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Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using 
traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene 
oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus 
turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution 
plasma (SP) method under different conditions. The nanoparticles synthesized at 180 W and 45 min 
were highly toxic to Rh. rutilus and Rh. turanicus, with 50% lethal concentration (LC50) values of 
248.1 and 195.7 mg ml−1, respectively, followed by those which were synthesized at 120 W/30 mins 
(LC50 = 581.5 and 526.5 mg ml−1), 120 W/15 mins (LC50 = 606.9 and 686.7 mg ml−1), and 100/45 mins 
(LC50 = 792.9 and 710.7 mg ml−1), after 24 h of application. The enzyme assays revealed that 180 W/45 
min treatment significantly inhibited the activity of acetylcholinesterase (115 ± 0.81 and 123 ± 0.33 U/ 
mg protein/min) and superoxide dismutase (290 ± 0.18 and 310 ± 0.92 U/ mg protein/min) in Rh. rutilus 
and Rh. turanicus, respectively, as compared with the negative control. The results also revealed a 
significantly increased catalase activity (895 ± 0.37 and 870 ± 0.31 U/ mg protein/min) in Rh. rutilus 
and Rh. turanicus, respectively. The above results indicated that Copper/Graphene oxide core-shell 
nanoparticles could be a promising alternatives for the management of ticks.

Keywords Copper/graphene oxide, Nanopesticides, Rhipicephalus rutilus, Rhipicephalus turanicus, 
Acetylcholinesterase, Antioxidants

Ticks (Acari: Ixodida) are blood-feeding arthropods with worldwide distribution, infesting virtually all 
terrestrial vertebrates1. They constitute a serious threat to the world economy by causing tremendous economic 
losses to animals and humans2. Direct damages due to tick infestation are represented by blood loss, anemia, 
inflammation, hypersensitivity, irritation, and skin wounds3. Indirectly, they are involved in the transmission 
of a wide range of pathogenic bacteria, protozoa, viruses, and filarial nematodes2. Out of four tick families, 
Argasidae (soft ticks) and Ixodidae (hard ticks) are considered as economically important3.

Ixodid ticks are currently 762 recognized and valid species according to the latest checklists4. Members of 
the genus Rhipicephaluscomprise 11.2% of the total Ixodidae family4. A lack and inaccurate original description 
of Rh. sanguineusled to a global debate about the taxonomic status of at least 17 similar species5, including Rh. 
rutilus and Rh. turanicus. Recently, the southeastern Europe lineage of Rh. sanguineus s.l. was identified to be Rh. 
rutilus6and is well-distributed in Africa, including Lower Egypt and the Nile Delta7. In Egypt, Rh. rutilus, which 
infests dogs and sheep has been found to be positive for several bacterial and protozoan pathogens8 Likewise, 
Rh. turanicus ticks are involved in the transmission of Hepatozoon and Babesiainfections to animal hosts9,10.

Numerous control strategies, including chemical acaricides, are usually used to control ticks. However, 
the unwise usage of these chemicals has enabled ticks to acquire different levels of resistance over the years11. 
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Moreover, environmental pollution, and cross-contamination of meat and milk of the treated hosts are of high 
concern12. In response to the problems associated with the unwise use of synthetic acaricide, researchers have 
been proposing alternative products that could be of great help to control ectoparasites without negativeeffectson 
their host and the environment13. In recent years, nanoparticles have been offered as novel pesticides for pest 
management14,15. They are optimized in terms of extended and sustained release of their active ingredients, while 
reducing application rates, and often minimizing environmental pollution that might occur with the application 
of synthetic pesticides16–18. Earlier studies confirmed the high efficacy of metal and carbon nanoparticles against 
arthropods, including biting lice19, mosquitoes20, beetles21, blowflies22, and mites23. Interestingly, graphene oxide 
nanoparticles were synergistically used with acaricides, including pyridaben, chlorpyrifos, and β-cyfluthrin to 
increase their acaricidal efficacy against spider mites24. Likewise, graphene nanocarriers of insecticides such 
as lambada-cyhalothrin and cyfluthrin were found to increase the toxicity of the chemical insecticides against 
Helicoverpa armigeraworms by easing the insertion of the active ingredients through the insect cuticle25. On the 
other hand, copper nanomaterials have been shown to be effectiveas multi-action pesticides against Spodoptera 
frugiperda26, Tribolium castaneum27, Phyllocoptruta oleivora, Eutetranychus orientalis, and Brevipalpus obovatus28. 
Recent studies have concentrated on carbon materials like carbon fibers, carbon nanotubes, and graphene due 
to their potential to enhance the strength and conductivity of copper matrix composites29–31. Among these, 
graphene stands out as a particularly effective reinforcement due to its two-dimensional hexagonal structure, 
which is made up of sp² hybridized carbon atoms, providing exceptional mechanical strength and electrical 
conductivity30,32,33. This study focused on the acaricidal activity of newly synthesized Copper/Graphene oxide 
nanoparticles (Cu/GO NPs) against Rh. rutilus and Rh. turanicus ticks and their consequential effects on key 
enzymes of the ticks.

Materials and methods
Dimethylformamide (DMF, 99.5%), acetone (99.5%) and ethanol (absolute) were purchased from El-gomhouria, 
Cairo, Egypt. Dimethylsulfoxide (≥ 99.9% ), 5,5ʹ-dithiobis-(2-nitrobenzoic acid) (DTNB), acetylthiocholine 
iodide (ATChI), glucose-6-phosphate dehydrogenase (G-6PD), p-nitroanisole, and sodium dodecyl sulfate were 
purchased from Sigma–Aldrich, Steinheim, Germany, while HCl, Triton X-100, and sodium phosphate buffer 
(0.1 M, pH 7.6) from Thermo Fisher Scientific, Massachusetts, USA.

Tick collection and identification
Adult males and females of Rh. rutilus and Rh. turanicus  ticks were collected using tweezers from naturally 
infested dogs of Alexandria Governorate, Egypt (31° 11’ 57.05’’ N; 29° 53’ 42.62’’ E) with no history of acaricidal 
application. The collected unfed adult ticks were morphologically identified with the help of Motic SFC-11 
(Motic Asia, Kowloon, Hong Kong) at 40X magnification, following the keys of Filippova34 and Walker et al.9,35. 
The ticks were fed on domestic rabbits (Oryctolagus cuniculus) to produce the next-generation progeny used in 
the bioassay.

Synthesis and characterization of copper / graphene oxide nanoparticles
Copper-coated with NFG was synthesized through the solution plasma (SP) method using two copper wires as 
an opposite electrode. In the SP process, the pair of electrodes were insulated by Teflon tubes and plugged into a 
glass reactor. The tips of the electrodes were placed at the center of the reactor with a gap distance of 1.0 mm, as 
shown in Fig. 1a. The plasma discharge was generated and maintained between the two electrodes which were 
immersed in 100 mL of DMF by using a homemade DC pulsed power supply. The plasma operating parameters 
were fixed at a pulse width of 1.0 µs and a repetition frequency of 50 kHz. During the plasma discharge, black 
solid particles were continuously separated as presented in Fig. 1b. After 15 min of the reaction, the black solid 
particles were collected and washed with acetone and dried at 60 °C for 12 h.

Fig. 1. Schematic diagram of solution plasma process (a), and Cu/NFG formation process by solution plasma 
method (b).
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Characterization of the synthesized nanoparticles
The chemical structure of the prepared Copper/Graphene oxide (Cu/GO) samples was investigated utilizing the 
FTIR spectrometer Alpha 2 (Bruker) and the attenuated total reflectance (ATR) mode was employed in the range 
from 400 to 4000 cm−1. The bonding state of all elements on the surface of the samples was characterized by 
X-ray photoelectron spectroscopy (XPS). The measurements were carried out using a spectrometer purchased 
from ThermoFisher Scientific, USA, working with Al Kα radiation, with an energy of 1487 eV. The emission 
voltage and power of this source are set to 11 kV and 220 W, respectively. The pressure was fixed in the analyzing 
chamber at 10−7 Pa throughout the analysis. The fitting of the spectra was carried out employing Casa XPS. The 
light absorption and optical properties of the specimens were recorded and analyzed through a UV–Visible 
spectrometer (UV–Vis, Jenway Model 6700). Additionally, the morphologies and the elemental analysis of the 
prepared samples were investigated using high-resolution transmission electron microscopy (HR-TEM, which 
connected to Energy-dispersive X-ray (EDX)- JEM-200 Plus LaB6 S) at an accelerating voltage of 200 kV.

Concentration preparation
Three grams of the formulated nanoparticles were dissolved in 30 ml of 70% Dimethylsulfoxide (DMSO) as a 
stock solution. Concentration ranges of 50, 200, 500, 700, and 900 mg mL−1 were prepared from each stock to 
study the effect of the nanoparticle materials on the ticks. Abamectin, a synthetic acaricide (Syngenta Agro Co., 
Basal, Switzerland) diluted in distilled water with the same concentration range was used as a positive control.

Adult immersion test (AIT)
This experimental work and the animals used in the study (obtained from the farm of Faculty of Agriculture, 
Alexandria University, Egypt) were performed according to the Alexandria University Research Ethics Review 
Committee. The ethical approval for this study was granted by the ethical committee on animal care and use at 
the Faculty of Agriculture, Alexandria University, Egypt (Alex.Agri.1124004306).

The AIT experiments were conducted following Drummond et al.36. Briefly, three replicates, each of ten 
individual adult ticks (unfed; five males: five females for each replicate) were immersed for ten min in 20 mL of 
each concentration of the nanoparticles material (100/45, 120/15, 120/30, and 180/45). A negative and positive 
control group of ticks were immersed in 70% DMSO (70% of DMSO was not found toxic to the ticks during 
the preliminary study) and abamectin, respectively. The treated ticks were then allowed to dry on filter papers, 
placed in separate petri plates, and incubated at 26°C; 80% RH; 12 h of light:12 h of dark. Mortality was recorded 
at 24-, 48-, 72-, and 96-h post-treatment. The mortality of ticks was observed based on the total absence of 
movement, particularly the tick legs.

Enzymatic activity determinations
The ticks were subjected to enzymatic activity at 48 h post-treatment. Thirty whole ticks (ten/replicate) from 
each treatment were dealt with as a pool and processed for homogenization DMSO (70%) and abamectin-treated 
ticks were employed as negative and positive controls, respectively. The homogenate tissues were prepared based 
on the methods suggested by Anazawa et al.37 through crushing with liquid nitrogen, suspended in cold 50 
mM Tris-HCl (pH 8.0) containing 0.1% Triton X-100, and centrifuged to remove the precipitate. The activity 
of acetylcholinesterase (AChE) was determined using a modified Ellman’s method38 and modified by Gorun et 
al.39. Briefly, the AChE activity was measured by adding 0.3 mM of 5,5ʹ-dithiobis-(2-nitrobenzoic acid) (DTNB, 
) and 0.3 mM of acetylthiocholine iodide (ATChI, ) at 30 °C using a spectrophotometer to measure absorbance 
at 412 nm over 5 min period.

The monooxygenase activity was assayed to determine the CP450 activity according to the method of Hansen 
and Hodgson40. The standard incubation mixture contained 1 mL sodium phosphate buffer (0.1 M, pH 7.6), 
1.5 mL enzyme solution, 0.2 mL NADPH (1 mM final concentration), 0.2 mL glucose-6-phosphate (G.6.P, final 
concentration, 1 mM) and 50 µg glucose-6-phosphate dehydrogenase (G-6PD). The reaction in the previous 
mixture was initiated by the addition of p-nitroanisole in 10 µL acetone to give a final concentration of 0.8mM 
and was incubated for 30 min at 37°C. The incubation period was terminated by the addition of 1 mL HCl 
(1 N). P-nitrophenol was extracted with CHCl3 and 0.5 N NaOH and the absorbance of the NaOH solution 
was measured at 405 nm. An extinction coefficient of 14.28 mM−1cm−1 was used to calculate 4-nitrophenol 
concentration. The enzyme activity was expressed as n mole substrate oxidized /min/mg protein.

The activity of carboxylesterase was determined using the method proposed by Zhang et al.41. In summary, 
a 25 µL solution of carboxylesterase protein (with a final concentration of 2.0  µg/µL protein in 0.1  M PBS 
buffer, pH 7.5) and 90 µL of 3 × 10–4 M substrate solution (either α-naphthyl acetate (α-NA) or β-naphthyl 
acetate (β-NA) dissolved in 0.1 M PBS buffer) were added to a 96-well microplate and incubated at 30 °C for 
30 min. The reaction was stopped by adding 45 µL of freshly prepared diazo blue-sodium lauryl sulfate solution 
(containing 2 parts of 1% fast blue B salt and 5 parts of 5% sodium dodecyl sulfate solution). After 15 min of 
incubation at room temperature, the absorbance value of the hydrolysis product α-NA or β-NA was measured at 
600 nm–550 nm, respectively. The superoxide dismutase (SOD) activity was assayed in the tissue homogenates 
as units per milligram protein (U/mg protein/ min) by the method suggested by Nishikimi et al.42. The catalase 
(CAT) activity was assayed in the tissue homogenates as units per milligram protein (U/mg protein/min) using 
the method described by Aebi43, and the glutathione peroxidase (GPX) activity was evaluated in the tissue 
homogenates using the method suggested by Paglia and Valentine44. Results were defined as units per milligram 
protein (U/mg protein/min).

Statistical analysis
Probit analysis according to Finney45 was used to estimate the lethal concentration (LC50) values using MedCalc 
Statistical Software ver. 19.2.6 (MedCalc Software Ltd, Ostend, Belgium). Data of the enzymatic activities were 
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analyzed using analysis of variance (ANOVA), followed by Tukey post-hoc test. The significant levels were set 
at P ≤ 0.05.

Results and discussion
Characterization of Cu/GO nanoparticles
During the plasma discharge in DMF using a pair of Cu electrodes, black particles were continuously generated. 
According to the literature, the SP process could produce nitrogen-doped carbon materials from the nitrogen-
containing organic precursors46. The black particles could be suggested to be the combination of nitrogen-doped 
carbon and Cu nanoparticles, which could occur through the decomposition and recombination of DMF and 
the simultaneous sputtering of Cu electrodes together47.

Fourier-transform infrared spectroscopy (FT-IR)
The changes in the FTIR spectral features (Fig. 2) at different plasma discharge times (15, 30, and 45 min) can 
provide insights into the evolution of the chemical composition and the degree of functionalization of the Cu/
NFG composite during the plasma treatment process. The results showed an absorbance of new peaks after 
30 min at 460 and 670 cm−1 due to the Cu–O bond in the monoclinic crystal structure of CuO suggesting the 
successful synthesis of CuO core. The absorption peaks at 1380 and 1495 cm−1were attributed to C–N in the 
N-doped (functionalized) graphene (NFG). The increased intensity of the peak at 1640 corresponds to the C = N 
stretching vibration, suggesting the existence of NFG48. Furthermore, the broad peak around 3332 cm−1 and 
small peak around 2922 cm−1 correspond to OH and CH stretching, respectively in the graphene. The intensity 
of all observed peaks is increased after 45 min of plasma operating time, indicating that it is the best preparation 
time for Cu-CuO-NFG catalyst (Fig. 2).

X-ray photoelectron spectroscopy (XPS)
The surface chemical compositions and elemental bonding states of the obtained samples were demonstrated 
by XPS analysis. The XPS results showed the nitrogen and oxygen contents in the sample (Cu/GO at 180 W, 
50 kHz, and 45 min), suggesting that Cu-NFG could be produced by the decomposition and recombination of 
the molecules of DMF during the SP process (Table 1). Furthermore, deconvolution was applied to the high-
resolution XPS spectra to understand the atomic-level details and detecting the chemical states of the elements. 
The C1s spectra were deconvoluted at least into four peaks as shown in Fig. 3a. The strong peak at 284.2 eV is 
assigned to C–C of the carbon sp2 structures of NFG (Fig. 3a)49. In addition, the occurrence of C–N, C = O, and 
O–C = O bonding peaks at 285, 286.6, and 289.8 eV, respectively, was detected, indicating the functionalization 
of the graphene by nitrogen and oxygen (carbons attached to nitrogen and different oxygen-containing 
moieties)50,51. The high-resolution Cu 2p3/2 spectra which were deconvoluted into two peaks at 933.06 eV and 
953.1 eV which assigned to Cu 2p3/2 and Cu 2p1/2, respectively (Fig. 3b). The presence of CuO is confirmed 
by appearance of two strong satellite peaks at 941.9 eV, and 961.9 eV, respectively52. In addition, Cu(0) may also 
observed at 933.06 eV (19.9%) and Cu(II) at 934.4 eV (23.6%) and 941.9 eV (21.8%), respectively53 indicating 
that oxidized Cu core (CuO) exists in Cu-NFG which was in good agreement with FT-IR results.

Name Peak BE FWHM eV Area (P) CPS.eV Atomic %

Cu2p3 934,19 3,99 261397,2 11,68

O1s 531,23 4,18 77721,04 14,28

N1s 399,35 3,54 21333,5 5,9

C1s 285,35 3,83 66247,36 31,08

Al2p3 76,69 4,37 31123,32 37,05

Table 1. Surface composition Cu/GO at 180 W, 50 kHz, and 45 min, as determined by XPS

Fig. 2. FT-IR spectra of the Cu/GO at different times of plasma discharge and (50 kHz, and 180 W).

 

Scientific Reports |         (2025) 15:3334 4| https://doi.org/10.1038/s41598-025-86560-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


UV–visible spectrometry (UV–Vis.)
The optical properties were elucidated by measuring UV–Vis. absorption spectra of graphene (G) and graphene 
oxide (GO) in addition to Cu nanoparticles and the results were presented in Fig. 4a. According to literatures, the 
GO sheets demonstrate an absorption peak centered at 273 nm and a shoulder at about 325 nm, which could be 
assigned to the π → π* transitions of aromatic C–C bonds and the n → π* transitions of C = O bonds, respectively. 
Furthermore, there is a broad shoulder in the range from 425 to 550 nm which might correspond to the Cu 
nanoparticles with different sizes (Fig. 4a). Furthermore, it was observed that the band gap value is reduced with 
increasing the time of plasma discharge (3.4, 3.2, and 2.4 eV for 15, 30, and 45 min) (Fig. 4b) indicating that the 
activity of the nanomaterials as an electrocatalyst was increased as the plasma discharge time was increased54–56.

Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX)
The TEM showed the morphology of Cu-NFG. The black Cu–core and a grayish carbon–shell appeared indicating 
the successful formation of the core shell (Fig. 5a, b). The average particle size of Cu-NFG was measured to be 
29 nm. The results of the EDX analysis revealed that the Cu was covered by NFG as indicated by the presence of 
N as compared to pristine Cu57 (Fig. 5c).

A potential route for the SP process to generate a core-shell nanostructure might be suggested based on the 
findings of the Cu-NFG characterization. Two primary processes could combine to produce Cu encapsulated 
by NFG. The first was carbonization, which created a shell of carbon materials, and the second was plasma 
sputtering, which produced metal atoms at the tip of metal electrodes and formed the metal-core. The DMF 
molecules broke down in the plasma zone (higher temperature) during the SP process. Radicals and fragments, 
which are crucial species for the synthesis and growth of carbon materials, were produced when the bonds 

Fig. 4. UV–Vis. absorption spectra (a), and the band gap (b) of Cu/GO nanoparticles at 180 W pulsed plasma 
discharge, frequency = 50 kHz and different time (15, 30 and 45 min).

 

Fig. 3. High resolution XPS spectra of the C1s peak for Cu/-NFG (a) and Cu2p peak for Cu/GO (b), with 
relative area under the peaks (45 min, 50 kHz and 180 W).
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between the carbon atoms in DMF were broken58. Later, those fragments were propagated and recombined to 
form a carbon framework. Nevertheless, its dispersion to the surrounding solution phase of low temperature 
(room temperature), prevented the carbon structure from developing and extending. Furthermore, the important 
species that resulted from the breakdown of DMF59 are CN radicals, a crucial part of nitrogen doping in carbon 
materials, which are formed by the insertion of nitrogen atoms during the initial growth stage and the generation 
of graphitic planes, which ultimately result in the formation of nitrogen doped carbon particles.

Without the need for additional chemicals, such as reducing agents, Cu nanoparticles could be synthesized 
by plasma sputtering at the electrode tips to form them as the core component of Cu-NFG. During the plasma 
discharge, the energetic atoms, ions, and electrons in the plasma gas phase hit, battered, and knocked off the metal 
atoms at electrodes60. The nucleation and subsequent crystal development to a bigger cluster and nanoparticle 
may be caused by the ejected metal atoms. At the same time, the formation of graphene was aided by the growth 
of metal crystals. According to XPS, TEM, and EDX analyses, the metal’s surface serves as a substrate for the 
adsorption of a pre-formed carbon layer (Figs. 3 and 5)61. As shown by FT-IR and UV-Vis analysis, it was found 
that longer plasma discharge times resulted in more carbonization and sputtering, which in turn led to more 
combination and formation of Cu-NFG (Figs. 2 and 4).

Toxicity of Cu/GO NPs to Rh. rutilus and Rh. turanicus ticks
The toxicological assay of the synthesized nanoparticles against Rh. rutilus and Rh. turanicus are shown in 
Table 2.

LC50: 50% Lethal concentration; CL: Confidence limits; SE: Standard error; X2: Chi-square, P: Significance 
probability values (P < 0.05).

The NPs synthesized at 180 W/45 mins had the lowest LC50 values against Rh. rutilus (248.1 mg ml−1) and Rh. 
turanicus (195.7 mg ml−1), which indicates a higher acaricidal activity, followed by those which were synthesized 
at 120 W/30 mins (LC50 = 581.5 and 526.5 mg ml−1), 120 W/15 mins (LC50 = 606.9 and 686.7 mg ml−1), and 
100/45 mins (LC50 = 792.9 and 710.7 mg ml−1), respectively, after 24 h of application. However, the efficacy of the 
NP (180 W/ 45 min) was lower than the positive control (abamectin), which achieved LC50 values of 33.1 and 
25.3 mg ml−1 against Rh. rutilus and Rh. turanicus, respectively, after 24 h of application. Furthermore, the results 
indicated time-dependent effects of the NPs against Rh. rutilus and Rh. turanicus, with the most toxic effect 
occurring at 96 h of application based on the LC50 values (Table 2). Overall, the acaricidal results demonstrated 
that, the activity of Cu/GO NPs against Rh. rutilus and Rh. turanicus may depend on the synthesized conditions 
and duration of exposure. Cu and GO NPs distinct physical and chemical properties, as well as, their methods 
of penetrating may be responsible for their observed acaricidal activity against Rh. rutilus and Rh. turanicus. 
Nanoparticles are usually within the range of 1 to 100 nm in size. They are chemically active and toxic because 
of their minuscule size and increased reactivity due to their large surface area to volume ratio62–64. Besides, the 
high surface area of graphene (up to 2630 m²/g)65enables it to be in close association with biological membranes, 
which enhances its efficiency as a pesticide formulation system66. Furthermore, the shape of the nanoparticles 
equally affects their mode of action and dispersion. For instance, Cu NPs that are spherical might have an easier 
time passing through cellular anatomical boundaries than those which are irregularly shaped or too large67,68. 
Moreover, Gr NPs may be functionalized and have carboxyl and hydroxyl groups, which can enhance their 
ability to be chemically reactive and interact with biological systems69,70.

A potential synergistic interaction between Cu and GO may also be responsible for their acaricidal activity 
against Rh. rutilus and Rh. turanicus. Indeed, synergistic and/or enhanced effects have been found with 
graphene oxide in combination with Cu and other compounds. For instance, an enhanced antibacterial effect 
of GO–Cu NPs composites was found against Pseudomonas syringae71. It has also been demonstrated that the 
combination of graphene oxide and synthetic acaricides, including pyridaben, chlorpyrifos, and β-cyfluthrin 
produced synergistic effects, enhancing the acaricidal activity of the acaricides against spider mites71. The 
ability of graphene to serve as a carrier for other compounds comes from its tailorable surface chemistry and 
biocompatibility in terms of its 2D structures that are supported by atomic thickness and notable high surface 
area (2600 m2/g)72, which not only plays as a carrier for other active agents, but also considered as a compound 
of pesticidal properties71. A previous study has proposed that the synergistic effects of graphene oxide could be a 

Fig. 5. TEM images at low (a) and high (b) resolution, and EDX analysis of the Cu-NFG nanoparticles (c) 
(45 min, 50 kHz and 180 W).
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result of the disruption of the cement layers of the arthropod cuticle, leading to quick water loss and improving 
the penetration of the toxic compounds to the pest body71.

When acting alone, graphene has been reported to have insecticidal activity against Rhyzopertha dominica, 
Sitophilus oryzae and Tr. castaneum, causing 100% mortality to these stored products insects after 21 days 
of exposure to 500 and 1000 ppm treatments73. Besides, Cu NP was found to have a toxic effect against 
several hematophagous pests, including Anopheles subpictus (LC50 = 0.95  mg/L), Culex quinquefasciatus 
(LC50 = 1.01 mg/L) and Rhipicephalus microplus (LC50= 1.06 mg/L)74. CuO NP was also found to have acaricidal 
activity against Rh. microplus (LC50 = 4.30 mg/L), Haemaphysalis bispinosa (LC50 = 9.50 mg/L) and Hippobosca 
maculata (LC50= 11.13 mg/L)75.

Effects of Cu/GO NPs on the ticks enzymes
The full profile of the enzymatic activity of Rh. rutilus and Rh. turanicus treated with Cu/GO NPs is provided 
in Table 3. The results showed that the NPs synthesized at 180 W/45 min can either inhibit or enhance the 
enzymatic activity of both tick species. For instance, 180 W/45 min treatment significantly inhibited the activity 
of AChE (115 ± 0.81 and 123 ± 0.33 U/ mg protein/min) and SOD (290 ± 0.18 and 310 ± 0.92 U/ mg protein/min) 
in Rh. rutilus and Rh. turanicus, respectively, as compared with the negative control. The results also revealed 
a significantly increased activity of CAT (895 ± 0.37 and 870 ± 0.31 U/ mg protein/min) in Rh. rutilus and Rh. 
turanicus, respectively, compared to the negative control. Although not statistically significant from the negative 
control, inhibitory effects were recorded for carboxylesterase, monooxygenase, and GPX after exposure to Cu/
GO NPs (180 W/45 min) (Table 3).

Treatment LC50 mg ml−1 (95% CL) LC95 mg ml−1 (95% CL) Slope ± SE X2
P value
(P> 0.05)

Synthesis 
conditions

Time 
interval 
(hours) Rh. rutilus Rh. turanicus Rh. rutilus Rh. turanicus Rh. rutilus

Rh. 
turanicus

Rh. 
rutilus

Rh. 
turanicus

Rh. 
rutilus

Rh. 
turanicus

100/45

24 792.9
(533.2-1,550)

710.7
(518.2-1,825)

13,547
(9,421 − 18,550)

12,863
(8,014–17,185) 2.38 ± 2.12 1.56 ± 0.85 7.870 5.536 0.0821 0.0282

48 707.7
(506.2-1,388)

624.3
(422.8-1,478)

12,557
(8,175 − 19,713)

12,086
(7,417 − 20,691) 3.38 ± 2.12 1.52 ± 0.79 6.868 5.581 0.0843 0.0232

72 631.0
(418.7-1,593)

529.9
(406.5-1,125)

12,151
(8,628 − 21,952)

11,789
(7,102 − 19,731) 1.39 ± 0.78 0.70 ± 0.51 4.790 2.128 0.0298 0.0466

96 619.2
(355.9-1,382)

482.9
(364.3-1,674)

11,884
(7,514 − 18,195)

11,439
(8,319 − 21,827) 1.63 ± 0.83 0.85 ± 0.51 6.419 3.151 0.0222 0.0277

120/15

24 606.9
(327.7–972.6)

686.7
(411.3-1,919)

12,404
(7,252 − 18,435)

11,247
(8,556 − 22,753) 0.43 ± 0.75 0.45 ± 0.42 1.040 1.173 0.1318 0.1401

48 561.8
(402.9-1,444)

628.3
(316.8-1,024)

11,248
(9,522 − 21,82)

10,902
(7,614 − 18,731) 0.45 ± 0.42 0.62 ± 0.42 1.173 2.216 0.1401 0.0790

72 406.1
(226.8-1,031)

571.8
(316.2–981.5)

10,935
(8,332 − 19,282)

10,388
(7,226 − 17,332) 0.34 ± 0.40 0.26 ± 0.40 0.662 1.420 0.2543 0.3263

96 376.5
(208.8–861.6)

401.2
(200.5–981.8)

10,322
(6,224 − 17,312)

9,752
(5,405 − 16,242) 0.40 ± 0.40 0.45 ± 0.39 1.025 1.283 0.2364 0.2111

120/30

24 581.5
(382.3–888.4)

526.5
(316.2-1.052)

10,049
(7,127 − 18,379)

9,605
(6,913 − 15,922) 0.62 ± 0.42 0.33 ± 0.40 2.216 0.662 0.0790 0.2543

48 512.0
(286.1–825.5)

487.6
(229.8–912.8)

9,751
(5,722 − 14,823)

9,398
(4,341 − 13,725) 0.46 ± 0.40 0.56 ± 0.40 1.137 2.000 0.1736 0.1415

72 436.8
(195.8–909.4)

316.8
(185.9–732.2)

9,002
(4,923 − 16,253)

8,336
(3,941 − 17,323) 0.51 ± 0.40 0.30 ± 0.39 1.675 0.605 0.1603 0.4456

96 387.6
(195.6–835.7)

197.7
(86.5–722.6)

8,854
(4,392 − 13,823)

7,521
(3,221 − 12,825) 0.56 ± 0.44 0.50 ± 0.39 2.000 1.634 0.1415 0.2505

180/45

24 248.1
(93.7–629.3)

195.7
(79.5–533.1)

5,111
(2,812-8,322)

4,667
(1,923-7,271) 0.98 ± 0.41 0.76 ± 0.40 5.881 3.661 0.0259 0.0871

48 142.3
(88.9–577.6)

87.8
(59.5–377.2)

4,886
(925.3-6,822)

3,697
(869.3-5,001) 0.76 ± 0.56 0.57 ± 0.39 3.725 2.055 0.1036 0.2709

72 91.2
(50.5–381.2)

75.7
(44.8–288.7)

4,002
(992.3-6,100)

2,188
(810.7-4,021) 0.69 ± 0.52 0.91 ± 0.42 3.040 4.955 0.1763 0.0959

96 59.1
(35.8–273.8)

47.5
(29.7–255.7)

3,514
(901.5-5,152)

1,956
(682.7-3,720) 0.96 ± 0.42 0.94 ± 0.43 5.310 4.832 0.1024 0.1365

Abamectin

24 33.1
(20.2–50.8)

25.3
(17.8–30.8)

110.5
(77.9–243.8)

96.7
(75.1–195.8) 0.83 ± 0.31 1.01 ± 0.14 0.521 0.662 0.0514 0.2145

48 20.9
(11.8–30.7)

18.6
(10.5–21.8)

98.2
(79.8–192.3)

73.0
(62.8–110.1) 1.77 ± 0.15 1.35 ± 0.16 0.669 0.715 0.1579 0.8820

72 13.7
(9.8–19.2)

11.0
(8.5–17.9)

90.5
(73.3–119.2)

88.2
(62.5–100.9) 1.81 ± 0.11 1.57 ± 0.40 0.488 0.522 0.0335 0.3157

96 10.1
(6.2–15.8)

8.8
(3.3–16.8)

71.9
(58.1–92.3)

70.5
(55.9–94.8) 1.97 ± 0.02 2.01 ± 0.19 0.371 0.261 0.1176 0.2525

Table 2. Toxicity of Cu/GO NPs against Rhipicephalus rutilus and Rh. turanicus adults after 24-, 48-, 72-, and 
96 h post-treatment.
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SE: Standard error; Different letters indicate statistically significant differences between rows (P < 0.05).
Although the mechanisms by which NPs exert their toxic effects have not yet been fully elucidated, it is 

believed that this may occur through the inhibition of AChE76. AChE is responsible for the degradation of 
the neurotransmitter acetylcholine at the neural synapses in the central nervous system of arthropods77. 
It is an important target for some groups of insecticides/acaricides, such as organophosphates (Ops) and 
carbamates77. The inhibition of AChE by toxic compounds can lead to acetylcholine accumulation, disruption 
of neurotransmission, and hyperstimulation of nicotinic receptors78. Therefore, the inhibition of AChE by our 
synthesized Cu/GO (180  W/45)NPs may affect several neural/neuromuscular, and physiological processes, 
leading to the functional breakdown of the nervous system and death of the ticks79. It has been reported that 
the inhibitory effects caused by NPs are primarily due to their ability to adsorb or interact with AChE76. This 
adsorption or interaction is probably due to their high affinity for the enzyme76. Nevertheless, further studies 
are needed to elucidate the relationship between the inhibitory effect and the acaricidal mechanisms of the 
synthesized Cu/GO NPs.

In addition to neurotoxicity, oxidative stress has been regarded as one of the mechanisms for NPs toxicity80. 
Nanoparticles can induce oxidative stress by generating elevated levels of reactive oxygen species (ROS)80. SOD 
and CAT are important antioxidant enzymes. SOD protects against oxidative stress, by converting superoxide 
anions (O2

•−) to hydrogen peroxide (H2O2) and oxygen81,82. The reduced SOD activity of Rh. rutilus and Rh. 
turanicus induced by Cu/GO (180 W/45) treatment may lead to the accumulation of superoxide radicals83, as 
these radicals are toxic to the cells and can lead to cell death84. On the other hand, CAT can converts H2O2, 
which is another form of ROS that can induce oxidative stress into water and oxygen85. The increase in the 
production of this enzyme after the treatment in this study may be an attempt to eliminate the potentially 
harmful superoxide and H2O2, indicating an antioxidant response by the ticks.

The varied enzymatic activity of the NPs may be because of their different sizes and morphology, and their 
ability to penetrate different organelles of the ticks.

Conclusions
Nanoparticles have been offered as alternative methods in controlling different pests, including ticks, as it has 
lesser or no environmental stress compared to traditional synthetic chemicals. The results of the present study 
demonstrate that Cu/GO NPs, especially the NPs synthesized at 180 W/45 mins exhibited acaricidal activity 
against Rh. rutilus and Rh. turanicus, with the potential of inhibiting AChE and SOD activity. Therefore, it could 
be considered as a suitable compound for effective management of ticks. However, further studies are needed 
to evaluate the toxic effects of CU/GO NPs on other pests and non-target organisms, as well as, in real field 
conditions.

Data availability
All data generated or analyzed during this study are included in this published article.
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