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Humans and robots operating in unstructured environments both need to classify objects
through haptic exploration and use them in various tasks, but currently they differ greatly in
their strategies for acquiring such capabilities. This review explores nascent technologies
that promise more convergence. A novel form of artificial intelligence classifies objects
according to sensory percepts during active exploration and decides on efficient
sequences of exploratory actions to identify objects. Representing objects according
to the collective experience of manipulating them provides a substrate for discovering
causality and affordances. Such concepts that generalize beyond explicit training
experiences are an important aspect of human intelligence that has eluded robots. For
robots to acquire such knowledge, they will need an extended period of active exploration
and manipulation similar to that employed by infants. The efficacy, efficiency and safety of
such behaviors depends on achieving smooth transitions between movements that
change quickly from exploratory to executive to reflexive. Animals achieve such
smoothness by using a hierarchical control scheme that is fundamentally different from
those of conventional robotics. The lowest level of that hierarchy, the spinal cord, starts to
self-organize during spontaneous movements in the fetus. This allows its connectivity to
reflect the mechanics of the musculoskeletal plant, a bio-inspired process that could be
used to adapt spinal-like middleware for robots. Implementation of these extended and
essential stages of fetal and infant development is impractical, however, for mechatronic
hardware that does not heal and replace itself like biological tissues. Instead such
development can now be accomplished in silico and then cloned into physical robots,
a strategy that could transcend human performance.
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1 DEFINING INTELLIGENCE

The term “artificial intelligence” (AI) implies a definition and criteria for what constitutes intelligent
behavior. Alan Turing’s “imitation game” (Turing, 1950) was an attempt to objectivize a debate that
was already well underway at the dawn of electronic computing, which Turing concisely critiqued.
Most of Turing’s predictions about the capabilities of computing machines have been met or greatly
exceeded, including playing complex strategy games such as chess and go, recognizing written and
spoken language, and identifying objects in complex visual scenes.

Most of the AI successes mentioned above were obtained by abandoning the design of symbolic
reasoning algorithms to solve specific problems in favor of imitating, at least in part, the associative
learning rules used by biological neurons (Hebb, 1949). That strategy started only a few years later
with the Perceptron (Rosenblatt, 1958) but lagged behind until its much greater demands on
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computing power could be fulfilled (Hinton, 2012). At least for
those who eschew mind-body dualism, there is no fundamental
reason why a sufficiently large and accurate simulation of the
human nervous system could not be as intelligent as a human
being. And yet most participants and observers of AI have the
nagging feeling that its current shortcomings are not just
quantitative but also qualitative.

Rather than evaluating intelligent machines by what they can
do, it may be more fruitful to consider how they fail. We are
familiar with and expect to accommodate human failings, but AI
failings appear to be qualitatively different. The problem is most
easily appreciated by so-called “adversarial attacks” on deep-
learning neural networks (NNs), which will confidently identify
previously seen objects when confronted with carefully designed
but apparently nonsensical visual patterns (Goodfellow et al.,

FIGURE 1 | (A) Shadow Robot
®
hand equipped with BioTac

®
sensors.

(B) Training example of human hammering a nail. (C)Macaque demonstrating
the affordance of using a rock as a hammer. (D) Infant learning how to explore
and categorize objects.

FIGURE 2 | Bio-Inspired theory of computation for haptic performance
whereby a sensorimotor plant is used to explore, identify, classify and use
various entities in the external world. Exploratory and manipulative actions are
coordinated and regulated by programmable middleware in subcortical
motor pathways that self-organize starting during fetal development (spinal
cord and deep cerebellar nuclei in vertebrates; see Figures 5, 6). Blocks
outlined in green represent cortical executive for those actions, which uses
stored neural representations of external entities consisting of learned
associations between exploratory actions performed on and sensory
percepts obtained with such entities (see Figure 3). During an exploratory or
manipulative action, the cortical controller compares the actual sensory
signals to those expected if the entity is the currently most probable one based
on previous experience. If no agreement can be obtained with any previously
experienced and stored representation, the sensory data are admitted to the
cortex and saved as part of the representation of a new category of entity.
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2014). These errors are nothing like the many optical illusions to
which humans are prone (Coren and Girgus, 2020). Language
translation has become quite good at dealing with declarative
sentences but makes egregious mistakes when contextual
judgment is required (Läubli et al., 2020). Similar but less
well-understood failures occur when industrial robots interact
with objects in circumstances that differ only slightly from those
for which they have been well-trained.

The various, different examples of failure above have in common
a lack of understanding of the fundamental nature and relationships
of the things that the machine is identifying or manipulating.
Learning to classify objects according to arbitrary properties that
tend to recur in those classes provides no information about why
those properties are (or are not) important to the class, why they
occur together or how their combination results in the emergent
properties of the object (recently discussed in The Economist, “AI for
vehicles—is it smarter than a 7-month old?” 4, September. 2021, pp.
65–66, and IEEE Spectrum, “Why Is AI So Dumb?” October. 2021,
pp. 24–62.) From where does such understanding come, if not in
lengthy training on increasingly large datasets?

2 INTELLIGENT SENSORIMOTOR
SYSTEMS

This review compares and contrasts the various sensorimotor
systems illustrated in Figure 1, all of which are capable of or
aspire to intelligent behavior. It focuses on the creative haptic
behavior captured by the psychological concept of “affordance”
(Gibson, 1977). Objects in our environment are important not
because we have learned their names (declarative memory) but
because they can be used to accomplish tasks. We can imagine
what task an object affords even when we have not previously
used the object for this purpose and when the manner in which
the object must then be used may be different from procedural
memory based on prior training on the task. Affordance and the
related concept of causation presumably depend on both
declarative and procedural memory but they require insights
that must be computable from the structure of such memories.

This review proposes a system architecture (Figure 2) that
could self-organize through experience to recognize and utilize
affordances similarly to a human, the gold standard for intelligent
behavior. It is based on an internal representation of objects as the
experienced associations of actions with percepts (next section).
Developing such a representational system from scratch as an
infant appears to require millions of exploratory movements,
which an infant learns to make in a graceful and efficient manner
using self-organizing coordination circuitry in the spinal cord
(Section 7). This lengthy process is akin to system identification
and is probably impractical to fulfill with mechatronic robots but
could be met with software simulations of them.

3 INTELLIGENT EXPLORATION

Understanding rather than simply observing the world may
emerge through the processes of “interactive perception,”

recently reviewed by (Bohg et al., 2017). The history of active
perception in computer vision was recently reviewed by (Bajcsy
et al., 2018). The robotic challenges are usually presented from the
perspective of locating and identifying a given, desired object in a
cluttered scene or quantifying a particular property of a given
object (e.g., weight or hardness) or environment (e.g.,
traversability) (Jie et al., 2010). By contrast, interactive
perception in animals is necessary for animals to discover the
existence and behavior of objects in a world about which they
initially know nothing, as in kittens learning to navigate based on
their visual experience (Held and Hein, 1963). The real physical
world and an agent’s interactions with it have many properties
that are incompatible with currently available machine-learning
algorithms (Roy et al., 2021).

Tactile sensory information cannot even be obtained, much
less interpreted usefully, without interaction between fingers and
objects, both for humans (Katz, 1925; Klatzky and Lederman,
2003) and for robots employing artificial tactile sensors (Wettels
et al., 2013). But this begs the questions of how do humans and
how should machines decide which interactions to generate when
exploring an unknown object to identify it. Mathematically
inverting Bayes’ theorem (Bayes and Price, 1763) allows
computation of which possible exploratory action and
observation will be most useful next (Fishel and Loeb, 2012),
given the current probabilities that resulted from the preceding
observations (Bayesian priors). Briefly, for each possible next
exploratory action, the Bayesian prior probabilities are used to
weight the confusion matrix of sensory signals resulting from
such previous exploration of all possible objects. The exploratory
action with the lowest weighted sum of its matrix is the optimal
next action to perform.

The above algorithm for Bayesian exploration was used to
build a machine that could identify objects according to their
textures. It was extraordinarily accurate and efficient and eerily
humanlike in its deliberations (Fishel and Loeb, 2012). It was
tested initially on 117 flat, homogeneous materials explored by
three stroking movements (different velocities and forces) and
observed on three perceptual axes, resulting in nine dimensions.
Repetitive measures had a standard deviation of ~3%–5%,
resulting in at least 10 distinguishable levels on each axis
(illustrated graphically in Figure 3). Any reasonably complete
neural network training set for such a hyperspace would have
required millions of samples, but the iterative strategy of Bayesian
exploration appears to overcome this “curse of dimensionality”
(Bellman, 1957). It achieved 95% accuracy with a median of five
exploratory movements of unknown samples from the training
set. A commercial version of this machine (Toccare® from
SynTouch Inc.) expanded characterization to five stroking and
poking actions that quantified 15 perceptual dimensions
including various aspects of texture, friction, mechanical
deformation and thermal flux. After characterizing 500
materials (a very sparse representation of a very large
hyperspace), it achieved 98% identification accuracy with a
median of three exploratory movements (Fishel, 2017). Unlike
purely perceptual challenges such as visual object identification,
cost of search (time, energy and risk of damage) in physically
embodied systems cannot be ignored. We value human experts
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not just because they are accurate but also because they are
efficient.

High dimensionality and sparseness of experience are
advantageous for the Bayesian exploration strategy. If
confronted with a novel object not previously characterized,
Bayesian exploration will identify the closest previously
experienced object and the probability of a match, which if
below acceptable could be used to trigger the creation of a
new internal representation for the novel object (Loeb and
Fishel, 2014). This creative step is essential to develop from
scratch an internal representation and classification of
whatever objects happen to have been experienced, but it
remains to be implemented and tested algorithmically.

An infant makes tens of millions of trial exploratory
movements as it learns how to achieve desirable outcomes
with its limbs and their interactions with objects (Piek, 2006).
Neural networks tend to self-organize around recurring patterns
by increasing synaptic strength among signals that tend to be
frequently associated (Hebb, 1949). If those experiences include
both the motor commands and the resulting sensory information,
the internal representations will associate the similar experiences
that arise from interacting with the available objects (Loeb and
Fishel, 2014). Such clusters of experiences presumably provide
the basis for the abstractions that we eventually associate with
learned, categorical words such as “rocks” and “hammers”
(Figure 3). Biologically realistic neural networks can function
as an associative memory (Baum et al., 1988; Gerstner, 1990;
Lansner, 2009; He et al., 2019) and can compute Bayesian
probability (Mcclelland, 2013).

When we encounter objects that are insufficiently similar to
the categories that we have already formed, an executive function
must evaluate the degree of mismatch and then decide to treat
those experiences as a separate cluster reflecting a newly

discriminable entity. This is the function of the “Comparative
Gate” element in Figure 2, which compares the actual sensory
data obtained during an exploratory action with the memory of
the comparable sensory data associated with the entity that is
currently the most probable Bayesian prior. If they agree, the real
sensory data can be discarded and the brain can proceed to
another action. If they disagree and no other previously
experienced entity is consistent with the cumulative actions
and perceptions, the real sensory data should be stored as part
of the internal representation of a new entity. One candidate for
the comparative gate component would be the thalamocortical
loop (Halassa and Sherman, 2019). The system architecture also
requires motivational and integrative components not illustrated
so that the tolerable level of uncertainty about an entity’s identity
can be adjusted to avoid acting precipitously in unfamiliar and
potentially dangerous situations (Roy et al., 2021). These might
reasonably be performed by the biological basal ganglia
projections to thalamus, for which computational neural
network models are starting to be developed (Hazy et al., 2007).

4 DISCOVERING CAUSALITY

The process of recalling a previously experienced object based on
active exploration is more than a simple association of
remembered actions and percepts. The linkages in Figure 3
are causal as well as associational. The ability to interact with
objects sets the brain on the course of abstracting principles that
might underlie such interactions rather than storing simple
memories of the interactions themselves. As noted in the
introduction, the many perceptual illusions to which humans
are prone are completely unlike the failings of AI. They suggest
that humans do not compare newly received sensory data to a

FIGURE 3 | The internal representation of entities in the brain are percepts consisting of sensory experience during selectedmotor actions. These tend to cluster for
entities that we come to see as similar (e.g., rocks in cluster (A) and are distinct in at least some dimensions for entities that are different (e.g., hammers in cluster (B).
Given such an associative memory, it is possible to see whether a given percept will likely discriminate between currently probable alternatives for an entity’s identity, as
well as to look up the motor action that gives rise to a desired pattern of sensory feedback when manipulating an identified entity. Adapted from (Loeb and Fishel,
2014).
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bank of remembered sensory data. Instead they abstract
experiences into presumed causal mechanisms that then allow
them to reconstruct expected sensory data and compare it to
newly received sensory data. Over time, such causal abstraction
gets deeper and better at reconstructing what appear to be
memories but are actually illusions. If the illusions are similar
enough to newly received sensory data, we dismiss the differences
and accept as fact the conjured illusion. The causal abstraction
need not make any physical sense; it simply needs regenerative
power. The nonsensical tricks that people are taught to improve
their memory for arbitrary lists and names are an example of this
(Bower, 1970).

One long-known failing of artificial neural networks is
“catastrophic forgetting” of previously recognized entities after
synaptic weights are modified to represent more recently
experienced entities (French, 1999). Biological organisms
achieve “lifelong learning” by a variety of mechanisms, some
of which have been applied in AI (Kudithipudi et al., 2022).
Learning principles of causation instead of memorizing
experiences may avoid the problem in the first place. The
incoming sensory data would be compared to the predicted
data and discarded if sufficiently congruent, avoiding any
plastic drift of the neural network. Neuromorphic algorithms
to achieve this have yet to be developed, however.

How many principles of causation we discover and the
categories of entities that we create depend on the entire
experiential history of individuals. How we might treat
borderline objects that don’t behave according to existing
categories depends on the perceived value of drawing fine vs.
coarse distinctions, which also differs among individuals based on
experience and perhaps underlying personality differences. As a
result, one person’s internal representations of objects are likely to
be different from another’s even if they have all learned to use the
same words for those representations. Humans differ in their
abilities to recognize causation and anticipate outcomes,
depending on the richness of their experiences exploring and

manipulating objects. Programming or teaching robots without
such active experiences is likely to lead to types of failures that
humans generally avoid. Ugur et al. (2015) demonstrated the
utility of prior simple but active experience with objects when
humans were asked to train a robot to perform a complex
sensorimotor task with those objects.

5 THE EMERGENCE OF AFFORDANCES

The database for the material identification machine was based
on discrete test objects with known identities that were explored
according to algorithmically defined movements and percepts.
An infant, however, must develop all this from scratch (Loeb
et al., 2011). In so doing, the infant develops a much richer
representation of the world than the simple one implied by
declarative memory. It includes the active imagination of what
might happen next, a process that has been identified
neurophysiologically in so-called “mirror neurons” (Loeb and
Fishel, 2014; di Pellegrino et al., 1992; Oztop et al., 2013).

Suppose that we have learned to use a previously categorized
object to perform a task such as using a hammer to drive a nail.
This task involves combinations of some actions that we have
previously taken with the familiar object while excluding others
(Figure 4). This will create new, higher level associations that are
our procedural memory for the entire experience of driving a nail.
If we then find ourselves needing to drive a nail without a
hammer, we can query our associational memory for the class
of objects that produced the most similar percepts for the actions
relevant to driving a nail with a hammer. This would be rocks in
the associational database represented in Figure 3. Then we can
find the association between the specific motor actions that led to
those percepts when using such an object, which would include
the enclosure grip that we have learned for rocks rather than the
power grip suitable for hammers. We have grasped the concept of
affordance.

FIGURE 4 | Suppose that an individual has previous experience exploring various hammers, sticks and rocks and then learns the high-level task of driving a nail that
includes a subset of those exploratory actions while using a hammer (highlighted in yellow). In the absence of a hammer, the previously experienced entities that produce
the most similar sensory activity (+s indicate relative strength) for the relevant actions will be rocks, which afford driving a nail. (Ia = spindle primary afferent; GTO = Golgi
tendon organ; SAII = slowly adapting,skin-stretch receptors; SAI = slowly adapting, normal force receptors; RA = rapidly adapting vibration receptors; P=Pacinian
corpuscles).
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It is worth emphasizing that conventional divisions such as
declarative memory to identify objects and procedural memory
for sequences of action would not enable a human or amachine to
realize affordances. Percepts are useful only in the context of the
actions that caused them; skills consist of sequences of actions
accompanied by percepts that are part of the procedural memory.
Appreciating affordance requires continuously integrating well-
chosen exploratory actions and perception during all tasks.
Affordances are inherently insights into fundamental
properties of objects rather than simple generalizations across
similar perceptual experiences.

An extensive, recent review of the concept of affordance and
its applicability to robotics concluded that it was a promising
approach to improve motor capabilities, especially when
interacting with unfamiliar objects (Jamone et al., 2018).
Procedures and algorithms to acquire such information
autonomously, however, are still limited to specific properties
of individual objects (e.g., graspability, liftability, pourability)
rather than the ability to generalize and innovate that is
associated with biological affordance. Various algorithms have
been proposed to program robots with knowledge of affordances
associated with objects, but the autonomous discovery of such
relationships through exploration and experience that enables
human dexterity remains without an overarching theory of
computation or a practical platform to implement it in robots.

6 ACTIVELY INTELLIGENT ROBOTIC
SYSTEMS

There is no fundamental reason why artificial intelligence could
not operate a sufficiently dexterous and sensitive robot to achieve
the same knowledge and anticipation of the world and the
recognition of affordances that are achieved by young children
and macaque monkeys. There are, however, substantial technical
challenges which, if overcome, might offer substantial
enhancements over human performance (Table 1).

6.1 Multimodal Sensors
Unlike robotics engineers, Mother Nature puts more emphasis on
the sensory signals coming from limbs than the motor commands
going to them. During normal use, the data rate from all
proprioceptors is 10–50 times greater than for the command
signals to the muscles in which they reside. Most limb muscles
have about the same numbers of each of spindle primary and
secondary afferents and Golgi tendon organs as they do motor
units (~100–500), but all the sensors tend to be active at rates of

50–150 pulses per second whereas most tasks require fewer than
half the motor units firing at 10–30 pulses per second. The
thousands of specialized cutaneous receptors in the glabrous
skin of a primate hand provide even more sensory
information when manipulating objects. Mechatronic
transducers can be made quite small and low-powered using
application-specific integrated circuits (ASIC) and
microelectromechanical systems (MEMS) technologies (Newell
and Duffy, 2019) but providing power and data links through
wire harnesses and connectors rapidly becomes impractical in a
complexly moving limb. If this problem were overcome via
bidirectional telemetry and energy harvesting (Guo et al.,
2017), robotic sensors could have a substantial advantage over
biology in signal-to-noise ratio, bandwidth and latency of sensory
transmissions. In contrast to engineered sensors, biological
mechanoreceptors tend to have limited, nonlinear dynamic
range, substantial noise and nonorthogonal modalities. Their
numbers compensate for their individual limitations but this
complicates extraction of state feedback (Scott and Loeb, 1994).

6.2 Robust Sensors
Large numbers of tiny mechanical sensors distributed in moving
structures that interact forcefully with objects will eventually
become damaged. Mother Nature constantly regenerates such
mechanoreceptors, a trick not available to engineers. Wireless
power and communication would greatly facilitate modular
sensor replacement at service intervals, thus providing an
advantage over organisms that recover slowly and often
incompletely from large or repetitive injuries.

6.3 Experiential Learning
Replicating the tens of millions of exploratory movements of an
infant would take years for a mechatronic robot while wearing it out.
Computer models of robots (Ivaldi et al., 2014) and even their tactile
sensors (Narang et al., 2020) are starting to be accurate and fast
enough to permit learning in virtual environments at hyperspeeds.
Such learning is scaleable so that many robotic controllers can be
trained on different combinations of objects and environments,
including those that may not be available physically such as
unusual gravitational fields. Transfer of learning from simulated
to physical robots is now being applied to the problem of robust and
efficient locomotion (Hwangbo et al., 2019). Some of the challenges
to creating valid virtual training environments for haptics were
discussed by (Bajcsy et al., 2018). This tactic is somewhat analogous
to the transition of perceptual AI fromwriting bespoke algorithms to
training large and deep neural networks, suggesting that it is
important and possible but will not be easy.

TABLE 1 | Comparison of biological and robotic strategies for meeting requirements of intelligent systems.

Requirement Biological Strategy Robotic Challenge Robotic Strategy Robotic Advantage

Multimodal sensors Dispersed Wiring Telemetry BW and SNR
Robust sensors Regenerated Vulnerable Modular Serviceable
Experiential Infancy Wear and Tear Model-based Scaleable
Adaptive Heterogeneity Unpredictable Selection Cloneable
Iterative Graceful Fairing Middleware Speed
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6.4 Adaptive Representations
The internal representation of the world that results from incremental
experience is inevitably idiosyncratic rather than predictable or
standardized. Human societies are organized to distribute various
tasks among individuals to take advantage of their natural
heterogeneity, whereas industrial robots need standards and quality
control. The robotic advantage for scaleable virtual learning can be
further exploited by cloning the best robotic controller that has
emerged from training, including both hardware and software.
Perceptual AI based on genetic algorithms and deep-learning neural
networks is already doing something like this for commercial
applications (Tian et al., 2018). Even if a human’s genes could be
cloned, each cloned individual would still require many years of
training, so the result would still be somewhat heterogeneous.

6.5 Rapid Iteration
What we call human dexterity consists of remarkably rapid and
smooth transitions between actions that are simultaneously
explorative and executive. Robots, by contrast, tend to separate
those activities into discrete movements with sudden starts and

stops. High-level controllers can explicitly compute overall
trajectories that minimize jerk (Valente et al., 2017) but only if
they know the sequence ofmovements in advance. Iterative Bayesian
exploration of objects was successful and efficient for haptic
identification of objects by a robot, but it also took much longer
to execute than a human performing similar exploratory
movements, despite the faster and more controllable motors of
the robot. Humans “fair” their iterative exploratory movements and
extract useful sensory information continuously even during
perturbations, rather than waiting to achieve steady target states
for parameters such as force and velocity.

Blended rather than discrete movements minimize stress on the
mechatronics of the robot and the object being handled. They can also
take better advantage of the natural mechanics of interaction. For
example, humans adjust grip and acceleration in parallel to prevent
slip while minimizing grip force (Johansson and Flanagan, 2009). If a
grasped object starts to slip as it is transported, possible corrective
actions include adjustments to grip force (Veiga et al., 2018) as well as
changes in translational acceleration and orientation with respect to
gravity, all while considering the rate and direction of slip, the fragility

FIGURE 5 | A highly simplified version of the typical spinal circuitry that mediates between commands from the cerebral cortex (bracketed lines indicating excitatory
drive) and two muscles that could be used as either synergists or antagonists (e.g., wrist ulnar extensor and wrist radial extensor). Proprioceptive feedback arises from
Golgi tendon organs (GTO) that sense force and muscle spindles whose sensitivity to length and velocity is independently modulated by the fusimotor gamma static and
gamma dynamic neurons, respectively. The muscle fibers are controlled by alpha motoneurons (α) that provide inhibitory feedback via Renshaw cells (R). Other
inhibitory interneurons are identified as Ia and Ib and excitatory propriospinal neurons (PN). An unknown number of the synapses are subject to presynaptic modulation
(s) from other interneurons not explicitly depicted. Some of this is known to be driven by cutaneous receptors (Rudomin and Schmidt, 1999), suggesting a role in
impedance control (Hogan, 1984) during dexterous manipulation. Adapted from (Raphael et al., 2010).

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 9512937

Loeb Intelligent Robots Grasp Affordance

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


of the object and the availability of intermediate support points near
the current transport path. Those reactive strategies take years of
practice to learn but fractions of a second to execute. They work
because they blend smoothly—they fair—into the ongoing behavior
rather than disrupting it with sudden state changes.

The components of the neuromusculoskeletal system that
enable this fairing are remarkably unlike the corresponding
components of current robots. They include the nonlinear
mechanics of muscles and tendons (Tsianos and Loeb, 2017),
the widespread distribution of cutaneous (Iggo, 1974) and
proprioceptive sensors (Scott and Loeb, 1994; Mileusnic et al.,
2006; Mileusnic and Loeb, 2009), and the convergence of
multimodal feedback and command signals in the sophisticated
interneuronal system of the spinal cord (Figure 5) (Pierrot-
Deseilligny and Burke, 2005; Wolpaw, 2018). This has been
modeled as a centrally programmable, multi-input-multi-output
regulator (Loeb et al., 1990) that enables a wealth of interpolable
programs that achieve graceful and energy efficient behaviors
under normal and perturbed conditions (Raphael et al., 2010;
Tsianos et al., 2011; Tsianos et al., 2014).

7 BIO-INSPIRED DEVELOPMENT OF
CONTROL SYSTEMS

The spinal cord (and presumably other subcortical integrative
centers in midbrain and brainstem) provides a conceptual model

for the robotic middleware that will be needed tomediate between
discrete decision-making in the central controller (analogous to
the mammalian cerebral motor cortex) and smooth execution by
the robotic plant (see Figure 2). Unfortunately, the specific
circuits of the biological spinal cord do not provide a working
model for robotic middleware because the mechanical dynamics
of robots tend to be unlike those of musculoskeletal systems.
Achieving complementarity between a mechanical system and its
controller is the well-known problem of system identification in
engineering but a similar problem must already have been solved
by biological systems. James Baldwin in 1896 pointed out that
sudden changes in an organism’s environment and point
mutations of its body form are the sine qua non of evolution
but surviving them requires immediate behavioral adaptation by
the organism. If the spinal circuitry were predetermined by the
genetic transcriptome during cellular differentiation, a currently
popular hypothesis (Osseward and Pfaff, 2019; Shin et al., 2020),
then a similar problem would arise for the evolution of new
species. The process of evolution itself thus favors organisms
whose nervous systems are not hardwired and whose behavioral
repertoires are learned (Baldwin, 1896; Baldwin, 1897; Partridge,
1982). When and how does all this adaptation and learning
occur?

Experimental data (Petersson et al., 2003; Fagard et al., 2018)
and modeling studies (Marques et al., 2013; Enander et al., 2022a;
Enander et al., 2022b) suggest that details of the spinal
connectivity may self-organize during spontaneous motor

FIGURE 6 | (A) Oropod model with two unidimensional limbs, each with two antagonist muscles. (B) Somatosensory receptors (C-cutaneous, Ib-Golgi tendon
organ, II-spindle secondary, Ia-spindle primary) projecting onto beta motoneurons (βMNs) that have fusimotor collaterals. (C) Spinal neural network with 16 each
excitatory (INe) and inhibitory (INi) interneurons receiving inputs with initially randomized gains from each other and all somatosensory afferents and projecting to all βMNs
with randomized gains; direct inputs from Ia to βMNs; activity pattern generator (APG) of twitches in each muscle with randomized timing, amplitude and duration.
(D) Development of input synaptic weights (color code at bottom) for each neuron type during simulated fetal development. After roughly a days’worth of experience the
initially random synaptic weights reorganize into mature and stable patterns, with only slow and sparse changes in the later stages. Redrawn from (Enander et al., 2022b),
which provides detailed analysis of emergent patterns of connectivity that resemble those shown in Figure 5.
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activity that occurs throughout fetal (Kiehn and Tresch, 2002)
and perinatal development (Piek, 2006; Caligiore et al., 2008). If
biological middleware self-organizes around the mechanics of the
sensorimotor plant in which it finds itself, the same learning
process might be applied to generate suitable middleware for
arbitrary robotic plants (Blumberg et al., 2013). Enander et al.
implemented simple Hebbian learning rules in initially
randomized neural circuits connected to a model of a simplified
musculoskeletal system (Figures 6A–C). Fetal-like randommuscle
twitches resulted in stable connectivity patterns (Figure 6D) that
were similar to classical descriptions of proprioceptive spinal
circuitry, including the homonymous monosynaptic stretch
reflex, reciprocal length feedback, inhibitory force feedback and
convergence of force and length feedback in excitatory premotor
interneurons (Pierrot-Deseilligny and Burke, 2005; Alstermark
et al., 2007). Similar motor babbling has been applied
successfully to account for learned perception of body posture
from physiological models of proprioceptors that project to the
thalamocortical brain (Hagen et al., 2021). Cutaneous circuits are
much less well characterized in animals but are known to be
essential for dexterous manipulation, both to modulate grip forces
and to trigger different phases of tasks (Johansson and Flanagan,
2009). Engineered multimodal tactile sensors are commercially
available (Wettels et al., 2013) but their integration into control
systems remains primitive and ad hoc. Self-organization might
provide a basis for haptically enabled robots.

Biological development consists of many carefully
orchestrated phases of growth and plasticity at various levels
of the neuraxis (Hua and Smith, 2004); self-organizing robots will
probably require something analogous (Weng et al., 2001; Der
and Martius, 2017). Acquisition of a repertoire of motor actions
proceeds in parallel with haptic characterization of self and world.
It probably involves similarly incremental discovery through
trial-and-error exploration (Loeb et al., 2011; Loeb, 2021)
rather than the preprogrammed movements of most robots.
The oft-invoked strategy of “bio-inspiration” for robotic design
needs to be extended from the physical plant to every level of the
control system. The design of those control systems should self-
organize to reflect the dynamics of the plant rather than being
preordained by arbitrary theories of control. Replicating these
extended adaptive processes in robots further mandates the
development of model-based training platforms.

8 CONCLUDING THOUGHTS

Cognitive insights such as affordance appear to require at least
some of the understanding of fundamental relationships that AI

is still lacking.We have speculated, but not yet demonstrated, that
adding a hierarchically abstractive architecture to the
associational neural network for classifying objects according
to causality (Figure 3) could enable the abstract and creative
thought that has been most elusive for AI to date (Loeb and
Fishel, 2014). Such hierarchies are in widespread use in
perceptual neural networks (Hinton, 2012) and they have been
extended to separately trainable modules for perception, policy
and action (Hamalainen et al., 2019). Integrating them into
physically embodied systems to control exploratory actions via
middleware with sensory feedback will be challenging (Roy et al.,
2021) but may be a necessary step toward truly intelligent
machines.

Haptic robots provide an opportunity to update the original
Turing test (Avraham et al., 2012) to reflect what has already been
accomplished in AI and what remains to be done before robots
can function alongside or in lieu of humans in the unstructured
workplaces where humans thrive. Alan Turing aimed his AI
aspirations toward the end of a century that was then at its
midpoint. The next technological challenges outlined above are
daunting but conceptually modest compared to those faced by
electronic computing in 1950, still struggling with vacuum tubes
and relays. Our technological armamentarium is now much
richer and its rate of development much faster. Success in this
endeavor promises intelligent robots that would address
impending demographic crises of manpower in healthcare,
manufacturing, agriculture and transportation. As they say in
Silicon Valley, “Go big or go home.”

AUTHOR CONTRIBUTIONS

GL is solely responsible for the content of this review article.

FUNDING

Some of the research described in this article was supported by
EU H2020 FETOpen project #829186, Predictive Haptic Coding
Devices in Next Generation Interfaces.

ACKNOWLEDGMENTS

The author thanks his many students and collaborators over the
years, particularly Jeremy Fishel at SynTouch Inc., Francisco
Valero-Cuevas at the University of Southern California, and
Henrik Jorntell and Jonas Enander at Lund University.

REFERENCES

Alstermark, B., Isa, T., Pettersson, L.-G., and Sasaki, S. (2007). The C3?C4
Propriospinal System in the Cat and Monkey: a Spinal Pre-motoneuronal
Centre for Voluntary Motor Control. Acta Physiol. 189 (2), 123–140. doi:10.
1111/j.1748-1716.2006.01655.x

Avraham,G.,Nisky, I., Fernandes,H. L.,Acuna,D.E.,Kording,K. P., Loeb,G.E., et al. (2012).
Toward Perceiving Robots as Humans: Three Handshake Models Face the Turing-like
Handshake Test. IEEE Trans. Haptics 5 (3), 196–207. doi:10.1109/toh.2012.16

Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. (2018). Revisiting Active Perception.
Auton. Robot. 42 (2), 177–196. doi:10.1007/s10514-017-9615-3

Baldwin, J. M. (1896). A New Factor in Evolution. Am. Nat. 30 (354), 441–451.
doi:10.1086/276408

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 9512939

Loeb Intelligent Robots Grasp Affordance

https://doi.org/10.1111/j.1748-1716.2006.01655.x
https://doi.org/10.1111/j.1748-1716.2006.01655.x
https://doi.org/10.1109/toh.2012.16
https://doi.org/10.1007/s10514-017-9615-3
https://doi.org/10.1086/276408
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Baldwin, J. M. (1897). Organic Selection. Science 5 (121), 634–636. doi:10.1126/
science.5.121.634

Baum, E. B., Moody, J., and Wilczek, F. (1988). Internal Representations for
Associative Memory. Biol. Cybern. 59 (4-5), 217–228. doi:10.1007/bf00332910

Bayes, M., and Price, M. (1763). By the Late Rev. Mr. Bayes, F. R. S. Communicated
byMr. Price, in a Letter to John Canton, A.M. F. R. S. Philos. Trans. (1683-1775)
53, 370–418. (ArticleType: research-article/Full publication date: 1763/).

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.
Blumberg, M. S., Marques, H. G., and Iida, F. (2013). Twitching in Sensorimotor

Development from Sleeping Rats to Robots. Curr. Biol. 23 (12), R532–R537.
doi:10.1016/j.cub.2013.04.075

Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., et al. (2017).
Interactive Perception: Leveraging Action in Perception and Perception in
Action. IEEE Trans. Robot. 33 (6), 1273–1291. doi:10.1109/tro.2017.2721939

Bower, G. H. (1970). Analysis of a Mnemonic Device: Modern Psychology
Uncovers the Powerful Components of an Ancient System for Improving
Memory. Am. Sci. 58 (5), 496–510.

Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., Baldassarre, G.,
et al. (2008). Using Motor Babbling and Hebb Rules for Modeling the
Development of Reaching with Obstacles and Grasping. Int. Conf. Cognitive
Syst., 22–23.

Coren, S., and Girgus, J. (2020). Seeing Is Deceiving: The Psychology of Visual
Illusions. England, UK: Routledge.

Der, R., and Martius, G. (2017). Self-Organized Behavior Generation for
Musculoskeletal Robots. Front. Neurorobot 11, 8. doi:10.3389/fnbot.2017.00008

di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992).
Understanding Motor Events: A Neurophysiological Study. Exp. Brain Res. 91,
176–180. doi:10.1007/bf00230027

Enander, J. M. D., Jones, A. M., Kirkland, M., Hurless, J., Jörntell, H., and Loeb, G.
E. (2022a). A Model for Self-Organization of Sensorimotor Function: The
Spinal Monosynaptic Loop. J. Neurophysiology 127, 1460–1477. Epub ahead of
print 2022 Mar 09. doi:10.1152/jn.00242.2021

Enander, J. M. D., Loeb, G. E., and Jörntell, H. (2022b). A Model for Self-
Organization of Sensorimotor Function: Spinal Interneuronal Integration.
J. Neurophysiology 127, 1478–1495. Epub ahead of print 2022 Apr 27.
doi:10.1152/jn.00054.2022

Fagard, J., Esseily, R., Jacquey, L., O’Regan, K., and Somogyi, E. (2018). Fetal Origin
of Sensorimotor Behavior. Front. Neurorobot 12, 23. doi:10.3389/fnbot.2018.
00023

Fishel, J. A., and Loeb, G. E. (2012). Bayesian Exploration for Intelligent
Identification of Textures. Front. Neurorobot 6 (4), 4. doi:10.3389/fnbot.
2012.00004

Fishel, J. A. (2017). Personal Communication. Montrose, CA: SynTouch Inc.
French, R. (1999). Catastrophic Forgetting in Connectionist Networks. Trends

Cognitive Sci. 3 (4), 128–135. doi:10.1016/s1364-6613(99)01294-2
Gerstner, W. (1990). Associative Memory in a Network Ofbiological’neurons. Adv.

Neural Inf. Process. Syst. 3.
Gibson, J. J. (1977). The Theory of Affordances. Perceiving, Acting, and Knowing:

Toward an Ecological Psychology. Hillsdale, NJ: Lawrence Erlbaum Associates,
67–82.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and Harnessing
Adversarial Examples. Mach. Learn. 20, 1412. arXiv preprint arXiv:1412.6572.
doi:10.48550/arXiv.1412.6572

Guo, S., Shi, Y., Yang, Y., and Xiao, B. (2017). Energy Efficiency Maximization in
Mobile Wireless Energy Harvesting Sensor Networks. IEEE Trans. Mob.
Comput. 17 (7), 1524–1537. doi:10.1109/TMC.2017.2773067

Hagen, D. A., Marjaninejad, A., Loeb, G. E., and Valero-Cuevas, F. J. (2021).
insideOut: A Bio-Inspired Machine Learning Approach to Estimating Posture
in Robots Driven by Compliant Tendons. Front. Neurorobot 15 (130), 679122.
doi:10.3389/fnbot.2021.679122

Halassa, M. M., and Sherman, S. M. (2019). Thalamocortical Circuit Motifs: A
General Framework. Neuron 103 (5), 762–770. doi:10.1016/j.neuron.2019.
06.005

Hamalainen, A., Arndt, K., Ghadirzadeh, A., and Kyrki, V. (2019). “Affordance
Learning for End-To-End Visuomotor Robot Control,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Affordance Learning for End-to-End Visuomotor Robot Control, 10 Mar
2019. doi:10.1109/iros40897.2019.8968596

Hazy, T. E., Frank, M. J., and O’Reilly, R. C. (2007). Towards an Executive without a
Homunculus: Computational Models of the Prefrontal Cortex/basal Ganglia
System. Phil. Trans. R. Soc. B 362 (1485), 1601–1613. doi:10.1098/rstb.2007.
2055

He, H., Shang, Y., Yang, X., Di, Y., Lin, J., Zhu, Y., et al. (2019). Constructing an
Associative Memory System Using Spiking Neural Network. Front. Neurosci.
13, 650. doi:10.3389/fnins.2019.00650

Hebb, D. O. (1949). The Organization of Behavior. New York: Wiley.
Held, R., and Hein, A. (1963). Movement-produced Stimulation in the

Development of Visually Guided Behavior. J. Comp. physiological Psychol.
56 (5), 872–876. doi:10.1037/h0040546

Hinton, G. E. (2012). “A Practical Guide to Training Restricted Boltzmann
Machines,” in Neural Networks: Tricks of the Trade. Editors G. B. Orr and
Klaus-Robert Müller (New York: Springer), 599–619. doi:10.1007/978-3-642-
35289-8_32

Hogan, N. (1984). An Organising Principle for a Class of Voluntary Movements. J.
Neurosci. 4 (11), 2745–2754.

Hua, J. Y., and Smith, S. J. (2004). Neural Activity and the Dynamics of Central
Nervous System Development. Nat. Neurosci. 7 (4), 327–332. doi:10.1038/
nn1218

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., et al.
(2019). Learning Agile and Dynamic Motor Skills for Legged Robots. Sci. Robot.
4 (26), eaau5872. doi:10.1126/scirobotics.aau5872

Iggo, A. (1974). “Cutaneous Receptors,” in The Peripheral Nervous System. Editor
J. I. Hubbard (New York: Plenum Press), 347–404. doi:10.1007/978-1-4615-
8699-9_14

Ivaldi, S., Peters, J., Padois, V., and Nori, F. (2014). Tools for Simulating
Humanoid Robot Dynamics: A Survey Based on User Feedback in IEEE-RAS
International Conference on Humanoid Robots, Madrid, Spain, 18-20
November 2014 (IEEE), 842–849. doi:10.1109/HUMANOIDS.2014.
7041462

Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., et al.
(2018). Affordances in Psychology, Neuroscience, and Robotics: A Survey. IEEE
Trans. Cogn. Dev. Syst. 10 (1), 4–25. doi:10.1109/tcds.2016.2594134

Jie, S., Moore, J. L., Bobick, A., and Rehg, J. M. (2010). Learning Visual Object
Categories for Robot Affordance Prediction. Int. J. Robotics Res. 29 (2-3),
174–197. doi:10.1177/0278364909356602

Johansson, R. S., and Flanagan, J. R. (2009). Coding and Use of Tactile Signals from
the Fingertips in Object Manipulation Tasks. Nat. Rev. Neurosci. 10, 345–359.
doi:10.1038/nrn2621

Katz, D. (1925). Der aufbau der tastwelt. New York: Springer.
Kiehn, O., and Tresch, M. C. (2002). Gap Junctions and Motor Behavior. Trends

Neurosci. 25 (2), 108–115. doi:10.1016/s0166-2236(02)02038-6
Klatzky, R. L., and Lederman, S. J. (2003). Touch Handbook of Psychology.

Hoboken: John Wiley & Sons. doi:10.1002/0471264385.wei0406
Kudithipudi, D., Aguilar-Simon, M., Babb, J., Bazhenov, M., Blackiston, D.,

Bongard, J., et al. (2022). Biological Underpinnings for Lifelong Learning
Machines. Nat. Mach. Intell. 4 (3), 196–210. doi:10.1038/s42256-022-
00452-0

Lansner, A. (2009). Associative Memory Models: from the Cell-Assembly Theory
to Biophysically Detailed Cortex Simulations. Trends Neurosci. 32 (3), 178–186.
doi:10.1016/j.tins.2008.12.002

Läubli, S., Castilho, S., Neubig, G., Sennrich, R., Shen, Q., Toral, A., et al. (2020). A
Set of Recommendations for Assessing Human–Machine Parity in Language
Translation. J. Artif. Intell. Res. 67, 653. doi:10.48550/arXiv.2004.01694

Loeb, G. E., and Fishel, J. A. (2014). Bayesian Action&perception: Representing the
World in the Brain. Front. Neurosci. 8, 341. doi:10.3389/fnins.2014.00341

Loeb, G. E. (2021). Learning to Use Muscles. J. Hum. Kinet. 76, 9–33. doi:10.2478/
hukin-2020-0084

Loeb, G. E., Levine, W. S., and He, J. (1990). Understanding Sensorimotor
Feedback through Optimal Control. Cold Spring Harb. Symposia
Quantitative Biol. 55, 791–803. doi:10.1101/sqb.1990.055.01.074

Loeb, G. E., Tsianos, G. A., Fishel, J. A., Wettels, N., and Schaal, S. (2011).
Understanding Haptics by Evolving Mechatronic Systems. Prog. Brain Res. 192,
129–144. doi:10.1016/b978-0-444-53355-5.00009-9

Marques, H. G., Imtiaz, F., Iida, F., and Pfeifer, R. (2013). Self-organization of
Reflexive Behavior from Spontaneous Motor Activity. Biol. Cybern. 107 (1),
25–37. doi:10.1007/s00422-012-0521-7

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 95129310

Loeb Intelligent Robots Grasp Affordance

https://doi.org/10.1126/science.5.121.634
https://doi.org/10.1126/science.5.121.634
https://doi.org/10.1007/bf00332910
https://doi.org/10.1016/j.cub.2013.04.075
https://doi.org/10.1109/tro.2017.2721939
https://doi.org/10.3389/fnbot.2017.00008
https://doi.org/10.1007/bf00230027
https://doi.org/10.1152/jn.00242.2021
https://doi.org/10.1152/jn.00054.2022
https://doi.org/10.3389/fnbot.2018.00023
https://doi.org/10.3389/fnbot.2018.00023
https://doi.org/10.3389/fnbot.2012.00004
https://doi.org/10.3389/fnbot.2012.00004
https://doi.org/10.1016/s1364-6613(99)01294-2
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.1109/TMC.2017.2773067
https://doi.org/10.3389/fnbot.2021.679122
https://doi.org/10.1016/j.neuron.2019.06.005
https://doi.org/10.1016/j.neuron.2019.06.005
https://doi.org/10.1109/iros40897.2019.8968596
https://doi.org/10.1098/rstb.2007.2055
https://doi.org/10.1098/rstb.2007.2055
https://doi.org/10.3389/fnins.2019.00650
https://doi.org/10.1037/h0040546
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1007/978-3-642-35289-8_32
https://doi.org/10.1038/nn1218
https://doi.org/10.1038/nn1218
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1007/978-1-4615-8699-9_14
https://doi.org/10.1007/978-1-4615-8699-9_14
https://doi.org/10.1109/HUMANOIDS.2014.7041462
https://doi.org/10.1109/HUMANOIDS.2014.7041462
https://doi.org/10.1109/tcds.2016.2594134
https://doi.org/10.1177/0278364909356602
https://doi.org/10.1038/nrn2621
https://doi.org/10.1016/s0166-2236(02)02038-6
https://doi.org/10.1002/0471264385.wei0406
https://doi.org/10.1038/s42256-022-00452-0
https://doi.org/10.1038/s42256-022-00452-0
https://doi.org/10.1016/j.tins.2008.12.002
https://doi.org/10.48550/arXiv.2004.01694
https://doi.org/10.3389/fnins.2014.00341
https://doi.org/10.2478/hukin-2020-0084
https://doi.org/10.2478/hukin-2020-0084
https://doi.org/10.1101/sqb.1990.055.01.074
https://doi.org/10.1016/b978-0-444-53355-5.00009-9
https://doi.org/10.1007/s00422-012-0521-7
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Mcclelland, J. L. (2013). Integrating Probabilistic Models of Perception and
Interactive Neural Networks: a Historical and Tutorial Review. Front.
Psychol. 4, 503. doi:10.3389/fpsyg.2013.00503

Mileusnic, M. P., Brown, I. E., Lan, N., and Loeb, G. E. (2006). Mathematical
Models of Proprioceptors. I. Control and Transduction in the Muscle Spindle.
J. Neurophysiology 96 (4), 1772–1788. doi:10.1152/jn.00868.2005

Mileusnic, M. P., and Loeb, G. E. (2009). Force Estimation from Ensembles of Golgi
Tendon Organs. J. Neural Eng. 6 (3), 036001. doi:10.1088/1741-2560/6/3/
036001

Narang, Y., Van Wyk, K., Mousavian, A., and Fox, D. (2020). Interpreting and
Predicting Tactile Signals via a Physics-Based and Data-Driven Framework.
Robotics: Science and Systems Foundation.

Newell, D., and Duffy, M. (2019). Review of Power Conversion and Energy
Management for Low-Power, Low-Voltage Energy Harvesting Powered
Wireless Sensors. IEEE Trans. Power Electron. 34 (10), 9794–9805. doi:10.
1109/tpel.2019.2894465

Osseward, P. J., II, and Pfaff, S. L. (2019). Cell Type and Circuit Modules in the
Spinal Cord. Curr. Opin. Neurobiol. 56, 175–184. doi:10.1016/j.conb.2019.
03.003

Oztop, E., Kawato, M., and Arbib, M. A. (2013). Mirror Neurons: Functions,
Mechanisms and Models. Neurosci. Lett. 540, 43–55. doi:10.1016/j.neulet.2012.
10.005

Partridge, L. D. (1982). The Good Enough Calculi of Evolving Control Systems:
Evolution Is Not Engineering. Am. J. Physiology-Regulatory, Integr. Comp.
Physiology 242, R173–R177. doi:10.1152/ajpregu.1982.242.3.r173

Petersson, P., Waldenström, A., Fåhraeus, C., and Schouenborg, J. (2003).
Spontaneous Muscle Twitches during Sleep Guide Spinal Self-Organization.
Nature 424 (6944), 72–75. doi:10.1038/nature01719

Piek, J. P. (2006).HumanMotor Development. Champaign, IL: Human Kinetics 10.
Pierrot-Deseilligny, E., and Burke, D. C. (2005). The Circuitry of the Human Spinal

Cord: Its Role inMotor Control andMovement Disorders. Cambridge University
Press.

Raphael, G., Tsianos, G. A., and Loeb, G. E. (2010). Spinal-Like Regulator
Facilitates Control of a Two-Degree-Of-Freedom Wrist. J. Neurosci. 30 (28),
9431–9444. doi:10.1523/jneurosci.5537-09.2010

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. Psychol. Rev. 65 (6), 386–408. doi:10.
1037/h0042519

Roy, N., Posner, I., Barfoot, T., Beaudoin, P., Bengio, Y., Bohg, J., et al. (2021). From
Machine Learning to Robotics: Challenges and Opportunities for Embodied
Intelligence.Mach. Learn. arXiv preprint arXiv:2110.15245. doi:10.48550/arXiv.
2110.15245

Rudomin, P., and Schmidt, R. F. (1999). Presynaptic Inhibition in the Vertebrate
Spinal Cord Revisited. Exp. Brain Res. 129, 1–37.

Scott, S., and Loeb, G. (1994). The Computation of Position Sense from Spindles in
Mono- and Multiarticular Muscles. J. Neurosci. 14 (12), 7529–7540. doi:10.
1523/jneurosci.14-12-07529.1994

Shin, M. M., Catela, C., and Dasen, J. (2020). Intrinsic Control of Neuronal
Diversity and Synaptic Specificity in a Proprioceptive Circuit. Elife 9. doi:10.
7554/eLife.56374

Tian, H., Pouyanfar, S., Chen, J., Chen, S. C., and Iyengar, S. S. (2018). “Automatic
Convolutional Neural Network Selection for Image Classification Using
Genetic Algorithms,” in IEEE international conference on information reuse
and integration (IRI), Salt Lake City, 06-09 July 2018 (IEEE), 444–451. doi:10.
1109/iri.2018.00071

Tsianos, G. A., Goodner, J., and Loeb, G. E. (2014). Useful Properties of Spinal
Circuits for Learning and Performing Planar Reaches. J. Neural Eng. 11 (5),
056006. doi:10.1088/1741-2560/11/5/056006

Tsianos, G. A., and Loeb, G. E. (2017). Muscle and Limb Mechanics. Compr.
Physiol. 7 (2), 429–462. doi:10.1002/cphy.c160009

Tsianos, G. A., Raphael, G., and Loeb, G. E. (2011). Modeling the Potentiality of
Spinal-like Circuitry for Stabilization of a Planar Arm System. Prog. Brain Res.
194, 203–213. doi:10.1016/b978-0-444-53815-4.00006-6

Turing, A. M. (1950). I.-Computing Machinery and Intelligence. Mind LIX,
433–460. doi:10.1093/mind/lix.236.433

Ugur, E., Nagai, Y., Sahin, E., and Oztop, E. (2015). Staged Development of
Robot Skills: Behavior Formation, Affordance Learning and Imitation with
Motionese. IEEE Trans. Auton. Ment. Dev. 7 (2), 119–139. doi:10.1109/tamd.
2015.2426192

Valente, A., Baraldo, S., and Carpanzano, E. (2017). Smooth Trajectory Generation
for Industrial Robots Performing High Precision Assembly Processes. CIRP
Ann. 66 (1), 17–20. doi:10.1016/j.cirp.2017.04.105

Veiga, F., Peters, J., and Hermans, T. (2018). Grip Stabilization of Novel Objects
Using Slip Prediction. IEEE Trans. Haptics 11 (4), 531–542. doi:10.1109/toh.
2018.2837744

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., et al.
(2001). Autonomous Mental Development by Robots and Animals. Science 291
(5504), 599–600. doi:10.1126/science.291.5504.599

Wettels, N., Fishel, J., and Loeb, G. (2013). “Multimodal Tactile Sensor,” in The
Human Hand as an Inspiration for Robot Hand Development. Editors
R. Balasubramanian and V. Santos (New york: Springer).

Wolpaw, J. R. (2018). The Negotiated EquilibriumModel of Spinal Cord Function.
J. Physiol. 596 (16), 3469–3491. doi:10.1113/jp275532

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Loeb. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 95129311

Loeb Intelligent Robots Grasp Affordance

https://doi.org/10.3389/fpsyg.2013.00503
https://doi.org/10.1152/jn.00868.2005
https://doi.org/10.1088/1741-2560/6/3/036001
https://doi.org/10.1088/1741-2560/6/3/036001
https://doi.org/10.1109/tpel.2019.2894465
https://doi.org/10.1109/tpel.2019.2894465
https://doi.org/10.1016/j.conb.2019.03.003
https://doi.org/10.1016/j.conb.2019.03.003
https://doi.org/10.1016/j.neulet.2012.10.005
https://doi.org/10.1016/j.neulet.2012.10.005
https://doi.org/10.1152/ajpregu.1982.242.3.r173
https://doi.org/10.1038/nature01719
https://doi.org/10.1523/jneurosci.5537-09.2010
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.48550/arXiv.2110.15245
https://doi.org/10.48550/arXiv.2110.15245
https://doi.org/10.1523/jneurosci.14-12-07529.1994
https://doi.org/10.1523/jneurosci.14-12-07529.1994
https://doi.org/10.7554/eLife.56374
https://doi.org/10.7554/eLife.56374
https://doi.org/10.1109/iri.2018.00071
https://doi.org/10.1109/iri.2018.00071
https://doi.org/10.1088/1741-2560/11/5/056006
https://doi.org/10.1002/cphy.c160009
https://doi.org/10.1016/b978-0-444-53815-4.00006-6
https://doi.org/10.1093/mind/lix.236.433
https://doi.org/10.1109/tamd.2015.2426192
https://doi.org/10.1109/tamd.2015.2426192
https://doi.org/10.1016/j.cirp.2017.04.105
https://doi.org/10.1109/toh.2018.2837744
https://doi.org/10.1109/toh.2018.2837744
https://doi.org/10.1126/science.291.5504.599
https://doi.org/10.1113/jp275532
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Developing Intelligent Robots that Grasp Affordance
	1 Defining Intelligence
	2 Intelligent Sensorimotor Systems
	3 Intelligent Exploration
	4 Discovering Causality
	5 The Emergence of Affordances
	6 Actively Intelligent Robotic Systems
	6.1 Multimodal Sensors
	6.2 Robust Sensors
	6.3 Experiential Learning
	6.4 Adaptive Representations
	6.5 Rapid Iteration

	7 Bio-Inspired Development of Control Systems
	8 Concluding Thoughts
	Author Contributions
	Funding
	Acknowledgments
	References


