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ABSTRACT
Due to heterogeneous multifocal nature of prostate cancer (PCa), there 

is currently a lack of biomarkers that stably distinguish it from benign prostatic 
hyperplasia (BPH), predict clinical outcome and guide the choice of optimal treatment. 
In this study RNA-seq analysis was applied to formalin-fixed paraffin-embedded 
(FFPE) tumor and matched normal tissue samples collected from Russian patients with 
PCa and BPH. We identified 3384 genes differentially expressed (DE) (FDR < 0.05) 
between tumor tissue of PCa patients and adjacent normal tissue as well as both 
tissue types from BPH patients. Overexpression of four of the discovered genes 
(ANKRD34B, NEK5, KCNG3, and PTPRT) was validated by RT-qPCR. Furthermore, 
the enrichment analysis of overrepresented microRNA and transcription factor (TF) 
recognition sites within DE genes revealed common regulatory elements of which 13 
microRNAs and 53 TFs were thus linked to PCa for the first time. Moreover, 8 of these 
TFs (FOXJ2, GATA6, NFE2L1, NFIL3, PRRX2, TEF, EBF2 and ZBTB18) were found to be 
differentially expressed in this study making them not only candidate biomarkers of 
prostate cancer but also potential therapeutic targets.

INTRODUCTION

Prostate cancer (PCa) is the most commonly 
diagnosed and third-leading cause of cancer-related 
death among men in developed countries [1]. Such 
highly prevalent malignancy is obviously subjected 
to numerous studies including those aimed at finding 
its specific biomarkers. However nowadays there is 
still a lack of reliable prognostic biomarkers as well 
as the diagnostic ones for consistently distinguishing 
prostate cancer from benign prostatic hyperplasia 
(BPH).

The perspective way of searching for such 
biomarkers is to conduct the analysis of gene expression 
in prostate tissue by means of RNA sequencing 
(RNA-Seq). Unlike microarrays and real-time PCR 
this approach allows the de novo detection of both 

protein coding and non-coding RNAs. The latter is 
of a particular interest in light of growing number of 
studies indicating that non-coding RNAs, antisense 
RNAs and pseudogenes play a significant part in PCa 
development and progression [2–4]. Identification 
of differentially expressed genes encoding these and 
other types of transcripts within the prostate tissue may 
reveal expression signatures associated with clinical 
manifestations of PCa.

The aim of this study was to analyze the expression 
profiles of matched tumor and adjacent normal tissue samples 
obtained from patients with PCa and BPH from Russian 
Federation. We also assessed the effectiveness of RNA-
Seq approach applied to formalin-fixed, paraffin embedded 
(FFPE) tissue samples and evaluated the consistency of the 
results obtained with morphological features of the samples 
and clinical characteristics of the patients.
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RESULTS AND DISCUSSION

Analysis of composition and depth of the 
transcriptional profiles obtained

The first stage of the study included RNA samples 
extracted from thin FFPE sections of prostate tissue 
obtained from 15 patients with PCa and 2 patients with 
BPH. For 15 patients there were matched samples, i.e. RNA 
was isolated from both tumorous tissue and histologically 
unchanged adjacent tissue, resulting in thirty samples total. 
For two patients only “tumor” samples were used (Table 1).

For each RNA sample transcriptome libraries were 
constructed and sequenced using the semiconductor 
sequencing technology. The obtained reads were filtered 
by quality and mapped to human genome version 
hg19. Reads corresponding to ribosomal RNAs did not 
present any interest for further analysis and therefore 
were excluded. Among other reads mapped to annotated 
sequences of the genome were the ones originated from 
protein-coding transcripts, long non-coding RNAs, small 
nucleolar RNAs, antisense RNAs, pseudogenes and other 
types of non-coding transcripts (Table 2). On average 
the transcripts of ~18000 genes were detected for each 
sample.  According to EMBL-EBI Expression Atlas 
[5], the number of genes whose transcripts are found in 
prostate tissue varies from 11000 to 18000 based on the 
results of The FANTOM5 project» [6] and «GTEx» [7]. 
Thus the RNA-Seq analysis of RNA samples isolated 
from thin paraffin sections of prostate tissue provided the 
expression profiles reflecting the substantial part of the 
transcriptional activity of this tissue.

Sample clustering and the final sample set 
selection 

In order to assess the uniformity of the sample 
set multidimensional scaling (MDS) was used to cluster 
samples based on their expression profiles (Figure 1). It 
is clear that such clusterization successfully separates 
“tumor” samples from “normal” ones, although there 
are still several outliers not fitting in the whole picture. 
Corresponding thin FFPE sections were subjected to the 
second pathomorphological study. The greatest difference 
from other samples appears to be exhibited by expression 
profile of the sample CN5 obtained from “normal’ tissue 
of the patient with PCa. The second histological analysis 
revealed that the significant part of the “normal” prostate 
tissue on the FFPE section was taken up by the seminal 
vesicle, RNA-composition of which could naturally be 
found completely different. Samples CN5/CP5 were 
excluded from further analysis.

Next sample that draws attention is CP6 from tumor 
tissue clustered with “normal” samples. Its FFPE section 
turned out to contain very small fraction of tumor tissue 
compared to histologically unchanged adjacent tissue, 

and consequently during the process of RNA extraction 
from that FFPE section high proportion of “normal” tissue 
could have been taken. The same applies to sample CP7. 
Samples CP6, CP7 and their counterparts were excluded 
from further analysis.

In the case of sample CP10, the secondary 
histological study of the corresponding FFPE-section 
revealed a piece of normal tissue of a significant area 
within the tumor. A similar situation was observed for 
samples CP9/CN9 located on the border of tumor and 
normal groups on Figure 1. Here it is worth quoting the 
conclusion of the second pathomorphological report: 
“Tumor grows infiltratively, i.e. complexes of tumor 
cells not only form isolated bundle but also penetrate 
healthy tissue. As a result, the site initially marked out 
as tumor also included healthy tissue infiltrated by tumor 
complexes. It is impossible to provide a clear distinction 
between tumor and normal areas for this section”. In both 
described cases the presence of complicated sites resulted 
in the incorrect marking of the sections, which in turn 
prevented from obtaining strictly tumorous and normal 
RNA pools. Samples CN9/CP9 and CN10/CP10 were 
excluded from further analysis. 

The situation was different for sample BP3, obtained 
from patient with BPH according to accompanying 
documents. However, unlike other “adenomatous” samples 
(BN1, BP1, BP2), expression profile of BP3 resembles 
those of “tumor” samples.  As a result of thorough 
inspection an error was found in patient’s documents and 
the diagnosis was in fact PCa. Interestingly, it was not 
possible to discover this mistake at any previous stage of 
the research and only the comparison of the expression 
profiles pointed out the similarity of BP3 to “tumor” 
samples. This sample was not excluded from analysis but 
was added to tumor comparison group.

Thus, the obtained transcriptional profiles reflect 
the specific features of the samples and patients’ clinical 
characteristics, which is essential when searching for 
biomarkers capable of distinguishing different phenotypes. 
These results confirm the need to examine the sample 
groups for internal homogeneity since the outliers may 
distort the picture and lower the quality of the research. 
The results obtained also demonstrate high efficiency of 
clusterization based on the expression profiles to identify 
samples not suitable for further analysis.

Differential expression analysis 

After removing the outliers identified above the final 
sampling consisted of 22 samples divided into control 
and tumor groups (Table 1). Because of the current lack 
of biomarkers for differential diagnostics of PCa and 
BPH, the control group of the study aimed at identifying 
potential markers of PCa should include samples obtained 
from patients with BPH [8]. For this reason, the control 
group in this investigation contained 12 samples, 9 
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of which corresponded to histologically unchanged 
adjacent to tumor tissue of patients with PCa (BN3, 
CN1, CN3, CN8, CN11, CN12, CN13, CN14, CN15), 1 
– to histologically unchanged adjacent to tumor tissue of 
patients with BPH (BN1), and 2 – to hyperplastic tissue of 
patients with BPH (BP1, BP2). Tumor group comprised 
10 samples of tumorous tissue of patients with PCa (BP3, 
CP1, CP2, CP3, CP8, CP11, CP12, CP13, CP14, CP15). 
Based on the sequencing data of these 22 samples the 
analysis of differential expression was conducted in order 
to discover potential biomarkers of PCa. The MDS-plot 
reconstructed only for these samples (Figure 2) shows 
clear separation of the comparison groups. Moreover, it 

is worth noticing that the control group splits into two 
clusters: one of them contains samples from BPH patients 
and the other one – from PCa patients.

The differential expression (DE) analysis resulted 
in the identification of 3384 genes (Supplemtary 
Table 1), whose expression differed between specified 
comparison groups with the statistical significance level 
set at FDR < 0.05. These genes are diverse in the types of 
transcripts they encode (Table 3). Interestingly, 371 (11%) 
of them correspond to non-coding transcripts, confirming 
the significant role these RNAs play in carcinogenesis 
[9, 10]. Furthermore, a high portion (2,7%) of DE small 
nucleolar RNAs is also worth noting with most of them 

Table 1: Clinical characteristics of the patients
Patient 

ID Diagnosis Age at 
operation

PSA, ng/
ml

Gleason score Sample ID
Final set

Sum Primary Secondary Pathology Normal
A50_002 BPH 67 1.5 -  - - BP1 BN1 ν
A50_004 BPH 68 9.6 -  -  - BP2 - ν
A50_006 PCa 64 17 7 4  3 BP3 BN3 ν
P50_001 PCa 60 10 7 3 4 CP1 CN1 ν
P50_002 PCa 55 8.6 7 4 3 CP2  - ν
P50_004 PCa 55 19 8 4 4 CP3 CN3 ν
P50_007 PCa 59 5 6 3 3 CP5 CN5
P50_008 PCa 69 15 5 3 2 CP6 CN6
P50_009 PCa 57 16.6 9 4 5 CP7 CN7
P50_010 PCa 69 5.3 7 3 4 CP8 CN8 ν
P50_011 PCa 67 5.6 7 4 3 CP9 CN9
P50_013 PCa 56 15 7 4 3 CP10 CN10
P50_015 PCa 48 7.8 6 3 3 CP11 CN11 ν
P50_016 PCa 67 6.6 5 3 2 CP12 CN12 ν
P50_019 PCa 73 3.9 7 4 3 CP13 CN13 ν
P50_020 PCa 50 12 7 3 4 CP14 CN14 ν
P50_022 PCa 67 6.1 6 3 3 CP15 CN15 ν

Samples that were included in the final sample set for differential expression analysis are marked.
Table 2: Composition of transcriptional profiles

Fraction of genes 
(range), %

Fraction of genes 
(mean), %

Fraction of reads 
(range), %

Fraction of reads 
(mean), %

Protein-coding transcripts 73–84 76 51–85 65
Long non-coding RNAs 3–6 5 5–9 6
Small nucleolar RNAs 1–2 1 1–11 6
Small nuclear RNAs 1–2 2 1–12 7

Antisence RNAs 2–5 4 2–5 3
Pseudogenes 4–7 6 0.3–0.7 0.5

Other transcripts 4–7 5 5–22 12
Fraction of genes encoding a particular transcript of all detected genes for each sample and fraction of reads mapped to such 
genes of all reads were calculated. Corresponding range and mean values are indicated.
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being upregulated in tumor tissue. These results validate 
the involvement of this gene type in the process of PCa 
progression, which had been recently proposed [11,12].

The list of DE genes identified in this study included 
many already known biomarkers of PCa, according to the 
literature. First of all, prostate cancer antigen 3 (PCA3) – 
long non-coding RNA, associated with PCa for the first 
time by its high expression level in tumorous tissue [13], – 
were also significantly overexpressed in “tumor” samples 
in this study (logFC = 4.6, FDR = 1.3e-12). Today PCA3 
is being introduced into clinical practice as diagnostic 
marker of PCa detectable in urine, characterized by low 
false-negative rate and higher specificity than prostate 
specific antigen (PSA) [14]. It is worth noting that KLK3 
gene, encoding PSA protein, did not appear on the list of 

statistically significant DE genes, which agrees well with 
its low specificity with respect to BPH [15]. Differential 
expression of other known candidate biomarkers was 
detected in this study, including alpha-methylacyl-CoA 
racemase (AMACR) – mitochondrial beta-oxidase 
[16], – and genes HOXC6, TDRD1 and DLX, that form 
recently suggested three-gene panel, developed for early 
diagnostics of aggressive PCa (Gleason score 7 and higher) 
based on detection of these genes’ RNA in urine and 
measuring the level of serum PSA [17]. One more gene 
Ankyrin Repeat Domain 34B (ANKRD34B or DP58) less 
known as PCa biomarker but shown to be differentially 
expressed in prostate tumor/normal tissue comparison 
[18] was also found to be significantly overexpressed in 
tumor tissue in this study. Observed differential expression 

Figure 1: MDS-plot of all sequenced samples. The distance between the dots represents the similarity of corresponding samples’ 
transcriptional profiles.

Figure 2: MDS-plot of the final sample set. The distance between the dots represents the similarity of corresponding samples’ 
transcriptional profiles.
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of these genes proves their value as PCa biomarkers and 
reflects the quality of the conducted research.

Besides already known candidate markers we 
managed to detect changes in mRNA levels of genes 
whose disrupted expression had not been previously 
associated with prostate cancer. Three of these genes 
are NEK5, KCNG3, and PTPRT. Expression pattern of 
the first one, NIMA related kinase 5 (NEK5), is poorly 
characterized at the moment. It belongs to the family of 
NEK kinases and is known to participate in cell cycle 
progression [19] and, as has recently been shown, in the 
regulation of mitochondrial mediated cell death [20]. 
The next two genes: KCNG36, encoding the subunit of 
potassium voltage-gated channel, and PTPRT, encoding 
tyrosine phosphatase, had not been associated with PCa 
previously. However, they had been linked to other 
malignant neoplasms in the context of corresponding CpG 
hypermethylation [21, 22]. 

Comparison to TCGA data 

Next, the list of DE genes obtained for samples 
from Russian Federation was compared to the results 
of analysis of a wider sample set. As such, The Cancer 
Genome Atlas (TCGA) [23] data was used, specifically the 
results of RNA sequencing of 90 matched prostate tissue 
samples of 45 patients with PCa. Raw sequencing data 
was downloaded and analyzed using the same pipeline as 
Russian set. Evaluation of the TCGA sampling uniformity 
by MDS revealed several outliers, specifically 7 samples 
which corresponded to normal tissue. Since there were 
no possibility to conduct the second pathomorphological 
analysis of original tissues, we performed the differential 
expression analysis between these 7 samples and 
other TCGA samples derived from normal tissue. The 
transcriptional profiles of these 7 samples were found to 
match those of seminal vesicles rather than prostate tissue. 
The same case has been described above for Russian set. 
This problem might be common when working with 
tissues from patients with PCa, which supports once more 
the need to examine the uniformity of sample groups. 

These 7 samples and their matched ones were excluded 
from the further analysis which reduced the number of 
samples to 76 (38 in each comparison group).

The differential expression analysis led to discovery 
of 8491 DE genes (FDR < 0.05), 2631 of which were 
found to be common for TCGA and Russian Federation 
data obtained in this study (Supplementary Table 2). 
Moreover, the expression of 2615 of these 2631 common 
genes changed in the same direction in both sample sets 
(Figure 3A), and Pearson correlation of the corresponding 
logFC (log2(expression fold change)) values was r = 0.92. 
Such coalignment and high correlation of expression 
levels of these genes in two independent groups of samples 
obtained from patients with PCa confirm the validity of the 
hypothesis of these genes’ possible association with this 
disease. 

Furthermore, the number of genes with particular 
logFC were compared between these sample sets 
(Figure 3B). Despite the fact that the number of all DE 
genes for TCGA data (8491) greatly exceeds that for 
Russian Federation sampling (3384), most of them have 
|logFC| < 1, meaning that the expression of these genes 
changed by less than a factor of 2. Conversely, the number 
of genes with |logFC| > 1 and |logFC| > 2 is higher for 
the sample set obtained in this study (Figure 3C). This 
effect might be explained by different sizes of sample sets 
(76 samples in TCGA and 22 in Russian data). The type 
of starting material is worth taking into account as well:  
whereas thin paraffin sections were used in this study, the 
TCGA data were obtained using samples of frozen tissue, 
the material more challenging for pathomorphological 
assessment especially in the case of such multifocal cancer 
as PCa.

Thus, the results of differential expression analysis 
conducted in this study are in high concordance with the 
data independently obtained for the wider sample set. 
Moreover, dealing with a small but uniform sample set 
with carefully selected samples allows to discover more 
genes with significant expression change during PCa, 
which is the key stage in searching for potential RNA-
markers.

Table 3: Number of differentially expressed genes encoding different types of transcripts
DE genes % Upregulated % Downregulated %

Protein-coding transcripts 3013 89 1246 36.8 1767 5.2
Long non-coding RNAs 91 2.7 53 1.6 38 1.1
Small nucleolar RNAs 92 2.7 77 2.3 15 0.4
Small nuclear RNAs 1 0.03 1 0.03 0 0

Antisence RNAs 52 1.5 27 0.8 25 0.7
Pseudogenes 51 1.5 30 0.9 21 0.6

Other transcripts 84 2.5 56 1.7 28 0.8
Total 3384 100 1490 44 1894 56

Corresponding numbers for upregulated and downregulated in tumor tissue genes are indicated.
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Validation of RNA-Seq results

Results obtained in this study by RNA-Seq were 
verified by RT-qPCR on a wider sample set, which 
contained 12 samples from the original sequenced set and 
23 new samples. Overall validation was performed on 35 
samples (Supplementary Table 3) from 17 patients with 
PCa and 3 patients with BPH. As in the case of differential 
expression analysis, the control group included samples 
from histologically unchanged adjacent to tumor tissue of 
patients with PCa and all of the samples from BPH patients.

One of the main criteria of the search for potential 
RNA-markers is their ease of detection by a clinically 
available method like RT-qPCR. For this reason, only 
genes upregulated in tumor tissue with significant 
expression change of logFC > 3 were considered when 
choosing candidate biomarkers. The level of statistical 
significance was also selected to be stricter (FDR < 0.01). 
Finally, despite discovering several non-coding RNAs 
which meet all these criteria and are of interest for further 
research, only protein-coding transcripts having long 
introns were taken into consideration in order to facilitate 
cDNA analysis by RT-qPCR. As a result of such gradual 
reduction of the DE gene list, 4 genes were chosen for 
validation by real-time PCR: ANKRD34B, NEK5, 
KCNG3, and PTPRT. Overexpression of the last three of 
them in tumor prostate tissue was demonstrated in this 
study for the first time. 

The results of RNA-Seq showed expression of the first 
gene ANKRD34B in tumorous prostate tissue (9/10 samples) 
and nearly no expression in control group (2/12 samples). 
These results were validated by qPCR: the expression 
was not detected in 22 of 23 normal samples, whereas it 
was observed in 8 of 12 tumor samples. The subsequent 

application of the Fisher’s exact test indicated the level of 
statistical significance of these results to be p = 2.0e-04. 

Expression of the other three genes on RNA level 
was detected by RT-qPCR in both comparison groups. In 
concordance with RNA-Seq results, it was found to be 
higher in tumor samples (Figure 4). The corresponding 
deltaCt values were compared with the application of 
non-parametric Wilcoxon test which showed the levels of 
statistical significance to be pNEK5 = 5.7е-03, pKCNG3 = 5.3e-
05 and pPTPRT = 3.0е-04.

Additionally, it is worth noting that according 
to the data from Human Protein Atlas obtained by 
immunohistochemistry [24], protein products of three of 
four investigated here genes ANKRD34B [25], NEK5 [26] 
and PTPRT [27] were elevated in tumor prostate tissue 
compared to histologically unchanged tissue. There was 
no available data for KCNG3.

Thus, overexpression of genes ANKRD34B, NEK5, 
KCNG3 и PTPRT in samples of tumorous prostate tissue 
compared to control can serve as the new easy detectable 
marker of PCa. Further research should be aimed at 
developing diagnostic panels based on these and known 
potential biomarkers mentioned above.

Identification of novel regulatory elements

After obtaining the list of 3384 DE genes it is 
interesting to determine gene subgroups with common 
mechanisms influencing their transcript expression. The 
main elements carrying out such regulation are transcription 
factors (TF) affecting transcription of many genes, and 
microRNAs, capable of regulating mRNA degradation or 
translation. To discover these elements, the obtained list 
of 3384 DE genes was divided into 2 groups: genes with 

Figure 3: Comparison of the results obtained with TCGA data. (A) Scatter-plot showing the direction and value of the expression 
change of every gene differentially expressed both in Russian sample set (logFC_rus) and in TCGA data (logFC_tcga). (B) Number of all 
DE genes in each sample set (dark - Russian, light – TCGA) whose expression change satisfies a certain condition.
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lower expression level in tumor tissue compared to control 
(logFC < 0, 1894 genes) and genes with higher expression 
level (logFC > 0, 1490 genes). Genes without Entrez 
ID were excluded from the analysis since this particular 
identifier is utilized by current databases that store 
information about regulatory relationships between genes. 
As a result, the first group contained 1860 downregulated 
genes and the second one – 1413 upregulated genes. The 
database GSEA [28] was used to search for regulatory 
elements influencing gene expression of these two groups. 
For every known today microRNA and TF, this resource 
allows to download a list of potential targets, that is genes 
having this microRNA’s binding site or the recognition 
motif of TF respectively. Next, these gene lists can be 
compared to the groups of DE genes obtained earlier and 
through the application of appropriate statistical method, 
regulators enriched for these gene groups can be identified. 
In this context, regulators would be enriched for a gene 
group if they have statistically significant high number 
of targets among the genes of this particular group. The 
analysis just described was conducted for two groups of DE 
genes mentioned above.

For the group of downregulated genes (1860) 49 
statistically significant (FDR < 0.05) enriched microRNA 
recognition sites were discovered (Supplementary 
Table 4), 36 of which corresponded to various microRNAs 
that had been linked to PCa earlier, such as miR-29 [29], 
miR-9 [30], miR-96 [31], miR-200 [32] etc. Association 
of 13 others with PCa was demonstrated in this study for 
the first time. These 3′-UTR motifs are recognized by the 
following microRNAs: miR-527, miR-374, miR-520F, 
miR-513, miR-142-5p, miR-507, miR-369-3p, miR-
491, miR-511, miR-489, miR-432, miR-28, miR-520G 
and miR-520H. It is worth noting that every microRNA 
from this set had been associated with other oncological 
diseases including breast [33–36], ovarian [37, 38], 

colorectal cancers [39–41], glioblastoma [42, 43], non-
small cell lung cancer [44, 45] and others.

Moreover, for the group of 1860 downregulated 
genes 340 statistically significant (FDR < 0.05) enriched 
TF binding sites were identified (Supplementary Table 5), 
267 of which corresponded to known TFs and other 73 
have not yet been attributed to any factor at the moment.

Many of the most represented motifs matched to 
recognition sites of serum response factor (SRF). This TF 
mediates signal from androgen receptor (AR) bypassing 
androgen-responsive elements (ARE). Furthermore, based 
on its target genes AR-SRF signature was determined that 
correlated with the presence of aggressive disease and 
poor outcome [46]. Expression of SRF gene, as well as 
that of its targets, was found to be lower in tumor tissue 
compared to control in this study (logFC = −0.8).

Another gene, encoding Myc-associated zinc-finger 
protein (MAZ) which interacts with AR, was also found at 
the top of enriched TF list. Its upregulation in tumor tissue 
in PCa had been discovered earlier and its knockdown 
by siRNA led to inhibition of cell proliferation and cell 
cycle arrest at G0/G1 phase [47]. In this study 353 of 3384 
(10%) DE genes turned out to be its targets, all of them 
downregulated, and the expression of MAZ gene was 
found to be higher in tumor tissue compared to control 
which agrees well with the results of the previous studies. 
The list of enriched TF contained many other factors, 
whose role in PCa development had been demonstrated 
earlier: REPIN1 [48], NFAT [49], TCF3 [50], c-JUN 
[51], PAX4 [52] etc. In addition to these, we managed 
to identify 53 enriched TFs that had not been associated 
with PCa previously. Furthermore, 8 of them turned out 
tot be differentially expressed for the studied sample set: 
six (FOXJ2, GATA6, NFE2L1, NFIL3, PRRX2, TEF) 
downregulated and two (EBF2 and ZBTB18) upregulated 
in tumor tissue compared to control (Table 4). As in the 

Figure 4: Box-plots representing relative expression levels of genes NEK5, KCNG3 and PTPRT obtained by RT-qPCR.
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case with microRNA, these transcription factors had been 
linked to other oncological diseases [53–59]. The fact 
that these factors suppress the expression of a significant 
number of genes in PCa and their own expression levels 
are altered makes them not only candidate biomarkers of 
prostate cancer but also potential therapeutic targets.

Interestingly, whereas the group of downregulated 
genes was highly enriched with TF and microRNA binding 
sites, not a single one of those was found to be enriched 
with an adequate level of statistical significance for the 
group of upregulated genes. Apparently, other mechanisms 
are involved in increasing expression of these genes in 
tumor tissue. 

MATERIALS AND METHODS

Samples

Tissue samples were obtained from 26 patients with 
PCa and 4 patients with BPH from City Clinical Hospital 
No. 50 via radical prostatectomy (PCa) and transurethral 
resection of the prostate (TURP), respectively. All patients 
had not received specific therapy prior to sample collection. 
Information about smoking, kidney function, and 
concomitant drugs is provided in Supplementary Table 6 
of supplementary material. The postoperative material 
was fixed in formalin and embedded in paraffin, the 
corresponding thin sections of FFPE tissue samples were 
examined by the pathologist who determined the areas of 
tumorous and histologically unchanged adjacent tissue.

RNA extraction

AllPrep DNA/RNA FFPE Kit (Qiagen) и RNeasy 
FFPE kit (Qiagen) were used to extract RNA from FFPE 
samples according to manufacturer›s instructions. RNA 
quality was determined using 2100 Bioanalyzer (Agilent 
Genomics). DV200 values for all samples exceeded 
63%. DNA contaminations were removed with the 
use of DNAse I (Fermentas) treatment following the 
manufacturer’s recommendations. RNA concentration 
was determined by fluorometer Qubit 2.0 using Qubit 

RNA HS Assay Kit (Thermo Fisher). Ribosomal RNA 
depletion was performed on 200-1000 ng of total RNA by 
Low Input RiboMinus Eukaryote System v2 (Ambion).

Transcriptome library preparation and 
sequencing

Transcriptome libraries were constructed using 
Ion Total RNA-Seq Kit v2 (Life Technologies) [60] 
with the following modifications of the protocol. For 
RNA fragmentation 1 ul of 10x RNase III buffer (Life 
Technologies) was added to 9 ul of RNA solution and 
heated for 10 min at 95°С followed by immediate snap-
cooling on ice. After that 1 ul of 10 uM ATP and 1 ul of 
polynucleotide kinase (Fermentas) were added to the 
solution from the previous step and the whole mix was 
incubated at 37°С for 30 min. Fragmented RNA was 
cleaned up using Micro Bio-Spin Chromatography 
Columns (Bio-Rad). Further steps of library preparation 
including adapter ligation, first-strand cDNA synthesis 
and amplification were carried out in accordance with 
manufacturer’s instructions. The prepared library was 
purified by magnetic beads Agencourt AMPure XP 
(Beckman Coulter Inc) and its quality was assessed by 
2100 Bioanalyzer (Agilent Genomics) using Agilent High 
Sensitivity DNA Kit (Agilent Genomics). The sequencing 
of constructed transcriptome libraries was performed on 
Ion Proton platform using ION PI HI-Q Sequencing 200 
Kit and Ion PI Chip Kit v2 (Life Technologies) following 
the recommendations of the manufacturer.

Data analysis

The quality of reads was examined with the FastQC 
program [61] and their subsequent filtering and trimming 
were performed by Cutadapt [62]. Reads were then mapped 
to human genome version hg19 using STAR [63]. The 
HTSeq program [64] was used to count the number of reads 
mapped to a particular gene. The “htseq-count” python 
script was used with default parameters recommended 
by its author for most usages to yield a table where each 
gene Ensemble ID (Gencode Release 19 (GRCh37.p13) 

Table 4: Enriched TFs differentially expressed in this study

Gene symbol Full name LogFC Number of downregulated genes, targeted by 
this TF

EBF2 early B-cell factor 2 3.1 53
FOXJ2 forkhead box J2 −0.5 71
GATA6 GATA binding protein 6 −1.7 57
NFIL3 nuclear factor, interleukin 3 regulated −0.8 59
PRRX2 paired related homeobox 2 −1.9 37
NFE2L1 nuclear factor, erythroid 2 like 1 −0.4 74

TEF TEF, PAR bZIP transcription factor −1.1 42
ZBTB18 zinc finger and BTB domain containing 0.6 55
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annotation) corresponded to a number of reads, overlapping 
this genomic feature. Reads corresponding to ribosomal 
RNAs were not included in further analysis. The comparison 
of the expression profiles, construction of the MDS plots 
and identification of differentially expressed genes were 
carried out using Bioconductor package edgeR [65]. Within 
this package the values obtained by HTSeq were normalized 
to library size, generating CPMs (counts per million 
reads). After exploring the data with the built-in MDS-plot 
function, removing outliers and defining the comparison 
groups differential expression analysis was performed 
based on Negative binomial model as explained in detail 
in the package documentation. The corresponding p-values 
were subjected to multiple-testing correction by Benjamini-
Hochberg method [66]. Sequencing data has been deposited 
in the NCBI Gene Expression Omnibus (GEO) database 
under accession number GSE89223. The Cancer Genome 
Atlas (TCGA) data was downloaded as BAM files – results 
of RNA-Seq of 90 matched samples (IDs and clinical 
characteristics are provided in Supplementary Table 7). 
According to metadata of TCGA project, samples were 
derived from patients with primary prostate cancer that  had 
not received any specific therapy.  Based on BAM files raw 
sequencing data in the form of FASTQ files was obtained 
using Picard tools [67]. This, in turn, was subjected to the 
same pipeline as the Russian set using the same program set 
(described above in detail). A custom script was developed 
for discovering enriched binding sites of transcription 
factors and microRNAs. The statistical significance in 
this case was determined based on the hypergeometric 
distribution and multiple testing correction was performed 
by Benjamini-Hochberg method [66].

RT-qPCR

For reverse transcription and qPCR 500 or 1000 ng 
of total RNA were used depending on the available 
quantity. DNA contaminations were removed with the 
use of rDNAse set (Machery-Nagel) following the 
manufacturer’s recommendations. Half of each RNA 

sample was converted to cDNA with High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems) according 
to the manufacturer’s instructions. The other half was 
subjected to the same steps of cDNA conversion except 
for the addition of reverse transcriptase, thus providing 
negative controls for the further qPCR reaction. Real-time 
PCR was performed on CFX96 Touch Real-Time PCR 
Detection System (Bio-Rad) using qPCRmix-HS SYBR 
(Evrogen) following the manufacturer’s recommendations.  
Sequencing data was used to choose the appropriate 
reference gene for qPCR normalization. Firstly, genes 
with low relative coefficients of variation were selected 
(this value can be calculated within the edgeR package). 
Then only the ones with high counts per million reads 
(CPM) value were considered as it indicated their high 
expression level in prostate tissue. Thus, Eukaryotic 
translation initiation factor 4 gamma 2 (EIF4G2) meeting 
all criteria was picked. This reference gene was used to 
normalize qPCR data for all genes under investigation. 
The sequences of primers used in this study are indicated 
in Table 5. For ANKRD34B gene the observed effect 
consisted in the absence of signal in control group samples 
vs. the presence of signal in tumor group, so the statistical 
significance was calculated using Ficher’s exact test. For 
the rest of investigated genes corresponding deltaCt values 
were compared and p-values were derived from applying 
non-parametric Wilcoxon test.

Abbreviations

RNA-Seq: RNA sequencing, PCa: prostate cancer, 
BPH: benign prostatic hyperplasia, FFPE: formalin fixed 
paraffin embedded, MDS: multi-dimentional scaling, DE: 
differentially expressed, TCGA: The Cancer Genome 
Atlas, logFC: log2(Fold change), TF: transcription factor.
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Table 5: Primer sequences used for RT-qPCR
Primer ID Sequence

ANKRD34Bf1 ACCCAAGCTGTCAACTGATCC
ANKRD34Br1 AGTCTTGTGAGGCGAAGCC

NEK5f1 GCCTTCGGGAAAGCATACTTAG
NEK5r1 AGGCTACAATGTTGGGATGTT

KCNG3f1 GGAGCAGGTACTCCGCCG
KCNG3r1 TACGGCGTGATTGCCAGTAA
PTPRTf1 TGGGAGAAACCAATGCTGGA
PTPRTr1 GCAGTGGGTGTCATTCTCCT
EIF4G2f1 ATTGTGGACAAAGCCCTAGAAG
EIF4G2r1 CTGGGCCATCAAAGTTTGGT
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