
����������
�������

Citation: Kawaguchi, N.; Nakanishi,

T. Stem Cell Studies in Cardiovascular

Biology and Medicine: A Possible

Key Role of Macrophages. Biology

2022, 11, 122. https://doi.org/

10.3390/biology11010122

Academic Editor: Zhongjian Cheng

Received: 24 November 2021

Accepted: 6 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Review

Stem Cell Studies in Cardiovascular Biology and Medicine:
A Possible Key Role of Macrophages
Nanako Kawaguchi * and Toshio Nakanishi

Department of Pediatric Cardiology and Adult Congenital Cardiology, Tokyo Women’s Medical University,
Tokyo 162-8666, Japan; nakanishi.toshio@twmu.ac.jp
* Correspondence: kawaguchi.nanako@twmu.ac.jp

Simple Summary: Stem cells are used in cardiovascular biology and biomedicine and this field of
research is expanding. Two types of stem cells have been used in research: induced pluripotent
and somatic stem cells. Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells
(ESCs) in that they can differentiate into somatic cells. Bone marrow stem/stromal cells (BMSCs),
adipose-derived stem cells (ASCs), and cardiac stem cells (CSCs) are somatic stem cells that have
been used for cardiac regeneration. Recent studies have indicated that exosomes and vesicles from
BMSCs and ASCs can be used in regenerative medicine and diagnostics. Chemokines and exosomes
can contribute to the communication between inflammatory cells and stem cells to differentiate stem
cells into the cell types required for tissue regeneration or repair. In this review, we address these
issues based on our research and previous publications.

Abstract: Stem cells are used in cardiovascular biology and biomedicine, and research in this field is
expanding. Two types of stem cells have been used in research: induced pluripotent and somatic
stem cells. Stem cell research in cardiovascular medicine has developed rapidly following the
discovery of different types of stem cells. Induced pluripotent stem cells (iPSCs) possess potent
differentiation ability, unlike somatic stem cells, and have been postulated for a long time. However,
differentiating into adult-type mature and functional cardiac myocytes (CMs) remains difficult. Bone
marrow stem/stromal cells (BMSCs), adipose-derived stem cells (ASCs), and cardiac stem cells
(CSCs) are somatic stem cells used for cardiac regeneration. Among somatic stem cells, bone marrow
stem/stromal cells (BMSCs) were the first to be discovered and are relatively well-characterized.
BMSCs were once thought to have differentiation ability in infarcted areas of the heart, but it has been
identified that paracrine cytokines and micro-RNAs derived from BMSCs contributed to that effect.
Moreover, vesicles and exosomes from these cells have similar effects and are effective in cardiac
repair. The molecular signature of exosomes can also be used for diagnostics because exosomes have
the characteristics of their origin cells. Cardiac stem cells (CSCs) differentiate into cardiomyocytes,
smooth muscle cells, and endothelial cells, and supply cardiomyocytes during myocardial infarction
by differentiating into newly formed cardiomyocytes. Stem cell niches and inflammatory cells play
important roles in stem cell regulation and the recovery of damaged tissues. In particular, chemokines
can contribute to the communication between inflammatory cells and stem cells. In this review,
we present the current status of this exciting and promising research field.

Keywords: induced pluripotent stem cell; iPSC; bone marrow stem cell; adipose-derived stem cell;
exosome; macrophage; chemokine; CXCR4; inflammation

1. Introduction

The incidence of myocardial infarction has increased worldwide; however, heart
transplantation is the only fundamental solution. Therefore, stem cells, which are easy to
handle and differentiate, have been investigated. Two decades ago, adult bone marrow
stem cells (BMSCs) were reported to have the ability to develop into cardiac myocytes [1].
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Multiple studies have replicated this finding, and BMSCs have been transplanted into
infarcted hearts to generate differentiated cardiomyocytes. These studies have laid the
foundation for discussions on whether these cells have an efficient capacity to differentiate
into functional cardiac myocytes, and how to use them efficiently in clinical settings. In 2003,
the existence of c-kit-positive cardiac stem cells (CSCs) in the adult rat heart was reported [2],
catalyzing the interest in further study of these fascinating cells. Other cardiac stem cell
markers, such as stem cell antigen-1 (sca-1), ATP-binding cassette subfamily G, member
2 (abcg2), and islet-1, have also been explored [3]. The formation of the cardiosphere is
considered a characteristic of CSCs. However, the efficiency of differentiation of most
adult somatic stem cells into cardiac myocytes is low. In 2006, induced pluripotent stem
cells (iPSCs), which are similar to embryonic stem cells (ESCs), were established using
murine [4] and human [5,6] fibroblasts. Due to their potent ability to differentiate into
functional, beating cardiac myocytes, a property that has not been observed in somatic stem
cells, iPSCs have been widely used, not only in regenerative medicine but also in in vitro
disease models to evaluate the druggability of different chemicals for preclinical studies.
Previous studies have characterized somatic stem cells [7] and iPSCs [4] and compared their
similarities and differentiation capabilities in the field of cardiovascular research [8]. Indeed,
Pushp et al. demonstrated that functional beating cardiac myocytes were formed using
iPSCs but not from umbilical cord-derived mesenchymal stromal stem cells. In addition, the
regulation of the stem cell environment, particularly stem cell niches and chemokines, has
also been investigated [9,10]. Chemokines are associated with inflammation and cell-cell
interactions between niches and stem cells. Recently, inflammatory cells have received
attention not only for immunological responses but also for triggering tissue healing [11–14].
Here, we review recent studies in the cardiovascular field focusing on these stem cells,
chemokines, and inflammatory cells, and discuss current achievements and areas of future
development. Furthermore, we focus on macrophages, which have been reported to play
an important role in recent studies. In this review, we have addressed stem cell studies
in cardiovascular biology and medicine based on our experiments and other previously
reported studies.

2. Induced Pluripotent Stem Cells (iPSCs)

Ideally, stem cells used in cardiovascular regenerative medicine should be able to easily
differentiate into functional cardiomyocytes. The iPSCs and ESCs are the most suitable
in that sense, although iPSCs are more ethically and immunologically less concerning
because of their lower immuno-rejection. The generation of iPSCs holds great promise
for cardiac regenerative medicine because iPSCs resemble ESCs, which are known to
differentiate into spontaneously beating cardiac myocytes and other types of cardiac cells,
such as endothelial cells, smooth muscle cells, and cardiac fibroblasts [15]. The iPSCs
can be generated from any cell type with the potential to proliferate. For example, skin
dermal fibroblasts were originally used, but noninvasive cells were preferred. Therefore,
peripheral blood cells [16–22], including T-cells [22] and B-cells [20], have been used to
generate iPSCs. Epithelial cells isolated from urine have been used as a less invasive
method of sample collection to generate iPSCs [23]. These cells are not invasive and show
cardiac differentiation similar to that of other cells [24–27].

Pluripotency is also associated with cancer; ESCs are known to cause cancer in vivo.
The use of the c-myc oncogene increased the efficiency of inducing iPSCs; however, it may
increase the cause of cancer when transplanted into the body. Therefore, efforts have
been made to generate iPSCs without introducing c-Myc/KLF4, for example, by using
microRNAs [28]. The use of retroviral vectors has been changed to Sendai virus (without
integration into the host genome) [29] or no vectors have been used for safety [30]. The xeno-
free culture condition was developed for safer iPSC generation [31]. Extracellular vesicles
from iPSCs were found to be efficient for cardiac repair [32]. Thus, efforts have been made
for the safe usage of iPSC culture for future regenerative medicine.
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To efficiently transplant iPSC-derived cardiomyocytes (iPSC-CMs) into damaged
tissues, three-dimensional (3D) structures containing iPSC-CMs in cell sheets or scaffolds
have been developed [33–35]. These cells and the 3D structures carrying them are expected
to be used not only for regenerative medicine but also in in vitro disease models since
only animal disease models are currently available for studying drug efficacy and toxicity.
Recently, we established a rat model of pulmonary arterial hypertension (PAH) disease by
monocrotaline injection (to cause inflammation) and maintained hypoxia in rats, which
may serve as a good experimental animal model. We studied the effects of silibinin [36–38],
an inhibitor of chemokine receptor, CXC motif chemokine receptor type 4 (CXCR4), and
found that CXCR4 expression was higher in PAH rats [37]. The pulmonary artery becomes
thick, causing hypertrophy of the right ventricle, leading to death in the worst cases [39].
We found that silibinin significantly reduced right ventricular pressure. However, we still
do not know the mechanism of action and do not know whether silibinin is effective in
humans. Thus, disease models based on human cells are required. The iPSCs have also
been used to establish disease models. However, it is difficult to develop an in vitro model
for PAH because it requires human iPSC-CMs (hiPSC-CMs), lungs, pulmonary arteries,
and their connections. PAH affects multiple organs and tissues and one of the barriers to
establishing this multi-complex is the requirement of a circulatory system that supplies
oxygen and nutrients to each component and removes the waste. This type of system is
necessary to maintain cell viability, and for this purpose, technologies using cell sheets [40],
collagen scaffolds including decellarized matrix [41], and other synthetic polymers have
progressed [42]. Thus, useful models may be established using these technologies and have
recently revived ideas of self-organizing embryonic and cardiac organoids mimicking the
physiological developmental process of heart generation in the future [43].

Current in vitro disease models target diseases that arise from malignancies of single-
cell types or point mutations, including long QT syndrome caused by a mutation in the
SCN5A gene, which encodes the sodium channel and other channels such as potassium
channels (including KCNJ2, KCNJ5, and KCNE1) [44]. There are other in vitro disease mod-
els, but they have been reviewed by us previously [33] and Kamga et al. more recently [45].
LQTS may be suitable for establishing a model for diseases caused by mutations in ion
channels that are directly associated with cardiomyocyte beating. Indeed, an in vitro dis-
ease model was established to analyze this dysfunction [46,47] soon after functional cardiac
myocytes were successfully differentiated from patient iPSCs [48,49]. However, differences
between cell lines have been reported [50], and temporal changes in hiPSC-CM phenotypes
have also been reported [51]. Additionally, variations in the results were observed even
when using the same cell source, irrespective of whether the cells were commercially pro-
cured [52,53]. Moreover, hiPSC-CMs exhibited different characteristics in their aggregates
and single states. Shah et al. used an in silico model to show that aggregates more closely
represent the clinical phenotype than single cells. They recommended the use of a 3D-
culture system to establish an in vitro disease model, as it more closely resembles in vivo
models [54]. A 3D model can be more natural than a conventional 2D culture. Cardiac
microtissues (MTs) and engineered cardiac tissues have been developed. Non-cardiac my-
ocytes, such as cardiac fibroblasts and endothelial cells, were found to be more important
for the development of mature hiPSC-CMs than hiPSC-CMs alone [15]. Mature hiPSC-CMs
are more developed using various non-cardiac myocyte cells than using only one of the
non-cardiac myocyte cells [15]. Furthermore, the surrounding extracellular matrix (ECM)
contributes to cardiomyocyte maturation [55]. Ozcebe et al. showed that aged ECM impairs
cardiac function, whereas adult ECM promoted cardiac function [56]. Taken together, these
studies show that in vitro disease models that mimic in vivo systems and are sufficiently
complex to deal with multiple tissues or organs will need to be developed in the future.

The hiPSC-CMs are more immature than the adult hCMs. Cardiomyocytes appear
early in the embryonic stage and it takes time for them to mature into adult cardiomyocytes.
Thus, immature cardiomyocytes mature in long-term culture [51]. Various methodologies
have been developed for generating mature cardiac myocytes or selecting mature cardiomy-
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ocytes. For example, Tohyama et al. exploited the metabolic differences between iPSCs and
iPSC-CMs, which can use lactate in the absence of glucose [57]. Dubois et al. identified a
specific cell surface marker, SIRPA, for isolating differentiated iPSC-CMs [58]. For safe use
of iPSC-CMs in regenerative medicine, the separation of fully developed cardiomyocytes is
important for the removal of undifferentiated cells that may cause cancer.

Another approach to developing mature hiPSC-CMs involves the development of
a 3D system containing iPSC-CMs and other cell types of the same origin. Lange et al.
constructed engineered cardiac tissues that form t-tubules, which are more similar to human
tissues than 2D cultures [59]. Additionally, Masumoto et al. reported that engineered
cardiac tissues ameliorated myocardial dysfunction [60]. Several symptoms of hypertrophic
cardiomyopathy and Noonan syndrome cause hypertrophy of cardiomyocytes and have
been investigated and analyzed using the CRISPR/Cas system to make corrections or
generate mutated genes [61]. Hanses et al. generated clear data showing that its pathology
is correlated with the RAS mitogen, which is activated by hiPSC-CM. Overall, changes in
cell structure or shape, such as hypertrophy, could be a more successful target for in vitro
disease models [61]. Mitochondrial hypertrophy disease models established from patient
iPSC-CMs have also been recently reviewed [62].

Our laboratory previously developed hiPSC-CMs from patients with LQT syndrome
type 3 (LQT3) and healthy volunteers [63]. LQT-3 is caused by a mutation in sodium
channel SCN5A, which increases the inward sodium current [44]. LQT-3 patient (R1623Q)-
derived hiPSC-CMs had a larger field potential duration than healthy controls, which
showed a similar phenotype to the patient (Figure 1). We investigated how the neonatal
splicing form of SCN5A contributes to LQT3 disease and found that it affects the severity
of the disease. However, it was difficult to analyze iPSC-CMs electrophysiologically, which
may have been due to the heterogeneity of the patient chromosomes. Therefore, we used
SCN5A transfected cell lines. Subtle changes are difficult to determine in the current
heterogeneous hiPS-CM situation. Thus, there is still a limitation in using iPSC-CMs as an
in vitro disease model.
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Figure 1. Electrophysiological analysis of induced pluripotent stem cells (iPSCs)-derived cardio-
myocytes (CMs). (Left panel) Representative baseline field potential waveforms in iPSC-CMs from 
healthy volunteers (upper) and LQT syndrome type 3 (LQT3) patients with the R1623Q SCN5A 
mutation (lower). (Right panel) The field potential duration corrected by Fridericia’s correction 
formula (FPDcF) of R1623Q mutation-harboring hiPSC-CMs was significantly larger than that of 
WT iPSC-CMs (from [49]).**** p < 0.0001. 

Figure 1. Electrophysiological analysis of induced pluripotent stem cells (iPSCs)-derived cardiomy-
ocytes (CMs). (Left panel) Representative baseline field potential waveforms in iPSC-CMs from
healthy volunteers (upper) and LQT syndrome type 3 (LQT3) patients with the R1623Q SCN5A
mutation (lower). (Right panel) The field potential duration corrected by Fridericia’s correction
formula (FPDcF) of R1623Q mutation-harboring hiPSC-CMs was significantly larger than that of WT
iPSC-CMs (from [49]).**** p < 0.0001.

A comprehensive in vitro proarrhythmia assay (CiPA) was established by researchers
at national research institutes in collaboration with pharmaceutical companies in several
countries to evaluate the arrhythmia effect of drugs to determine whether it causes torsades
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de pointes (TdPs), as not all drugs that cause longer QT cause TdPs [64–67]. The hiPSC-CM
is potentially a good tool for evaluating this effect [68]. Yim summarized this project [69].
We previously identified variability in the characteristics of harvested c-kit-positive CSCs
derived from rat hearts, even when the same protocol was used [70]. Thus, we must
consider the heterogeneity between stem cells, in addition to possible technical errors and
individual differences.

3. Somatic Stem Cells
3.1. Bone Marrow Stem Cells (BMSCs) and Mesenchymal Stem Cells (MSCs)

BMSCs were the first somatic stem cells to be identified as multipotent, with the
ability to differentiate into mesenchymal cells such as adipocytes and osteoblasts [71]. Soon
after this discovery, BMSCs were also reported to have the ability to differentiate into
cardiomyocytes in vivo and in vitro and alleviate myocardial infarction [1]. Since then,
these cells have been extensively studied for their clinical and preclinical applications.
BMSCs also contain stem/progenitor cells of hematopoietic and mesenchymal stem cells
that are associated with angiogenesis-producing paracrine factors. Recent research has
focused on paracrine factors and vesicles released from these cells. MSCs are present in the
bone marrow (BM) and various other organs. Endothelial progenitor cells release various
cytokines and growth factors, including vascular endothelial growth factor (VEGF), which
is found in the peripheral blood [72]. However, these cells do not originate from the BM
but from resident niches identified following sex-mismatched transplantation [73].

The positive effect of BMSC transplantation on myocardial infarction is attributed to
its paracrine effects. Efforts have been made to improve the ability of BMSCs to treat my-
ocardial infarction through (1) isolation of specific cell types such as CD133 [74], CD271 [75],
and CD117 (c-kit)-positive cells; (2) genetically engineered cells overexpressing VEGF [76],
hepatocyte growth factor (HGF) [77], and insulin-like growth factor (IGF) [78]; (3) use
of exosomes derived from BMCs; (4) using microRNAs such as miR-19a/19b [79] and
miR-29a [80]; and (5) using 3D structures of BMCs or engineered BMCs and exosomes.

Extracellular vesicles (EVs) and exosomes (exos) from BMSCs have been well-charac-
terized. MSC-EVs and MSC-exos are approximately 100 nm in diameter, contain micro-RNA
and mRNA, and express CD9, CD63, and CD81, which act as surface markers of their
extracellular domains. They have been shown to have a curative effect on myocardial
infarction [81]. MSC-exos also attenuate cardiac hypertrophy and fibrosis [82]. Fu et al.
showed that miR-338 in MSC-exos cured myocardial infarction by inhibiting cardiomyocyte
apoptosis [83]. Moreover, MSCs from the umbilical cord (UC) have more positive effects [84].
Zhang et al. also found that UC-MSC-exos could rejuvenate aged BM-MSCs, most likely
via miR-136, by targeting apoptotic protease activating factor-1 (Apaf1) [84]. MSC-exos are
eventually internalized by neighboring cells. Overall, UC-derived MSCs were more potent
than BM-derived MSCs. The efficacy of MSCs derived from adipose tissue has also been
studied and is discussed in the next section.

The fate of stem cells depends on the ECM, which determines substrate stiffness [85,86].
Computation is a useful tool for regulating this parameter. Urdeitx and Doneider used a
piezoelectric fibered extracellular matrix in a 3D computational model [87] to calculate the
intracellular force affected by the fiber. Computational models can be powerful tools for
estimating precise cellular changes that connect differentiation.

3.2. Adipose-Derived MSCs

Similar characteristics have been identified in MSCs derived from adipose tissue and
BM. For example, both cells have the capacity to differentiate into multiple cell types.
They also release growth factors and cytokines, although not the same factors [88]. MSCs
circulate in or exist in tissue niches surrounded by low oxygen levels. Cell populations
and characteristics also differ between adult and neonatal tissues [89]. Adolfsson et al.
compared MSCs derived from the BM with those derived from adipose tissue. They found
that adipose-derived MSCs proliferated more than BM-derived MSCs, and adipose-derived
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MSCs had higher angiopoetin 1 (angpt1), Leukemia inhibitory factor (LIF), and Transforming
growth factor (TGF)-β1 expression levels, but equal VEGF-A and HGF expression levels
compared with BMSCs [90]. Conditioned medium from adipose-derived stromal cells
has also been studied because of its positive ameliorating effect on various damaged
tissues, including the infarcted heart, which occurs through paracrine factors [91]. Lu et al.
fractionated conditioned media based on molecular weight and found that fractions over
50 kD protected the endothelium from barrier dysfunction caused by H2O2 and fractions
less than 3 kD protected against apoptosis induced by tumor necrosis factor (TNF)-α [92].
Lai et al. reported that exosomes from conditioned media from adipose-derived MSCs
contained high levels of miR-221/222 and attenuated myocardial infarction in a mouse
model. Knockout of miR-221/222 in mice increased apoptosis and fibrosis; however,
treatment with conditioned medium from adipose-derived MSCs decreased apoptosis
and fibrosis [93]. Lee et al. found that intramuscular injection of conditioned media from
adipose-derived MSCs attenuates ischemia in mice [94]. Taken together, exosomes from
adipose-derived stromal cells ameliorated ischemia through the action of miR-221/222.

Attempts have been made to differentiate adipose-derived stem and stromal cells
into cardiomyocytes. Seheli et al. reported that 5-azacytidine, a DNA methyltransferase
inhibitor, played a role in this differentiation [95]. Darche et al. reported that adipose-
derived stem/stromal cells can function as pacemaker cells [96]. However, Stepniewski et al.
compared the abilities of iPSC-CMs and adipose-derived stem/stromal cells (derived CMs)
to cure myocardial infarction and demonstrated better outcomes with iPSC-CMs [97].

3.3. Cardiac Stem Cells (CSCs)/Cardiac Progenitor Cells (CPCs)

Cardiac stem cells (CSCs) were originally found to be lineage (-) c-kit-positive cells in
adult rat hearts [2]. CSCs have been reported to differentiate into small cardiomyocytes
when cultured in a differentiation medium. Other cell markers, such as Sca-1 and abcg2,
have also been found in adult rat hearts. The formation of the cardiosphere was also
found to be a characteristic of CSCs, and clinical studies for post-myocardial infarction
treatment using cardiosphere-derived cells have been performed and improvement was
observed [98,99]. Cardiosphere-derived cells were found to grow as self-adherent clusters
from subcultures of postnatal atrial or ventricular human biopsy specimens and from
murine hearts [100,101]. These cardiac stem cell studies were reviewed by Matsa et al. [3].
Islet-1 has been found to be a distinct cardiac lineage cell progenitor in embryonic and
neonatal mice and human hearts [102,103]. Interestingly, a recent study suggested that Islet-
1 leads Gcn5 to bind to the GATA4/Nkx2.5 promoter region, which promotes cardiomyocyte
differentiation in BMSCs [104]. Therefore, the introduction of Islet-1 into somatic stem cells
has the potential to produce cardiomyocytes.

The existence of CSCs, which have recently been termed cardiac progenitor cells
(CPCs), has been discussed since their discovery. As previously confirmed by us, c-Kit
positive cells exist in adult rat hearts [105], and we isolated and characterized them after
long-term culture and observed cardiac progenitor and BMSC characteristics [71]. Elli-
son et al. reported a modified method for the isolation of CSCs and showed that sufficient
amounts of endogenous CSCs can be isolated from rats with heart injury using high-dose
isoproterenol [106]. They also found that c-kit was not sufficient to enhance myogenesis,
but other selection markers could [107]. Although these findings facilitate this area of re-
search, discussions are ongoing. Recently, Vegnozzi et al. suggested that the positive repair
effect of cardiac stem cell implantation for repairing damaged tissues could be induced by
resident macrophages [11], as described in the next section. Hoving et al. isolated human
CSCs (hCSCs) from the cultured tissue debris in a CSC medium and characterized their
migration behavior in human serum. They found that CSC migration caused by human
serum was inhibited by a p-38 MAPK inhibitor [108]. We isolated these cells in a similar
manner, but by using a c-kit antibody after collecting the cells which were migrated from
the tissue debris, and obtained multipotent stem cells [109], which were used for differ-
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entiation analysis [110]. Thus, the isolation methodology can be continuously modified
and improved.

4. Stem Cell Microenvironment and Macrophage Involvement

The microenvironment that maintains stem cell quiescence in the BM is facilitated by
niches consisting of CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells. CAR
cells express high levels of CXCL12/SDF-1, stem cell factor (SCF), forkhead box C1 (FOXC1),
and early B cell factor 3 (EBF3) in the murine BM. CAR cells have been identified in humans,
and patients with chronic myeloid leukemia have reduced levels of these factors [111].
Chemokines such as CXCR4 play important roles in the migration and maintenance of
these niches [112]. We previously observed the proliferation of CXCR4+ inflammatory cells
in cultured BMCs using silibinin (CXCR4 antagonists), particularly when inflammation
was activated [38]. Chemokines can function either positively or negatively during wound
healing and tissue repair [9]. Interestingly, silibinin increases macrophage and neutrophil
counts in cultured BM cells [38]. We first hypothesized that silibinin ameliorated PAH
because it may bind CXCR4 positive inflammatory cells and inhibit these cells. However,
since there are anti-inflammatory resident macrophages as we describe below, we now
consider that silibinin may affect resident macrophages during damage healing.

Accumulating evidence has suggested that macrophages play an important role in
stem cell regulation. In skeletal muscles, pax3 expressing muscle stem cells (MuSCs)
differentiate into muscle cells following injury. Macrophages transiently migrate to the
wound site, and dwelling macrophages are associated with MuSCs. Ablation of dwelling
macrophages leads to a reduction in MuSCs [113]. Dwelling macrophages secrete nicoti-
namide phosphoribosyltransferase (Nampt), which stimulates myoblast proliferation. In-
terestingly, the C-C motif chemokine receptor 5 (Ccr5), a receptor for Nampt, is expressed
by MuSCs. Thus, Nampt is hypothesized to function in muscle regeneration and is a
potential therapeutic target. Furthermore, Vagnozzi et al. suggested that macrophages
are key regulators in the healing of damage caused by an infarcted myocardium [11].
Attenuation of the infarcted heart was limited to the absence of CCR2+ and CX3CR1+
macrophages. Tissue-specific macrophages have also been identified [114]. Macrophages
in the heart are heterogeneous and contain CCR2+ and CX3CR1+ subpopulations [115].
Different macrophage subpopulations can express different cell surface proteins and may
have different functions [115], as is the case in the human system [116]. They can act either
positively or negatively during the healing of damaged tissues.

Macrophages in the Heart

Resident cardiac macrophages that originate from the yolk sac or fetal liver during
embryonic development are characterized by Ccr2− and MHC II lo/hi, whereas those that
originate from the bone marrow during postnatal development are characterized by Ccr2+
and MHC II lhi [117,118]. Resident macrophages exert anti-inflammatory and antifibrotic
effects in injured hearts. Inflammation causes fibrosis in the heart, resulting in arrhythmia.
Bajpai et al. showed that tissue-resident Ccr2− macrophage-deficient mice had larger infarct
sizes than control mice, while tissue-resident Ccr2+ macrophages could cause inflammation
by promoting monocyte recruitment [119]. Monocytes can develop into macrophages,
particularly during inflammation. Interestingly, they postulated that the population of
tissue-resident Ccr2+ macrophages increases with age, causing further inflammation in the
heart. Exosomes can also contribute to recovery from myocardial infarction and inhibit
fibrosis [120]. Myocardial infarction biomarkers include specific miRNAs for the early
diagnosis of hypertrophic cardiomyopathy (miR-21, miR425, and miR-744) and heart
failure (miR34a, miR192, and miR-194), which are released by exosomes [120]. Intracellular
communication has also recently been considered as a factor [121]. Extracellular vesicles
from cardiac-derived adherent proliferating (CardAP) cells enhance angiogenesis in human
umbilical vein endothelial cells (HUVECs) [122]. Angiogenesis can also play a role in
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recovery from myocardial infarction through the supplementation of oxygen and nutrients
to the infarcted area.

Macrophages are classified as M1 or M2; M1 macrophages are inflammatory, whereas
M2 macrophages are anti-inflammatory in nature. Exosomes from ESCs reduce the in-
flammation caused by doxorubicin (DOX)-induced cardiotoxicity, which can lead to heart
failure [123] and an increase in M2 macrophages. DOX is an effective antineoplastic agent
with adverse cardiotoxic effects. Macrophages secrete exosomes containing miR-155, which
promote inflammation during cardiac injury [124]. Wang et al. found that miR-155 in
cardiac fibroblasts was derived from exosomes secreted by macrophages [124]. In con-
trast, exosomes derived from M1-like macrophages are often secreted after myocardial
infarction and promote cardiac dysfunction. Regenerative medicines that inhibit M1-like
macrophages or enhance M2-like macrophages can be developed as potential treatments.
Taken together, macrophages can function as key regulators, receiving signals from ex-
osomes or cytokines secreted by myogenic or non-myogenic cells (Figure 2). Therefore,
macrophages are likely to be receiving increased attention in regenerative medicine.
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Figure 2. Summary of the current review. Stem cells can differentiate into cardiomyocytes (Left).
Stem cells can release cytokines, microRNAs, and exosomes. Exosomes also contain cytokines
and microRNAs (Middle). Resident macrophages can contact stem cells in close proximity to
cardiomyocytes and induce their differentiation into cardiomyocytes (Right). Resident macrophages
and monocyte-derived macrophages are affected by exosomes secreted by surrounding cells and can
affect the surrounding cells positively (M2-like, +) or negatively (M1-like, −) (Right).

5. Conclusions

Cardiomyocytes differentiated from iPSCs are immature. Efforts have been made to
obtain mature cardiomyocytes from iPSCs by using cell surface markers and/or metabolic
differences between iPSCs and cardiomyocytes. In vitro disease models with more complex
structures can be developed using a circulating system to nurse the cells. Somatic stem cells
are inferior to iPSCs in terms of their differentiation capability; however, recent studies
have shown that exosomes and microvesicles may be used for cardiomyocyte regeneration.
Exosomes contain microRNAs and cytokines that regulate cardiomyocytes and other cell
types that are involved in the regeneration and/or healing of injured tissues. Exosomes
can also be used as diagnostic markers because their characteristics are similar to those
of the tissues they originate from. Utilizing computational 3D models can help change
parameters more easily and contribute to the development of more complex systems in
the future. Methods for isolating cardiac stem cells have evolved; however, they are still
under discussion. Recent studies have suggested that resident macrophages can trigger
cell regeneration. As macrophages express chemokine receptors, chemokines are also
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important in the regulation of macrophages. Exosomes are used for cell-cell communication
in macrophages and the surrounding cells. Therefore, macrophages may play a key role in
regenerative medicine in the future.
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