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Background: Diagnosis of skin diseases is often challenging and computer-aided

diagnostic tools are urgently needed to underpin decision making.

Objective: To develop a convolutional neural network model to classify clinically relevant

selected multiple-lesion skin diseases, this in accordance to the STARD guidelines.

Methods: This was an image-based retrospective study using multi-task learning for

binary classification. A VGG-16 model was trained on 16,543 non-standardized images.

Image data was distributed in training set (80%), validation set (10%), and test set (10%).

All images were collected from a clinical database of a Danish population attending

one dermatological department. Included was patients categorized with ICD-10 codes

related to acne, rosacea, psoriasis, eczema, and cutaneous t-cell lymphoma.

Results: Acne was distinguished from rosacea with a sensitivity of 85.42% CI

72.24–93.93% and a specificity of 89.53% CI 83.97–93.68%, cutaneous t-cell

lymphoma was distinguished from eczema with a sensitivity of 74.29%CI 67.82–80.05%

and a specificity of 84.09% CI 80.83–86.99%, and psoriasis from eczema with a

sensitivity of 81.79% CI 78.51–84.76% and a specificity of 73.57% CI 69.76–77.13%.

All results were based on the test set.

Conclusion: The performance rates reported were equal or superior to those reported

for general practitioners with dermatological training, indicating that computer-aided

diagnostic models based on convolutional neural network may potentially be employed

for diagnosing multiple-lesion skin diseases.

Keywords: deep neural network (DNN), dermatology, skin disease, acne, rosacea, psoriasis, cutaneous T cell

lymphoma (CTCL), ezcema

INTRODUCTION

Skin diseases rank fourth among non-fatal diseases with respect to global burden (1) and are,
estimated to account for 12–20% of general practitioner (GP) consultations (2, 3). With more than
1,500 different dermatological diagnoses (4), differential diagnosing can be very challenging. GP
diagnostic accuracy in dermatological disease has been estimated to fall in the 48–77% range (5).
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For GP’s distinguishing between the two morphologically similar
and common papulo-pustular skin diseases of acne and rosacea,
and between the two common scaly erythematous diseases of
psoriasis and eczema can be a challenge. Furthermore, cutaneous
t-cell lymphoma (CTCL) is a rare malignant disease of the skin
that is often difficult to distinguish from eczematous disease,
even for trained dermatologists (6). Low diagnostic accuracy in
primary healthcare combined with reports of a growing shortage
of dermatologists in rural parts of the US (7) carry a risk of
untimely treatment and triaging.

Computer-aided diagnostic (CAD) models based on
convolutional neural network (CNN) have been developed with
promising results for distinguishing what is typically single-
lesion skin diseases, such as malignant melanoma, squamous cell
carcinoma, or nail dystrophies (8–11). CAD models developed
for these diseases are often trained by standardized imagery
such as dermatoscopic images (8). Reports on CAD models
for multiple-lesion skin diseases are few and have shown
more moderate performance rates (8). A Google-associated
research team published results on a combined image and text
classifier for dermatology (12). This model achieved a 67–75%
sensitivity in diagnosing multiple-lesion skin disease (including
acne, eczema, and psoriasis). Recently Wu et al. did show
an impressive 95% overall diagnostic accuracy in classifying
atopic dermatitis, eczema and psoriasis on selected image
material (13). Studies comparing the accuracy of CAD models to
clinicians are generally based on image classification equivalent
to retrospective analysis, though some head to head studies
were conducted with prospective collected image material
(12, 14, 15).

Machine learning models, broadly characterized as CNNs,
have proven their merits in image classification (16). A
CNN is a layered statistical model using two-dimensional
convolutions, element-wise non-linearities, and local pooling
operations in the convolutional layers. The input to a
convolutional layer is a representation of the data from the
previous layer. The first layer is the original color image
of size “height times width times three” (for the three-
color channels). The produced data representations are called
feature maps. These maps should ideally capture some property
of the original data relevant for the classification. After a
number of convolutional layers, the final feature maps are
collapsed into a vector that is fed into a number of fully
connected layers. The final output layer uses a so-called
softmax function to calculate the model’s estimation of the
class probabilities.

Open source CNN models are available both for training
from scratch and for transfer learning (modifying parts of
an extant model for a new task). These models are often
tested on the ImageNet dataset of more than 1 million labeled

Abbreviations: AUH, Aarhus University Hospital; AUC, Area under the curve;

CAD, Computer aided diagnostic; CNN, Convolutional neural network; CTCL,

Cutaneous t-cell lymphoma; GP, General practitioner; ILSVRC, ImageNet Large

Scale Visual Recognition Challenge; ICD-10, International Classification of

Diseases, 10th Version; NPV, Negative predictive value; PPV, Positive predictive

value; STN, Spatial transmitter network; VGG, Visual Geometry Group.

TABLE 1 | Data distribution in disease category.

Disease Included Excluded Patients included

images images in final dataset

Psoriasis 6,545 1,052 790

Eczema/atopic dermatitis 5,350 977 870

CTCL 2,461 380 157

Acne 581 155 131

Rosacea 1,606 534 394

Total 16,543 3,098 2,342

Data and patient distribution in disease categories after data cleansing, for details on data

cleansing see Supplementary Table 1.

high-resolution images, in the yearly ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). The VGG-16 model is based
on the architecture developed by the Oxfords Visual Geometry
Group (VGG) (17) and achieved top performance in the
ILSVRC 2014.

The primary aim of this feasibility study was to investigate a
diagnostic tool to assist primarily GPs in distinguishing between
patients with common and rare multiple-lesion skin diseases that
often have a similar clinical presentation, this in accordance to
the STARD guidelines for reporting on diagnostic accuracy (18).
We aimed to achieve a differential diagnostic accuracy equal
to or above the 48–77% reported for GPs (5, 19). We focused
on five multiple-lesion skin diseases and on non-standardized
imagery to accommodate the paucity in the scientific literature
(8), and—more importantly—to imitate the real-life clinical
settings of primary healthcare professionals, where multiple-
lesion dermatological diseases are often encountered and access
to a dermatoscope is limited (20, 21).

MATERIALS AND METHODS

Dataset
A total of 19,641 images were provided from the local skin
image database of the Department of Dermatology, Aarhus
University Hospital (AUH), Denmark. The images were collected
from 2,342 patients of a Danish population and therefore
comprise mainly images of patients with Fitzpatrick skin type
II and III, see Table 1 for the disease distribution of the
image data and patients. The database was designed for clinical
reference such as disease monitoring and plenum discussion,
and therefore certain non-skin images were included. Non-
skin images were mainly yellow patient identification slips
and skin sensitizers related to contact eczema. The data set
was cleansed by a simple CNN model trained on 200 skin
and 200 non-skin images. This model was tested on 150
images of both skin and non-skin images and removed all
non-skin images from the test set with an accuracy of 99%.
The architecture is shown in Supplementary Figure 1. After
cleansing, 16,453 only-skin images were included for further
investigation. A sampling counting 208 random images from
the data set showed that 3.7% of the images represented
healthy skin. No further effort was made to remove healthy
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FIGURE 1 | Flowchart of data. *For details on data cleansing, please see the Supplementary Figure 1.

skin images from the data. All images were non-standardized
photographs, in different resolutions, shot by a clinical
photographer using a blue background or by a healthcare
worker or by the patients themselves, the latter two with
random background.

All images were diagnosed by trained dermatologists from the
AUH according to the International Classification of Diseases,
10th Version (ICD-10). For the ICD-10 codes included in
each disease category, see the Supplementary Table 1. CTCL
diagnosis were histologically verified.

In the final data set, 80% of the data were used for training of
the CNN, 10% were used as a validation set, and 10% were saved
as a test set. For patients with multiple images, all images were
placed either in the training, validation or test set. So the same
patient will not have images used for both training and testing.
The flow of data is shown in Figure 1.

Data Augmentation
Data augmentation of the training data set was applied randomly
on each of the images to duplicate the samples by randomly either
zooming in or out, flipping vertically or horizontally, rotating,
or shifting.

Ethics
This study was conducted in concordance with the European
General Data Protection Regulation. All relevant governmental
bodies were notified of the study and usages of the
image database.

The study was approved by the data controller of the clinical
image database according to §10 of the Danish privacy act.

The Regional Ethics Committee of the Central Denmark
Region (case no. 177/2018) deemed the study as not being a
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FIGURE 2 | Main architecture of the VGG-16 models. (A) VGG-16 model with frozen and pre-trained layers, i.e., VGG-16P and VGG-16PS. (B) VGG-16 architecture

with no frozen layers and no pre-trained layers, i.e. VGG-16N and VGG-16NS. (C) Localization network with two convolutional layers, as applied for VGG-16PS and

VGG-16NS.

health care project, and authorized the project to proceed without
their approval.

The Danish Patient Safety Authority (case no. 31-1521-68)
authorized the usage of the clinical image database without
patient consent.

Finally, the study was registered in the Regional Research
Study Registry of Central Denmark Region under the Danish
Data Protection Agency (case no. 1-16-02-373-19).

Pre-processing
Cropping of noise, i.e., clothes, background and jewelry, in the
pictures was done by K-means clustering using the pixel hue
values. Using K = 2 clusters, each image was segmented into a
skin cluster and a non-skin cluster (22). An image-dependent
ratio was used with lower bound of 0.1 and upper bound of
0.3 to avoid under and over cropping, respectively. Examples of
image cropping can be found in Supplementary Figure 2. All
models were tested on original, cropped, and balanced versions
of the data.

Tasks
Four binary CNN models were trained using data from all of the
five diseases, afterwards model tests were conducted focusing on
three separate binary tasks of all four binary models. This method
is known as multi-task learning.

Task 1: classification of psoriasis vs. eczema; task 2:
classification of acne vs. rosacea; and task 3: classification
of CTCL (mainly images of mycosis fungoides, see
Supplementary Table 1 of ICD-10 code distribution) vs. eczema.

The primary outcome was the sensitivity and the specificity
of the best model in the binary classification task. The secondary
outcome was to define the best model by the area under the curve
(AUC) and accuracy.

CNN Models
As a base model we choose VGG-16 with pre-trained parameters
from the ILSVRC data set and no spatial transformer network
(STN) (VGG-16P) (23). The fully connected layers and softmax
layers were removed and replaced by new randomly initialized,
fully connected layers and sigmoid layers, see Figure 2A. The pre-
trained convolutional layers of the VGG-16 model were frozen.

To test if an even better performance could be achieved by
training all the parameters from scratch, we also tested the VGG-
16 with no pre-trained parameters and no STN (VGG-16N); see
the architecture in Figure 2B.

To test if addition of a STN would increase the VGG-16
classification performance by assisting the VGG-16 in selecting
the region of interest in an image (24), we developed two models
similar to the two models described above, but added a STN;
VGG-16 with pre-trained parameters and a STN (VGG-16PS)
and VGG-16 with no pre-trained parameters and a STN (VGG-
16NS).

Initial tests showed that the implementation of a STN was
better with a localization network with two convolutional layers
(Figure 2C).

See Supplementary Table 2 “hyperparameters and hardware
details” for more on this matter.

Data Presentation
In accordance with guidelines for developing and reporting
machine learning models in biomedical research, we present
our data as AUC, sensitivity, specificity, negative predictive
value (NPV), and positive predictive value (PPV) (25). Unlike
in medical science, PPV and NPV are not statistical analyses
based on the incidence of a certain disease but an internal
statistical analysis of the predicted negative or positive value
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TABLE 2 | Results of best model; VGG-16P.

Task Specificity Sensitivity PPV NPV

Psoriasis from Eczema 73.57% (69.76–77.13%) 81.79% (78.51–84.76%) 76.79% (74.18–79.22%) 79.07% (76.03–81.81%)

Acne from Rosacea 89.53% (83.97–93.68%) 85.42% (72.24–93.93%) 69.49% (59.16–78.17%) 95.65% (91.72–97.76%)

CTCL from Eczema 84.09% (80.83–86.99%) 74.29% (67.82–80.05%) 63.16% (58.28–67.78%) 89.90% (87.59–91.83%)

Result of best model, VGG-16P. The 4 parameters shown are the results in distinguishing psoriasis from eczema, acne from rosacea and CTCL from eczema. The 95% confidence

interval is in parenthesis. All results are based on cropped images of the test set.

TABLE 3 | Performance of all VGG-16 modifications.

AUC Accuracy

Task 1; Psoriasis vs. Eczema

VGG-16P 86.07% (83.96–88.18%) 77.82% (75.35–80.15%)

VGG-16N 81.74% (79.34–84.14%) 73.70% (71.10–76.18%)

VGG-16PS 83.47% (81.18–85.76%) 74.87% (72.31–77.32%)

VGG-16NS 81.88% (79.49–84.27%) 73.11% (70.49–75.61%)

Task 2; Acne vs. Rosacea

VGG-16P 89.89% (81.98–94.80%) 88.64% (83.68–92.51%)

VGG-16N 88.70% (82.36–95.04%) 86.82% (81.62–90.99%)

VGG-16PS 92.74% (87.54–97.94%) 88.18% (83.16–92.13%)

VGG-16NS 92.03% (86.60–97.46%) 87.73% (82.65–91.75%)

Task 3; CTCL vs. Eczema

VGG-16P 88.39% (85.30–91.48%) 81.46% (78.55–84.12%)

VGG-16N 85.55% (82.16–88.94%) 78.90% (75.87–81.71%)

VGG-16PS 86.64% (83.36–89.92%) 78.77% (75.74–81.59%)

VGG-16NS 85.42% (82.02–88.82%) 77.37% (74.27–80.25%)

Results in AUC and accuracy for all model in all three tasks, best results are highlighted.

The 95% confidence interval is in parenthesis. All results are based on cropped images of

the test set.

which are truly negative or positive, as used in computer
science. As is common practice, we also included results in
accuracy to reduce complexity in interpreting our findings.
All results are presented with a 95% confidence interval
in the tables.

RESULTS

Primary Outcome
Results on sensitivity, specificity, NPV, and PPV are presented
only for the best model; VGG-16P,. VGG-16P identified acne
and rosacea with almost equal success as demonstrated by a
specificity and sensitivity of 89.53 and 85.42%, respectively, see
Table 2. VGG-16P was successful in distinguishing CTCL from
eczema with a low rate of false positives (specificity 84.09%),
but it proved more difficult to recognize eczema as seen by
VGG-16P reaching a sensitivity rate of 74.29% in CTCL versus
eczema. Distinguishing psoriasis from eczema was the task with
the lowest performance of the VGG-16P. The best outcome
came from identifying eczema, with a sensitivity of 81.79%, but
the outcome for identification of psoriasis was inferior, with a
specificity of 73.57%.

Secondary Outcome
Pre-trained models were superior, as demonstrated by the VGG-
16P outperforming the VGG-16N in all analyses. This was further
demonstrated by the VGG-16PS being superior to the VGG-
16NS with respect to accuracy on all tasks and overall on AUC,
see Table 3.

The VGG-16 architecture without the addition of a
STN was slightly superior, as demonstrated by VGG-16P
outperforming VGG-16PS, and the VGG-16N and VGG-16NS
having similar outcomes.

For all models, the general trend of best performance
was on cropped images in the three defined tasks (see
Supplementary Table 3), why all results presented in Tables 2, 3
are based on cropped images.

DISCUSSION

The present retrospective study is an attempt to develop a CAD
for more generalized skin diseases that may be of significant
help, especially for GPs. The proposed CAD was based on
an extensive dataset of clinical images collected from patients
consulting a single dermatological department in Denmark.
The best performance was obtained by the VGG-16P model
when performing the task of distinguishing acne from rosacea
(sensitivity 85.42 and specificity 89.53%). Notably, this model
distinguished between the diseases on all three tasks with
accuracy above 77%, indicating a clinically relevant accuracy
compared with the reported diagnostic accuracy in dermatology
in general of primary care physicians (48–77%) (5).

Comparing our results to the sensitivity of 67–75% on
common multiple-lesion skin diseases reported for the CAD
of Liu et al. (12), we find that the present binary model
has a potential role in the field of computer-aided diagnostics
for common multiple-lesions skin disease. The CAD model
of Lui et al. was a multinomial classifier, why further testing
of our system in multinomial classification is indicated for
true comparison. Head-to-head comparison of suggested CAD
models for dermatology seems warranted but it is challenging
due to a general lack of online availability (8). To accommodate
this paucity, our classification model can be accessed at: https://
github.com/anjalilje/Classification-of-skin-diseases.

High performance in distinguishing CTCL from eczema may
indicate a yet unidentified usability of CAD tools in diagnosing
rare and malignant multiple-lesion skin diseases.

The published image classifiers for single-lesion skin disease
show a higher accuracy than our model. Notably, two

Frontiers in Medicine | www.frontiersin.org 5 September 2020 | Volume 7 | Article 574329

https://github.com/anjalilje/Classification-of-skin-diseases
https://github.com/anjalilje/Classification-of-skin-diseases
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Thomsen et al. Deep Learning for Skin Disease

studies combined have outperformed hundreds of trained
dermatologists in identifying melanoma in skin images (9, 10).
Accordingly, Esteva et al. achieved an AUC of between 91 and
96%. In comparison, the maximum AUC achieved by our VGG-
16PS in distinguishing acne from rosacea was 92.74%. Our best
model VGG-16P achieved AUCs between 86.07 and 89.89%
for the three defined tasks. The superior performance of CAD
models classifying single-lesion skin disease compared to CAD
models classifying multiple-lesion skin disease indicates that
developing a classification model for generalized dermatology on
non-standardized imagery may prove to be a more complex task.

Overfitting is a risk in the present study for several reasons:
Firstly, acne, rosacea and CTCL were represented only by small
datasets, and balancing the data did enhance the classification
performance on these three skin diseases, thereby confirming
a level of overfitting. Still, the performance enhancement on
balanced datasets was only slightly superior to that of unbalanced
datasets. Secondly, overfitting due to selection bias is a potential
problem of CNN models in dermatology (26). The present
retrospective study may therefore suffer from selection bias.

Wu et al. showed that multi-lesion skin disease can be
classified at the level of single-lesion skin disease, on highly
selected image material (13).

Our study was conducted on a clinical image database, we
argue this to be less prone to selection bias, due to our content
originating from clinical photographers, patients, and clinicians
in non-specific clinical situations.

To which extend the results of this study can be extrapolated
to clinical use, could be further investigated by head to head
testing of the CAD model and trained physicians, like the man
and machine approach from a recent study in single-lesion
skin disease classification (15). But there is a need for designs
of real-time clinical intervention studies for true estimates of
the clinical diagnostic accuracy of CAD models not based on
dermatoscopic images. This paucity of prospective clinical tests
in the development of CADs in dermatology has been criticized
(27, 28). Fourthly, no quantification of unknown biases was
conducted, this represents a limitation, as an example a certain
diseases may be represented by clinical photography to a higher
degree than others. Unknown biases could be tested on an
external dataset. Since no external dataset are available for the
selected disease categories, this further argues for making CAD
models available for online testing.

And finally, the grouping of several ICD-10 codes into
major disease categories may result in overfitting, since some
subtypes of diseases have less similar morphology than others.
Thus, overall, the level of overfitting is considered to be of
minor importance.

One limitation of this study was the contents, which
comprised both healthy skin images and non-skin images. Non-
skin images were cleansed successfully with a 99% accuracy, why
the effect of their inclusion was minute. Healthy skin images were
estimated to comprise 3.7% of thematerial in the sampling, which
may have had a negative effect on the performance outcome.
Hence, the true performance of the models may have been
underestimated. Another limitation is racial bias, as the data
source consisted primarily of Fitzpatrick skin type II-III patients.

Concerns have been raised of racial bias in CAD in dermatology
because databases used formachine learning have historically had
an overrepresentation of Caucasian data (29).

Grouping ICD-10 codes into major disease categories may
not only represent a limitation but could also be considered a
strength in our study. Disease categories increase the amount of
data, thus enhancing the performance of the models. Moreover,
disease categories represent a simpler outcome andmay therefore
be more clinically relevant for a GP, as the primary purpose of
CAD in general dermatology should be to assist correct and early
diagnosing, treatment, and triaging.

ICD-10 coding of the images were considered as high quality
categorization of the images due to two factors. Firstly, the
ICD-10 codes were provided by a physicians employed at the
dermatological department of a University Hospital. Secondly,
all ICD-10 codes related to the only rare disease included, CTCL,
were based on histological verification.

Images used for single-lesion disease classification like
malignant melanoma are often taken by highly standardized
methods (8). However, CNN models like the present one trained
on various types of images with varying quality may perform
better in real-life usage. Most dermatological diseases have a
more generalized skin manifestation than malignant melanoma,
and the sparsity of dermatoscopes in the primary sector is also a
limitation (20).

The results obtained in this study are encouraging. Medical
students, resident doctors, and GPs with little to no training in
the field of dermatology have been shown to perform very poorly
in diagnosing dermatological diseases (19) and may benefit from
a CAD model performing to the present level.

Furthermore, our findings support that in the future of
all dermatological diagnostics, man and machine together
will very likely be superior to man alone as seen for CAD
models developed for single-lesion skin disease (15). Even
so, implementing CAD models in dermatology should be
accommodated by thorough prospective clinical testing to
ensure true estimates, thus ensuring patient safety, efficacy,
and effectiveness.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because the datasets consist of clinical images of patients with
skin disease, which cannot be shared in accordance to the
European General Data Protection Regulation. The skin disease
classification algorithm is available only at https://github.com/
anjalilje/Classification-of-skin-diseases.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Regional Ethics Committee of Central Denmark
Region. Written informed consent from the participants’ legal
guardian/next of kin was not required to participate in this
study in accordance with the national legislation and the
institutional requirements.

Frontiers in Medicine | www.frontiersin.org 6 September 2020 | Volume 7 | Article 574329

https://github.com/anjalilje/Classification-of-skin-diseases
https://github.com/anjalilje/Classification-of-skin-diseases
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Thomsen et al. Deep Learning for Skin Disease

AUTHOR CONTRIBUTIONS

KT: main contributor to all aspects of the manuscript. AC:
software developer, significant contributor to the methods and
results sections of the manuscript, and designer of figures
of software architecture. LI: main supervisor in the clinical
aspects of the manuscript and significant contributions to the
introduction and discussion. HL: co-supervisor in the clinical
aspects of the manuscript, large contributions especially to the

introduction, discussion and to table content. OW: supervisor of
software development and significant contributor to all aspects of
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2020.574329/full#supplementary-material

REFERENCES

1. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ,

et al. The global burden of skin disease in 2010: an analysis of the prevalence

and impact of skin conditions. J Invest Dermatol. (2014) 134:1527–34.

doi: 10.1038/jid.2013.446

2. Julian CG. Dermatology in general practice. Br J Dermatol. (1999) 141:518–20.

doi: 10.1046/j.1365-2133.1999.03048.x

3. Verhoeven EW, Kraaimaat FW, vanWeel C, van de Kerkhof PC, Duller P, van

der Valk PG, et al. Skin diseases in family medicine: prevalence and health care

use. Ann FamMed. (2008) 6:349–54. doi: 10.1370/afm.861

4. DermNet NZ. (2019). Available online at: http://www.dermnetnz.org/.

(Accessed February 16, 2019).

5. Federman DG, Kirsner RS. The abilities of primary care physicians

in dermatology: implications for quality of care. Am J Manag Care.

(2017) 3:1487–92.

6. Barrett M, LuuM. Differential diagnosis of atopic dermatitis. Immunol Allergy

Clin North Am. (2017) 37:11–34. doi: 10.1016/j.iac.2016.08.009

7. Feng H, Berk-Krauss J, Feng PW, Stein JA. Comparison of dermatologist

density between urban and rural counties in the United States. JAMA

Dermatol. (2018) 154:1265–71. doi: 10.1001/jamadermatol.2018.3022

8. Thomsen K, Iversen L, Titlestad TL,Winther O. Systematic review of machine

learning for diagnosis and prognosis in dermatology. J Dermatol Treat. (2019)

doi: 10.1080/09546634.2019.1682500

9. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al.

Deep learning outperformed 136 of 157 dermatologists in a head-to-

head dermoscopic melanoma image classification task. Eur J Cancer.

(2019) 113:47–54. doi: 10.1016/j.ejca.2019.04.001

10. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.

Dermatologist-level classification of skin cancer with deep neural networks.

Nature. (2017) 542:115–8. doi: 10.1038/nature21056

11. Han SS, Park GH, Lim W, Kim MS, Na JI, Park I, et al. Deep neural networks

show an equivalent and often superior performance to dermatologists in

onychomycosis diagnosis: Automatic construction of onychomycosis datasets

by region-based convolutional deep neural network. PLoS ONE. (2018)

13:e0191493. doi: 10.1371/journal.pone.0191493

12. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system

for differential diagnosis of skin diseases. EESS. (2019) arXiv:1909.05382.

doi: 10.1038/s41591-020-0842-3

13. WuH, Yin H, ChenH, SunM, Liu X, Yu Y„ et al. A deep learning, image based

approach for automated diagnosis for inflammatory skin diseases. Ann Transl

Med. (2020) 8:581. doi: 10.21037/atm.2020.04.39

14. Kim YJ, Han SS, Yang HJ, Chang SE. Prospective, comparative evaluation of

a deep neural network and dermoscopy in the diagnosis of onychomycosis.

PLoS ONE. (2020) 15:e0234334. doi: 10.1371/journal.pone.0234334

15. Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et al.

Human-computer collaboration for skin cancer recognition. Nat Med. (2020)

26:1229–34. doi: 10.1038/s41591-020-0942-0

16. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with

deep convolutional neural networks. Adv Neural Inform Process Syst.

(2012) 1:1097–105. doi: 10.1145/3065386

17. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. ICLR. (2014) arXiv. arXiv:1409.556.

18. Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft

L, et al. STARD 2015 guidelines for reporting diagnostic accuracy

studies: explanation and elaboration. BMJ open. (2016) 6:e012799.

doi: 10.1136/bmjopen-2016-012799

19. Solomon BA, Collins R, Silverberg NB, Glass AT. Quality of care: issue

or oversight in health care reform? J Am Acad Dermatol. (1996) 34:601–7.

doi: 10.1016/S0190-9622(96)80058-2

20. Fee JA, McGrady FP, Rosendahl C, Hart ND. Dermoscopy use in

primary care: a scoping review. Dermatol Pract Concept. (2019) 9:98–104.

doi: 10.5826/dpc.0902a04

21. Wilmer EN, Gustafson CJ, Ahn CS, Davis SA, Feldman SR, Huang WW.

Most common dermatologic conditions encountered by dermatologists and

nondermatologists. Cutis. (2014) 94:285–92.

22. Bishop CM. Pattern Recognition and Machine Learning. New York, NY:

Springer-Verlag. (2006).

23. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet

large scale visual recognition challange. Int J Comput Vis. (2015) 115:211–52.

doi: 10.1007/s11263-015-0816-y

24. Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K, editors.

Spatial Transformer Networks. NIPS (2015). 2015:arXiv:1506.

02025.

25. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, et al. Guidelines for

developing and reporting machine learning predictive models in biomedical

research: a multidisciplinary view. J Med Internet Res. (2016) 18:e323.

doi: 10.2196/jmir.5870

26. Dick V, Sinz C, Mittlbock M, Kittler H, Tschandl P. Accuracy of computer-

aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol. (2019)

155:1291–99. doi: 10.1001/jamadermatol.2019.1375

27. Wise J. Skin cancer: smartphone diagnostic apps may offer false

reassurance, warn dermatologists. BMJ. (2018) 362:k2999. doi: 10.1136/

bmj.k2999

28. Esteva A, Topol E. Can skin cancer diagnosis be transformed by

AI? The Lancet. (2019) 394:16–22. doi: 10.1016/S0140-6736(19)

32726-6

29. Adamson AS, Smith A. Machine learning and health care

disparities in dermatology. JAMA Dermatol. (2018) 154:1247–8.

doi: 10.1001/jamadermatol.2018.2348

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Thomsen, Christensen, Iversen, Lomholt and Winther. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 7 September 2020 | Volume 7 | Article 574329

https://www.frontiersin.org/articles/10.3389/fmed.2020.574329/full#supplementary-material
https://doi.org/10.1038/jid.2013.446
https://doi.org/10.1046/j.1365-2133.1999.03048.x
https://doi.org/10.1370/afm.861
http://www.dermnetnz.org/
https://doi.org/10.1016/j.iac.2016.08.009
https://doi.org/10.1001/jamadermatol.2018.3022
https://doi.org/10.1080/09546634.2019.1682500
https://doi.org/10.1016/j.ejca.2019.04.001
https://doi.org/10.1038/nature21056
https://doi.org/10.1371/journal.pone.0191493
https://doi.org/10.1038/s41591-020-0842-3
https://doi.org/10.21037/atm.2020.04.39
https://doi.org/10.1371/journal.pone.0234334
https://doi.org/10.1038/s41591-020-0942-0
https://doi.org/10.1145/3065386
https://doi.org/10.1136/bmjopen-2016-012799
https://doi.org/10.1016/S0190-9622(96)80058-2
https://doi.org/10.5826/dpc.0902a04
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.2196/jmir.5870
https://doi.org/10.1001/jamadermatol.2019.1375
https://doi.org/10.1136/bmj.k2999
https://doi.org/10.1016/S0140-6736(19)32726-6
https://doi.org/10.1001/jamadermatol.2018.2348
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Deep Learning for Diagnostic Binary Classification of Multiple-Lesion Skin Diseases
	Introduction
	Materials and Methods
	Dataset
	Data Augmentation
	Ethics
	Pre-processing
	Tasks
	CNN Models
	Data Presentation

	Results
	Primary Outcome
	Secondary Outcome

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References


