examined the effects 
of cell-free placental DNA in-vitro using DNA extracted 
from a placental explant method (van Boeckel et  al. 
2017) and found that up to 500 ng/mL elicited no 
inflammatory response in peripheral blood mononuclear 
cells (PBMCs) from pregnant women. Furthermore, we 
compared the total amount of unmethylated CpG motifs 
in cff-DNA extracted from the supernatant of human 
placental explant culture, E-coli DNA and adult human 
DNA extracted from human blood. We demonstrated 
the E-coli had 9.1% of unmethylated CpGs compared to 
0.06% unmethylated CpGs in cff-DNA and 0% of adult 
DNA (van Boeckel et al. 2017). This demonstrates that E 
coli DNA is a better TLR9 ligand compared to cff-DNA 
and may be a reason for the lack of pro-inflammatory 
properties seen in our in vitro and in vivo experiments 
(van Boeckel et al. 2017).

These findings differ from the findings in a 2012 
study by Scharfe and colleagues. Scharfe and coworkers 
used human fetal genomic DNA, which is larger in size 
than cff-DNA, but their findings suggest fetal DNA is 
less methylated than human adult DNA (however, no 
comparison with E coli DNA was made). Using PBMCs 
from non-pregnant women, they observed that fetal 
DNA stimulation resulted in the production of the 
inflammatory cytokine interleukin (IL) 6 with a similar 
magnitude to that induced by synthetic unmethylated 
CpG oligonucleotides (CpG). Further activation of TLR9 
was demonstrated by IΚBα degradation in both CpG and 
fetal DNA-stimulated PBMCs. PBMCs from pregnant 
women showed a significant increase in IL-6 after fetal 
DNA stimulation, but no comparison to CpG was made. 
Subsequently, pregnant C57Bl/6 mice were given a 
single intra-peritoneal injection of 300 μg/dam human 
fetal DNA between gestational days 10 and 14. There 

were higher rates of fetal resorption when compared 
to control groups or mice injected with human adult 
DNA. This effect was significantly reduced in TLR9-
knockout mice. However, despite these findings, this 
study found no systemic inflammatory response, no true 
PTB and no in vitro inflammatory response of murine 
macrophages to fetal DNA (Scharfe-Nugent et al. 2012). 
Nevertheless, these data implicated a TLR9-mediated 
effect on fetal viability specific to stimulation with fetal 
DNA in vivo. TLR9 is strongly expressed in the decidua 
of spontaneous abortion compared to normal human 
pregnancies (Kang et al. 2015), making it possible that 
targeted inflammatory stimuli to the reproductive tract 
might elicit an inflammatory response leading to PTB. 
However, the finding that CpG/TLR9 simulation can 
cause fetal resorption and/or PTB in healthy wild-type 
mice has not been replicated in subsequent studies in 
specific genetically modified mouse models.

Thaxton and coworkers found that hypomethylated 
CpG DNA (CpG) caused adverse pregnancy outcomes 
in IL-10-deficient mice, in the context of a study 
investigating the safety profile of CpG as a vaccine 
adjuvant in pregnancy. Intraperitoneal injections of dams 
with 25 μg CpG on days 6 or 14 of gestation, induced 
significant levels of fetal resorption and/or spPTB 
compared to controls. However, these adverse responses 
were not seen in wild-type C57Bl/6 mice, indicating 
that IL-10 had a protective function against harmful 
responses to, or recognition of this hypomethylated CpG 
DNA. The CpG-treated IL-10-deficient mice had higher 
numbers of uterine neutrophils and macrophages than 
the control IL-10-deficient mice and higher levels of 
tumor necrosis factor (TNF) in the maternal circulation. 
Interestingly, the adverse pregnancy outcomes in the 
CpG-treated IL-10-deficient mice could be reversed by 
depleting macrophages or by neutralizing maternal TNF, 
suggesting a macrophage-driven mechanism, occurring 
in the absence of IL-10-mediated inhibition (Thaxton 
et al. 2009).

Sun and colleagues used CpG to mimic bacterial DNA 
and the effects this might have on spontaneous abortion 
and PTB, in the context of infection. They administered 
intra-peritoneal injections of CpG (25–400 µg/dam) on 
gestational days 6 or 14 to wild-type BALB/c and natural 
killer (NK) cell-deficient non-obese diabetic (NOD) 
BALB/c mice. NOD mice showed 80–90% rates to 
CpG-mediated PTB and fetal resorption, while the CpG-
treated wild-type mice showed no adverse effects. The 
adverse effects could be significantly diminished using 
TLR9 competitive antagonist ODN 2088 or by repletion 
of NK cells. These data highlight the importance of NK 
cells and the essential role of TLR9 in the CpG-abortion 
and PTB pathway (Sun et al. 2013).

In 2014, Lin and colleagues further investigated the 
‘CpG-mediated pregnancy failure’ pathway in NOD 
mice. They use the same model as the Sun and colleagues, 
and showed that administration of interleukin 10 (IL-10) 
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or T-regulatory cells could prevent the CpG-induced 
PTB/fetal resorption. These data reinforce the protective 
importance of IL-10 in these models. In line with the 
previous findings, wild-type mice did not have any 
adverse response to the injected CpG (Lin et al. 2014).

The studies described above do suggest that in the 
context of specific impairments to the normal immune 
system, CpG can induce adverse pregnancy outcomes. 
However, the studies were not using fetal DNA (as used 
by Scharfe and colleagues), nor placental DNA, which 
is the origin of cff-DNA (Bianchi 2004). In contrast, 
Čonka and colleagues did include use of DNA from 
placental origin in a preeclampsia mouse model. They 
administered daily intra-peritoneal injections of different 
types of DNA (human fetal, mouse placental and mouse 
adult DNA) or lipopolysaccharide (LPS) as a positive 
control once a day during gestation days 14–18 in wild-
type C57Bl/6 mice. Whereas LPS induced fetal resorption 
in all cases (P < 0.001), none of the DNA-injected mice 
showed significant decreases in litter size. In this model, 
they hypothesized that TLR9 activation could cause 
preeclampsia; however, the different types of DNA were 
not able to induce preeclampsia-like symptoms (Conka 
et  al. 2017). This study therefore contributes to the 
weight of evidence that systemic exposure of a healthy 
mouse to mammalian DNA (irrespective of methylation 
status) cannot induce adverse pregnancy outcomes 
without additional impairments of the immune system.

In conclusion, DNA has the potential to be pro-
inflammatory, through activation of TLR9 and STING 
pathways. However, whether it can act as a stimulus that 
directly induces the parturition cascade is unknown, 
with conflicting in vitro and in vivo data. However, given 
that cff-DNA is found in the maternal circulation, DNA-
sensing mechanisms exist and that these may function 
incorrectly in pregnancy in the context of additional 
immune system compromise, further investigation into 
the pro-inflammatory properties of cff-DNA and the 
consequences of cff-DNA-induced inflammation in 
pregnancy is merited.

Summary

In this review, we have summarized the studies that have 
quantified cff-DNA in the maternal blood and examined 
those associated with PTB. There is evidence that 
PTB is associated with increased cff-DNA levels after 
20 weeks or with the onset of spPTB symptoms. Further 
investigation is needed to standardize cff-DNA and fetal 
fraction quantification and be able to establish a normal 
range according to gestational age. The increase in cff-
DNA suggests potential for a causative link between cff-
DNA and spPTB. There are mechanisms by which DNA, 
and possibly cff-DNA, can be pro-inflammatory. It is 
however unclear how cff-DNA can reach the intracellular 
compartment where cell-sensing mechanisms (TLR9 
and STING pathway) exist, and whether any consequent 

TLR9 and STING activation would elicit a response that 
can lead to spPTB. In vivo studies have given conflicting 
results and further investigation should be performed 
using cff-DNA from placental origin and in a manner 
that the potential pathway of inflammation can be 
identified. The effects of this pathway on PTB must then 
be established to be able to prove causative link between 
cff-DNA and PTB. As DNA can be pro-inflammatory 
and pregnancy yields in a unique type of cfDNA in the 
maternal circulation, more research is merited to further 
unravel the possible inflammatory role of cff-DNA in 
pregnancy and parturition.
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