
ll
OPEN ACCESS
iScience

Article
Horizontal gene transfer drives the evolution of
dependencies in bacteria
Akshit Goyal

akshitg@mit.edu

Highlights
Metabolic dependencies

are widespread across

bacterial genomes

New genes expand

bacterial catabolism via

the process of horizontal

gene transfer

During evolution, efficient

pathways are gained,

whereas redundant

pathways are lost

Gained pathways often

depend on the metabolic

byproducts of the

surrounding community

Goyal, iScience 25, 104312
May 20, 2022 ª 2022 The
Author.

https://doi.org/10.1016/

j.isci.2022.104312

mailto:akshitg@mit.edu
https://doi.org/10.1016/j.isci.2022.104312
https://doi.org/10.1016/j.isci.2022.104312
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104312&domain=pdf


ll
OPEN ACCESS
iScience
Article
Horizontal gene transfer drives
the evolution of dependencies in bacteria

Akshit Goyal1,2,*
1Physics of Living Systems,
Massachusetts Institute of
Technology, Cambridge, MA
02139, USA

2Lead contact

*Correspondence:
akshitg@mit.edu

https://doi.org/10.1016/j.isci.
2022.104312
SUMMARY

Many naturally occurring bacteria lead a lifestyle of metabolic dependency for
crucial resources. We do not understand what factors drive bacteria toward
this lifestyle and how. Here, we systematically show the crucial role of horizontal
gene transfer (HGT) in dependency evolution in bacteria. Across 835 bacterial
species, we map gene gain-loss dynamics on a deep evolutionary tree and assess
the impact of HGT and gene loss on metabolic networks. Our analyses suggest
that HGT-enabled gene gains can affect which genes are later lost. HGT typically
adds new catabolic routes to bacterial metabolic networks, leading to new
metabolic interactions between bacteria. We also find that gaining new routes
can promote the loss of ancestral routes (’’coupled gains and losses’’, CGLs).
Phylogenetic patterns indicate that both dependencies—mediated by CGLs
and those purely by gene loss—are equally likely. Our results highlight HGT as
an important driver of metabolic dependency evolution in bacteria.

INTRODUCTION

Naturally occurring bacteria lead one of two metabolic lifestyles: autonomy or dependency (Ochman and

Moran, 2001; McCutcheon and Moran, 2007, 2012; Luo et al., 2013). Although autonomy reflects complete

self-sufficiency in converting nutrients to biomass, bacteria with dependencies often require crucial metab-

olites from others (D’Onofrio et al., 2010; Davis, 1921; Morris et al., 2008; Suzuki et al., 1988; Watsuji et al.,

2007). These metabolites are secreted by neighboring community members. Because such dependencies

are common in bacterial communities, it is instructive to ask: what processes and factors affect their

evolution; in other words, what drives the switch from metabolic autonomy to dependency?

To answer this question, recent studies have put forth the Black Queen hypothesis, which states that

dependencies evolve through adaptive gene loss (Morris et al., 2012; Mas et al., 2016; Fullmer et al.,

2015). Individuals lose costly, dispensable genes in leaky environments, trading autonomy for better

growth (or fitness). As both experiments and models show, this is feasible—administering the loss of

even a few specific biosynthetic genes in bacteria repeatedly leads to strong metabolic dependencies

(Pande and Kost, 2017; Pande et al., 2014; D’Souza and Kost, 2016; Goyal, 2018). This also explains how en-

dosymbionts undergo severe genome reduction (McCutcheon andMoran, 2012). These bacteria lack many

biosynthetic pathways and instead depend on their hosts for the required biomass components.

However, many extant free-living bacterial species are also metabolically dependent, despite the ‘‘free-

living’’ label (D’Souza et al., 2014; Monk et al., 2013; Goyal and Maslov, 2018; Wang et al., 2019; Enke

et al., 2019). These species do not have merely reduced genomes, i.e., they do not differ from their

ancestors only by gene losses, as expected under the Black Queen hypothesis (Zelezniak et al., 2015; Garcia

et al., 2013; Giovannoni et al., 2014). Over time, they have also gained many genes, primarily by horizontal

gene transfer (HGT) and at times by de novo gene birth (Pál et al., 2005; Vos et al., 2015; Szappanos et al.,

2016; Press et al., 2016; Maslov et al., 2009). For these often-dependent bacteria, we ask: could gene gains

also have contributed to which dependencies we observe today? Specifically, during dependency evolu-

tion, which genes will be gained, and do those gains affect and which genes will later be lost?

Here we explore the role of horizontal gene transfer in the evolution of metabolic dependencies in bacteria.

Specifically, we measure the potential of HGT to drive dependency evolution by affecting the likelihood of

subsequent gene loss events. To do this, we reconstructed the evolutionary history of 835 phylogenetically

diverse, nonendosymbiont bacterial species. By inferring ancestral gene content, we mapped gene gains
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and losses along a large, deep-branching phylogeny and assessed their impact on bacterial metabolic

capabilities. Our analyses suggest that horizontally transferred genes can indeed affect which genes are

later lost and which dependencies emerge as a result. We have two lines of evidence to support this. First,

we find that gene gains add new catabolic routes to bacterial metabolic networks. These gained catabolic

routes increase the chance of new metabolic interactions between bacteria, a prerequisite for dependency

evolution. Next, we show how these new routes can promote the loss of preexisting ancestral routes (a

process we call ‘‘coupled gains and losses,’’ CGLs). We find that phylogenetic patterns indicate that

both processes—CGLs and pure gene loss—are equally likely to lead to dependencies. Collectively, these

results highlight horizontal gene transfer as an important driver of metabolic dependency evolution in

bacteria.
RESULTS

Horizontal gene transfer (HGT) adds new catabolic routes to bacteria

In a metabolic dependency, a donor organism secretes metabolites, which are in turn required by an

acceptor organism. The secreted metabolites cannot be produced by the acceptor organism itself but

are still necessary for survival and growth. We sought to understand how horizontal gene transfer, if at

all, impacts the emergence of new dependencies. We hypothesized that newly acquired genes (primarily

through HGT) lead to newer metabolic interactions. This could occur if gained genes allowed an acceptor

organism to transport and break down previously unusable metabolites in its surroundings. We thus first

asked: does horizontal gene transfer enhance the ability of a bacterial genome to utilize metabolites

secreted by surrounding donors? In other words, does it add new catabolic routes? Analysis from E. coli

suggests that this might indeed be the case, but the lack of systematic analyses across several bacterial

species hinders us from generalizing these results (Pál et al., 2005).

To answer whether HGT typically adds new catabolic routes to bacteria, we used a two-pronged approach,

combining bacterial metabolism and phylogeny.We first acquired a list of 1,031 bacterial species with com-

plete genomes, whose metabolic data were available in the KEGG GENOME database. We explicitly

removed from this list: (1) endosymbionts, due to their exotic metabolic lifestyles and genomes, and (2)

closely related genomes, to avoid phylogenetic bias (see STAR Methods). This left us with the 835 species

genomes we used for all our subsequent analyses (Table S1). For each genome, we extracted all metabolic

genes present in at least one species, corresponding to a total of 3,022 unique genes.

Using these genomes, we inferred each species’ metabolic capabilities. For this, we reconstructed

representative metabolic networks, one for each species, using gene presence-absence data (Figure 1A).

Here, we mapped each gene to specific chemical reactions using the KEGG REACTION database (see

STAR Methods). To identify gene gain and loss events during the evolution of these species, we inferred

the most likely genetic makeup of their ancestors. For this, we first established evolutionary relationships

using a well-known bacterial phylogenetic tree, and then applied ancestral reconstruction methods, to

infer which of the 3,022 metabolic genes were likely present in each ancestor (see STAR Methods). With

the presence-absence profiles of ancestors and descendants on each phylogenetic branch, we could infer

which genes were gained and lost along them (Figure 1B).

We first tested whether HGT can expand the set of externally available metabolites that a metabolic

network can catabolize. For this, we studied which position horizontally transferred genes typically

occupied in each metabolic network they were gained in. Specifically, we were interested in whether the

gained genes were in catabolic or anabolic parts of a metabolic network. We studied this across all phylo-

genetic branches. On each branch, we asked which position in the descendant’s metabolic network each

gained gene occupied. Each position corresponded to metabolic reaction order, from catabolic to

anabolic, as follows: first, second, intermediate, or biomass-synthesis reactions (see STAR Methods). If

HGT was indeed likely to add new catabolic routes, we would expect gained genes to be concentrated

in the catabolic parts of the network, i.e., first and second reactions. As controls, we measured the positions

of randomly chosen genes in the same metabolic networks.

Along each branch, we measured the fraction of gained genes corresponding to each network position.

We then calculated, across all branches, the average fraction of gains found to occupy each position.

Consistent with our hypothesis, we found that horizontally acquired genes aremore likely to be part of cata-

bolic routes (mean; 69% catabolic versus 31% anabolic; Figure 1C, green bars); this is much more than
2 iScience 25, 104312, May 20, 2022
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Figure 1. Horizontal gene transfer adds new catabolic routes to bacteria

(A) Schematic representation of our two-pronged approach: of combining phylogeny and bacterial metabolism. We used a well-known phylogenetic tree to

infer the evolutionary relationships between the 835 bacterial species used in our analysis. For each extant species (shown on the tips of the tree), we used

gene presence-absence data for 3,022 metabolic genes from the KEGGmetabolic database. Filled circles indicate gene presence; empty indicate absence.

(B) We inferred the gene presence-absence states of all internal nodes of the tree along each branch of the full tree (gray dashed circle in a); each branch

connected an ancestor (anc) to a descendant (des). Along each branch, we inferred which genes were gained (green) and lost (red).

(C) Bar plot showing the position of gained genes in bacterial metabolic networks. We split metabolic genes into catabolic (first or second reactions in a

metabolic route) and anabolic (intermediate or biomass-synthesis reactions) based on the the chemical reactions theymap to. Each green bar represents the

average fraction of gained (horizontally transferred) genes at that position. Each black bar represents controls, i.e., the expected average fraction of gains at

that position, given a random set of gene gains. Error bars show the SE, indicating the extent of variation across 1,669 phylogenetic branches.
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expected by chance (in controls, we found mean 34% catabolic versus 66% anabolic; Figure 1B, black bars).

This suggests that HGT can expand the number of external metabolites that bacteria can catabolize.

HGT-enabled catabolic routes increase the likelihood of metabolic interactions

We next tested the possibility that newly acquired catabolic routes promote new metabolic interactions.

For this, new routes should help break down the metabolic byproducts of other bacteria more often

than nutrients available in the environment. To test this, we first curated a list of common external metab-

olites and classified them as byproducts or nutrients based on their presence on the exterior or interior of

microbial metabolic networks (see Table S2 for the full list; see STAR Methods for a detailed procedure). In

a metabolic interaction, the received metabolite should eventually help produce biomass components

(such as pyruvate, ribose-5-phosphate, and alanine). For each ancestor-descendant pair, we analyzed

how many such biosynthetic routes were added to the descendant’s metabolic network, when compared

with its ancestral network (see STAR Methods). We separately counted routes using byproducts as their

starting point, from routes using nutrients.

We found that, on average, new biosynthetic routes, enabled by HGT, are more likely to be byproduct-

driven than nutrient-driven (median number of routes, 56 and 51, respectively; P<10�3; distributions

compared via a Kolmogorov-Smirnov test; see Figure 2A). Moreover, these new routes could often be

metabolically more efficient than their ancestral counterparts (see Figure 1D), i.e., they often had

shorter path lengths (49%; Figure 2B, left) and yielded more energy (ATP; 58%; Figure 2C, right) than the

corresponding routes in their ancestors (see STAR Methods). This suggests that newly acquired routes

can indeed enable newmetabolic interactions with other donor bacteria. In fact, some of these interactions

can also have adaptive significance, which can encourage the evolution of metabolic dependencies.

HGT can affect dependency evolution via coupled gains and losses of genes

Given that newly acquired routes have similar—and sometimes better—path lengths and energy yields, we

wondered if their acquisition could promote the loss of corresponding ancestral routes. We thus
iScience 25, 104312, May 20, 2022 3
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Figure 2. HGT-enabled catabolic routes increase the likelihood of metabolic interactions

(A) Distribution of the number of newly accessible catabolic routes (routes gained along each phylogenetic branch) across all 1,669 branches. The number of

routes starting from nutrients are shown in blue, and those starting from byproducts are in red. New byproduct-driven routes would increase the chance of

metabolic interactions with other bacteria (via their byproducts). We find that new catabolic routes are more likely to be byproduct-driven (median 56, versus

51 for nutrient-driven routes; P<10�3; Kolmogorov-Smirnov test).

(B and C) Pie charts comparing new routes with their corresponding ancestral routes on each of the 1,669 branches. We compare new and ancestral routes

based on their (B) path length (i.e., is the shortest new path shorter, longer, or the same length as the shortest ancestral path) and (C) energy yield (i.e., does

the most energy-yielding new path have a higher, lower, or equal yield than the best ancestral path).
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hypothesized the following mechanism through which, contingent on earlier HGT, metabolic depen-

dencies could emerge by subsequent gene loss.

Consider the example illustrated in Figure 3A, with an environment that consists of a nutrient (nut, blue cir-

cle), and a byproduct (byp, purple triangle) secreted by a donor (not shown). Consider a specific acceptor

organism, which requires the biomass component (bmc, yellow square) either directly or indirectly, to sur-

vive. We follow the modification of this acceptor’s metabolic network, from ancestor to descendant, in

three steps. First, the ancestor uses a specific metabolic pathway (labeled ‘‘ancestral route’’) to convert

the available nutrient to the essential biomass component. Second, it gains a catabolic route (labeled

‘‘gained route’’) that uses the byproduct, byp, to produce bmc. Third, after such a gain, the acceptor loses

the ancestral route to bmc. This is allowed because bmc—crucial for survival—can still be produced

through a coupled (or alternate), byproduct-utilizing route. Once lost, however, the acceptor will become

obligately dependent on its neighbors to receive the byproduct.

Note that here, until the gain of an alternate route, the ancestral route cannot be lost by the acceptor.

Moreover, gaining such a route can not only allow the loss of the ancestral route but also promote it. This

is most likely, for instance, when the gained route is more efficient than the preexisting route (which is

often the case; Figure 2C). Collectively, we term this process (Figure 3A, steps 1 to 3) ‘‘coupled gains

and losses’’ (CGLs). CGLs demonstrate how HGT can crucially affect metabolic dependency evolution.

Contrast CGLs with pure gene loss, which relies on the environmental availability of bmc for dependency

evolution (Figure 3B). Unlike CGLs, these events are unlikely to be affected by, or depend on, HGT. Inter-

estingly, the same genome (or microbial species) can evolve the same dependency via both mechanisms,

but their likelihoods are crucially environment dependent. This is transparent in Figures 3A and 3B, where

the primary difference between the two cases is which byproduct is available: in Figure 3A, it is byp (purple

triangle); in Figure 3B, it is bmc (yellow square). The only other difference is the gain of a route to

metabolize byp, which is likely in an environment where byp is available as a byproduct.

Metabolic dependencies are equally likely to emerge via CGLs and pure gene loss

Given that both coupled gains and losses (CGLs) and pure gene loss are possible mechanisms for meta-

bolic dependency evolution, we asked which of them was more likely to cause the metabolic dependencies

observed in extant bacteria. To help answer this, we looked for two distinct but related phylogenetic

signatures.
4 iScience 25, 104312, May 20, 2022
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Figure 3. HGT can affect dependency evolution via coupled gains and losses of genes

(A) Schematic illustration of coupled gains and losses (CGLs), a new, alternate mechanism for dependency evolution

driven by HGT. The gray box on the left indicates the environment, with a nutrient (nut, blue circle) and a byproduct (byp,

purple triangle). Red arrows indicate the secretion and import of metabolites by bacteria. The three steps in the frame

show how a bacterial species can evolve a dependency on another species that donates byp in the environment; by step 3,

the acceptor species eventually depends on byp. Each step follows the modification of a part of the acceptor’s metabolic

network. At step 1, the acceptor uses an ancestral route (black arrows) to convert nut in the environment to a key biomass

component (bmc, yellow square). At step 2, it can alternatively use a newly gained route to convert byp to the same bmc.

The ancestral and gained routes are coupled to each other, because they both produce bmc, which is crucial for survival

and growth. At step 3, the acceptor loses the ancestral route (gray arrows) but can still produce bmc through the gained

route. It thus becomes dependent on donors of byp for survival.

(B) Schematic illustration of dependency evolution via pure gene loss, not driven by HGT. The environment now has bmc

available as a byproduct, instead of byp (gray box on the left). In this mechanism, step 1 is the same as (A), but unlike (A), at

step 2, the acceptor can lose the ancestral route straight away, without requiring an alternate coupled route. However,

this requires a particular environment where bmc is available.
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First, we measured what fraction of ancestor-descendant transitions (each represented by a phylogenetic

branch) displayed gain-loss patterns consistent with CGLs; we compared this with the fraction of transitions

consistent with pure gene loss. Here, for CGL-consistent transitions, we asked whether a species gained a

catabolic route for at least one biomass component that it also lost an alternate route for, during the

ancestor-descendant transition (i.e., along a phylogenetic branch, how often did we detect any CGL

events, like in Figure 3A; see STAR Methods). For transitions consistent with pure gene loss, we similarly

asked how often we observed a species losing a preexisting route, without gaining an alternate catabolic

route for the same biomass component (i.e., along a phylogenetic branch, how often did we detect any

pure gene loss events, like in Figure 3B; see STARMethods). To control the likelihood of both events occur-

ring by chance, we also calculated the expected fractions of CGL and pure gene loss events, by repeating

our measurements on simulated datasets (see STAR Methods). In each simulated dataset, we randomized
iScience 25, 104312, May 20, 2022 5



A B

Figure 4. Metabolic dependencies are equally likely to emerge via CGLs and pure gene loss

(A) Bar plot showing the fraction of 1,669 phylogenetic branches in which we observed gene gain-loss patterns consistent

with coupled gains and losses (CGLs; green) and with pure gene loss (red). Each gray bar represents the corresponding

controls, i.e., the expected fraction of branches with patterns consistent with CGLs and pure gene loss, given a random

set of gene gains and losses. Error bars show the SE indicating the level of variation across all branches.

(B) Line plot showing the likelihood of evolving dependency via CGLs (green) and pure gene loss (red) in simulated

bacterial communities, as a function of the community diversity. The likelihood of dependency is the average fraction of

communities in which the observed gains and losses along a branch led to a CGL-based on pure gene-loss-based

dependency. Community diversity is the number of coexisting bacterial species in a simulated community. The gray

region has R7 species, where CGLs are more likely than pure gene loss.
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which genes were gained and lost along each ancestor-descendant transition or branch. Here, we ensured

that the same number of genes were gained and lost along each branch as those in our observed dataset.

We found at least one CGL event on 33% of all branches (Figure 4A; green); in comparison, we found pure

gene loss events on 24% of all branches (Figure 4A; red). Both kinds of events were observed much more

likely than expected by chance (Figure 3C; greys). This suggested that by merely observing gene gain-loss

patterns, we would conclude that CGLs were more likely to lead to dependencies than pure gene loss.

Second, we added environmental context to the observed gain-loss patterns, by measuring how the

likelihood of metabolic dependency evolution depended on a species’ microbial community. Specifically,

we asked how the chance of both events—CGLs and pure gene loss—depended on the number of species

in a microbe’s community (hereafter, community diversity). We hypothesized that more diverse commu-

nities would have a higher number of available nutrients in the environment, because more species would

secrete metabolic byproducts. We expected that increasing community diversity would thus generally

favor dependency evolution via both CGLs and pure gene loss; we did not know which of the two would

be more favored. To measure the effect of community diversity on the chance of CGLs and pure gene

loss across several environments, we asked how often the observed gains and losses would lead to depen-

dencies because of CGLs and pure gene loss alone across hundreds of thousands of random, simulated

microbial communities. We used simulated communities as proxies for environments, due to our lack of

knowledge of the actual environments of different species across their evolutionary histories; in doing

so, we were estimating the typical chance of dependencies emerging via CGLs and pure gene loss. For

these simulations, we curated 1,035 environments, each with a different pair of nutrients present

(Table S3; see STAR Methods for details). In each environment, we randomly chose unique sets of bacterial

species from the 835 in our study as different communities; we chose 100 unique species sets at each level

of diversity, from 2 to 10 (see STAR Methods). Because our results saturated beyond a diversity of 10, and

because of computational feasibility, we did not continue simulations for more diverse and complex

communities.

For each phylogenetic branch, and for each environment-community pair (roughly 100,000 per level of

community diversity), we measured how often the observed gains and losses along the branch led to a
6 iScience 25, 104312, May 20, 2022
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new dependency in the descendant; we measured this separately for CGLs and pure gene loss. Briefly, a

dependency was CGL mediated when the following three conditions were satisfied: (1) the descendant

gained an alternate route while also losing a coupled route (similar to Figure 3A), (2) the gained route

used a metabolic byproduct from the community for biomass production, and (3) the biomass component

produced via the gained route was not available as a community byproduct. In contrast, a dependency was

pure gene loss mediated when (1) the descendant lost a preexisting route for the production of a biomass

component (similar to Figure 3B), and (2) that biomass component was directly available as a metabolic by-

product from the community (see STAR Methods).

To illustrate our results, we plotted the fraction of simulations where we detected dependency evolution as

a function of community diversity, i.e., we plotted the likelihood of dependencies via CGLs and pure gene

loss with increasing community diversity (Figure 4B). Consistent with our hypothesis, we found that the like-

lihood of dependencies via both CGLs and pure gene loss increased with increasing diversity (Figure 4B;

CGLs in green; pure gene loss in red); the likelihood of both events saturated at high diversity. Strikingly,

although pure gene loss was more likely at low diversity (<7; white region in Figure 4B), we found that CGLs

were more likely at high diversity (R7; gray region in Figure 4B). This was because although the number

of byproducts increase with increasing diversity (Figure S1), byproducts are more likely to be pathway

intermediates (favoring CGLs) than biomass components (favoring pure gene loss); see Figure S2.

Collectively, our analyses and simulations suggest that CGLs and pure gene loss are equally likely

mechanisms for metabolic dependency evolution in bacteria.
DISCUSSION

To summarize, here we showed that horizontal gene transfer (HGT) can play a significant role in metabolic

dependency evolution in bacteria. Specifically, if an alternate metabolic pathway (or ‘‘route’’) is gained by

HGT, it can promote the loss a preexisting, otherwise indispensable route. Such alternate routes often

catabolize metabolic byproducts from coexisting bacteria, thus making bacteria dependent on them.

Overall, this is a new mechanism for dependency evolution: coupled gains and losses (CGLs). Phylogenetic

evidence suggests that CGLs have occurred much more frequently across bacterial evolutionary history

than expected by chance (Figure 4A). Further, phylogenetic evidence also suggests that CGLs can often

be adaptive, as gained pathways are often shorter and more energy-efficient when compared with

preexisting pathways (Figures 2B and 2C).

As a mechanism for metabolic dependency evolution, CGLs are contrasted with pure gene loss, also called

the Black Queen hypothesis. We found that although in communities with low diversity, pure gene loss is

themore likely cause of dependencies, in communities with high diversity, CGLs are more likely (Figure 4B).

Our results thus enrich and supplement the Black Queen hypothesis, by explaining the role of prior gene

gains on eventual gene loss. Note that both mechanisms assume that all metabolic intermediates in path-

ways can in principle be secreted by cells, and in turn all secreted byproducts may be imported by cells.

Previous work has shown this to be a reasonable assumption, which can qualitatively predict metabolic de-

pendencies (our focus), but has shown that it fails to quantitatively predict resulting growth rates, which is

why we refrained from making such predictions (Goyal and Maslov, 2018; Zelezniak et al., 2015; Dal Bello

et al., 2021). The reason that this assumption works qualitatively, but not quantitatively, is that there always

exist generic transporters (such as several ABC transporters) that can enable the intake and outflow of most

metabolites from cells (exceptions include phosphates), but the specific rates at which they enable flow for

different metabolites remains unknown.

Contrasted with gene loss, which may only lead to dependencies, gene gain via HGT can result in a variety

of outcomes, only one of which is evolving dependencies. Other outcomes include gaining a pathway (or

part of a pathway) without losing an alternative pathway, resulting in metabolic redundancies (64% of HGT

events), and even losing dependencies and becoming increasingly independent, from only being able to

use byproducts to being able to use at least one nutrient for a biomass component (21% of HGT events).

These two alternate outcomes are not mutually exclusive of each other but are exclusive of dependency

evolution. Thus, metabolic network evolution by HGT takes genomes along richer and more varied evolu-

tionary trajectories compared with gene loss.

We believe that our approach can also aid in a more accurate classification of bacterial lifestyles. Conven-

tionally, bacteria are classified as either free-living or symbiotic in biological databases. Although this
iScience 25, 104312, May 20, 2022 7
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classification suggests that free-living bacteria would often be independent (and symbiotic ones, depen-

dent), these labels can be misleading. For instance, free-living bacteria are often metabolically dependent

(D’Souza et al., 2014). In our analyses, we wanted to avoid relying on such a binary classification. We

acknowledged that the degree of dependency of a bacterial genome lies along a spectrum and measured

it by inferring which key biomass components each genome could synthesize in various nutrient environ-

ments. In this way, our approach is more precise and ecologically relevant.

The mechanism we proposed, CGLs, also makes the following prediction about experimental evolution:

when co-evolved in a diverse community, bacteria are more likely to lose biosynthetic pathways that

they have alternate pathways for; this is less likely when they are evolved alone. As a corollary, adding

alternate pathways to bacteria will promote the loss of preexisting pathways. Crucially, pathways

do not have to be completely lost. Our work suggests—but we did not quantitatively analyze—cases

where only a part of a pathway may be lost when an externally available byproduct happens to be an

intermediate in that pathway. Both predictions can be tested via laboratory evolution in a community

context.
Limitations of the study

The framework we used here, combining phylogenetic analyses with metabolic network analyses, can also

help quantify the relative contributions of drift and selection to the reduction of bacterial genomes. Pro-

gressive genome reduction is often termed ‘‘genome streamlining,’’ and a key question in bacterial

genome evolution asks how parallel, or repeatable, streamlining events are. The logic is that more parallel

events reflect selection being dominant in genome reduction. We can systematically study these questions

within our framework. For instance, we can measure how often we detect the same dependencies evolve

along a phylogenetic branch and quantify how similar the corresponding gene loss events are. Similar, or

repeatable, gene loss events would be consistent, with selection playing a major role in streamlining:

perhaps ‘‘weeding out’’ genes no longer required in certain environments. Dissimilar gene loss events,

on the other hand, would suggest that drift dominates. Such analyses are outside the scope of this study

and the subject of future work.

Finally, our analyses focused on changes in metabolic network architecture, but dependency evolution

can also occur via changes to gene regulatory networks. In experiments, we observe that both meta-

bolic and regulatory changes are responsible for evolved dependencies (Lercher and Pál, 2007;

D’Souza and Kost, 2016; Shitut et al., 2019). However, we do not understand how to incorporate

the effect of regulatory changes on bacterial phenotypes as well as we do the effect of metabolic

changes. Future work in this direction can help better understand the role of regulation on metabolic

dependency evolution.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

KEGG database KEGG https://www.genome.jp/kegg/pathway.html

PhyloPhlAn Segata et al., 2013 https://www.nature.com/articles/ncomms3304

Software and algorithms

Relevant computer code and extracted data files This study https://github.com/eltanin4/black_queen_critique

NetworkX networkx.org https://networkx.org/documentation/networkx-1.7

GLOOME Cohen and Pupko, 2011 http://gloome.tau.ac.il/
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Akshit

Goyal (akshitg@mit.edu).
Materials availability

No experimental materials or data were generated during this study.

Data and code availability

d This paper analyzes existing, publicly available data. All processed data files are available at: https://

github.com/eltanin4/black_queen_critique, and their sources listed in the key resources table.

d All original code has been deposited at https://github.com/eltanin4/black_queen_critique. and is pub-

licly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Mapping genomes to metabolic networks

We extracted a list of all 1,031 bacterial species whose complete genomes were available in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) GENOME database (Kanehisa and Goto, 2000). We then

pruned this list to remove endosymbionts and closely related genomes. To remove endosymbionts, we

used a curated list of endosymbiont genomes based on literature surveys (Mahajan and Agashe, 2018).

To remove closely related genomes, when multiple genomes were available for a species, we chose one

at random. This resulted in 835 genomes or species, which we used for all subsequent analyses (see

Table S1 for the full list). To infer which metabolic genes were present and absent in each species, we ex-

tracted a list of all the genes in that species which mapped to a corresponding metabolic reaction in the

KEGG REACTION database. We found a total of 3,022 unique genes that were present in at least one of

the 835 species in our dataset. We assumed that the set of all mapped metabolic reactions per species

was its metabolic network (Figure 1A).
Inferring gene gains and losses

To obtain species’ phylogenetic relationships, we mapped our 835 genomes to PhyloPhlAn, a well-known

phylogenetic tree by matching their GenBank accession numbers (Segata et al., 2013; Benson et al., 2008).

To infer the most likely genetic make-up of each ancestor, i.e., the internal nodes of the phylogenetic tree,

we used GLOOME, an ancestral state reconstruction method by Cohen and Pupko (2011). GLOOME has

been commonly used to study the long-term evolutionary history of gene gains and losses on deep

phylogenetic trees (Pál et al., 2005; Szappanos et al., 2016). The parameters we used while running the
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method were consistent with previous large-scale studies of bacterial genome evolution, e.g., assuming a

stationary root composition (Press et al., 2016); the full set of parameters is available in Table S4. We then

calculated which genes were gained and lost along each phylogenetic branch, i.e., between an ancestor

and its descendant(s), by comparing their gene presence-absence profiles. We assumed a gene was

gained along a branch if it was absent in the ancestor, but present in the descendant; similarly, we assumed

a gene was lost along a branch if it was present in the ancestor, but absent in the descendant (Figure 1B).

For simplicity, we assumed that all gene gains were due to HGT, though a minority of gains could be due to

de novo gene birth. Distinguishing between these two possibilities would require detailed sequence-level

analysis, which was outside the scope of our manuscript. We verified that using an alternate, maximum-like-

lihood based method to infer gene gains and losses did not significantly affect our results (< 5% mismatch

between gain-loss patterns across all 1,699 branches).

Assessing gene positions in metabolic networks

To infer which position in a metabolic network a gained gene was likely to occupy, we first mapped each of

the 3,022 unique metabolic genes in our study to knownmetabolic routes in the KEGGMODULE database.

Each route in this database is a sequence of steps in themetabolism of a key biomass component; here, the

first few steps are catabolic, and the next several steps are anabolic. To each gene, we assigned a position,

as follows: (1) first reaction, if the gene corresponded to the first reaction in the route, (2) second reaction, if

the gene corresponded to the second reaction, (3) intermediate reaction, for all other reactions (except the

last) in the route, and (4) biomass synthesis, for the final reaction in the route. We assumed that genes in

categories (1) and (2) were catabolic, and (3) and (4) were anabolic. This assumption is consistent with

previous analyses of metabolic gene position (Pál et al., 2005). There are two main sources of ambiguity

in this analysis: (1) many metabolic routes are not linear and contain cycles (e.g., the TCA cycle and pentose

phosphate pathway), which makes the position of any reaction in them arbitrary; (2) many metabolic routes

start not from an externally imported metabolite, but instead from a metabolite produced internally by

another pathway (e.g., using ornithine and carbamoyl phosphate to produce arginine). To avoid any

ambiguity stemming from these two issues, we only considered genes which were unique to one route.

We verified that relaxing this constraint did not significantly affect our results on a statistical level (Figure S3,

where genes present in multiple routes are assigned their most frequently observed position). Additionally,

we also excluded short routes (%3 reactions, or steps) from our analysis, since it would be difficult to distin-

guish catabolism from anabolism in them.We calculated the distribution of gained genes in metabolic net-

works. For this, on each phylogenetic branch, we calculated the fraction of genes gained along that branch

at each metabolic network position. We then averaged the fraction of gained genes at each position across

all branches (Figure 1C; green bars). As a control, we plotted the expected fraction of gained genes at each

position by calculating the average fractions if the genes gained along a branch were a random set of

genes, picked from the 3,022 genes in our study; in choosing such random sets, we preserved the number

of genes gained along each branch. The average fractions at each position across all branches are plotted

as black bars on Figure 1C.

Classifying metabolites as nutrients, byproducts, and biomass components

Of the 8,755 uniquemetabolites in our study, we classified certain metabolites as nutrients, byproducts and

biomass components based on how likely functional roles in metabolic networks. First, to classify between

nutrients and byproducts, we curated metabolites based on previously published large-scale metabolic

network analyses (Pacheco et al., 2019; Plata et al., 2015; Sung et al., 2017). These analyses used both

manual curation and metabolic modeling to distinguish between metabolites that were most likely to be

environmentally available nutrients, from those likely to be the metabolic byproducts of other microbes.

We found that metabolites on the exterior of metabolic networks were more likely to be nutrients, while

those in the interior, byproducts (46 nutrients, 65 byproducts; Table S2). Second, to classify metabolites

as biomass components, we used a database of experimentally-verified metabolic models, BiGG (King

et al., 2015). We chose all metabolites listed in the biomass composition of different microbes as biomass

components (total 137 metabolites, Table S2).

Calculating catabolic routes enabled by HGT

We calculated the number of new catabolic routes enabled by HGT along each phylogenetic branch. For

this, we first calculated the number of routes in each ancestral metabolic network, i.e., the joint network

obtained by combining all metabolic genes and routes in the ancestor’s genome. We distinguished be-

tween routes starting from nutrients (nutrient-driven routes) and byproducts (byproduct-driven routes).
12 iScience 25, 104312, May 20, 2022
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We calculated the total number of unique paths in each network that started from nutrients and ended at

one of the biomass components; similarly, we calculated the number of paths from byproducts. We used

standard network analysis algorithms for these calculations, using the NetworkX package in Python. We

then calculated the number of nutrient-driven and byproduct-driven routes in each descendant’s meta-

bolic network. Note that standard path-finding algorithms may overestimate the number of paths between

two metabolites due to our network representation, which only captured pairwise relationships. Thus, if a

reaction required two reactants, and one was unavailable, our algorithm would still count that reaction as

leading to a feasible path. However, since we were interested in a comparison between nutrient- and by-

product-driven paths, not the absolute number of paths, we argued that this analysis would produce similar

systematic differences in both calculations, and thus a comparison was still valid. Along each branch, we

calculated the difference between the number of nutrient-driven and byproduct-driven routes between

the descendant and ancestor. We plotted the distribution of this difference (the number of newly acces-

sible routes) across all branches in Figure 2A (nutrient-driven in blue, byproduct-driven in red). To compare

the path lengths (number of reaction steps) and energy yields (net number of ATP molecules produced) of

the new routes, we did the following along each branch: (1) for path lengths, we compared the lengths

of the shortest ancestral path with the shortest new path in the descendant, and asked if a new path was

shorter, longer, or of equal length (Figure 2B); (2) for energy yields, we compared the net number of

ATP molecules produced per nutrient or byproduct, along each route; here also we compared the most

ATP-yielding ancestral path with the most ATP-yielding new path, and asked if the new path had a higher,

lower or equal yield (Figure 2C). Including other energy currency molecules, such as GTP, did not affect our

results, since their reactions can often be swapped with those involving ATP in the KEGG database.

Detecting phylogenetic events consistent with CGLs and pure gene loss

Along each phylogenetic branch, we asked if there were at least one set of gene gains and losses consistent

with coupled gains and losses (CGL-consistent transitions; described in Figure 3A) and at least one set

consistent with pure gene loss (described in Figure 3B). We first calculated all routes that were lost and

gained in the descendant (compared with the ancestor) as described the previous section. A new depen-

dency arises when a biomass component can no longer be produced using only the environmentally-avail-

able nutrients. We considered the possibility of a dependency for a biomass component, one component

at a time. We assumed there was a CGL-consistent transition on a branch if, for any biomass component: (1)

the ancestor had only one nutrient-driven route to produce it and zero byproduct-driven routes, (2) the

ancestor gained at least one byproduct-driven route to produce it, i.e., there was at least one such route

in the descendant, and (3) the ancestor lost the nutrient-driven route during the transition to descendant.

We assumed there was a pure gene loss-consistent transition on a branch if, for any biomass component: (1)

the ancestor had only one nutrient-driven route to produce it and zero byproduct-driven routes, (2) the

ancestor lost this route, and did not gain any byproduct-driven routes, i.e., the descendant had no routes

to produce the biomass component. We calculated the fraction of branches where we detected CGL-

consistent (Figure 4A; green) and pure gene loss-consistent transitions (Figure 4A; red). As controls, we

calculated the expected fraction of branches with either transitions by using a random set of gains and los-

ses instead (Figure 4A; gray bars); in choosing such random sets, we preserved the number of gained and

lost genes along each branch.

Modeling the likelihood of dependency in simulated bacterial communities

Since environmental and community context is crucial to determining whether a given set of gene gains

and losses will result in a metabolic dependency, we tested in how many environments and bacterial com-

munities, the observed CGL and pure gene loss events on different branches (identified in the previous sec-

tion) would result in an actual dependency. For this, we used metabolic models in � 1; 000; 000 simulated

environment-community combinations. We chose 1,035 environments, each with two of the 46 nutrients in

Table S2. We chose 900 communities, with 100 at each level of diversity (from two species to 10 species, in

steps of 1); each community was a set of bacterial species chosen randomly from the 835 in our study. For

each environment-community combination, we calculated the set of byproducts generated by the commu-

nity by computing which metabolic pathway intermediates each species in the community could produce

from the nutrients provided in the environment; we determined this using a popular ‘‘scope expansion’’

algorithm (Handorf et al., 2005; Goyal, 2018).

For each phylogenetic branch, we then asked: in what fraction of environment-community combinations

would the descendant evolve a dependency that the ancestor did not have, and through which
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mechanism — CGLs or pure gene loss? For every level of community diversity, we plotted the fraction of

examined cases where we detected a possible dependency through CGLs (Figure 4B; green); concurrently

we plotted the fraction of cases where the dependency was through pure gene loss (Figure 4B; red). In each

environment-community combination, we assumed we detected a CGL-mediated dependency if the

following conditions were satisfied between the ancestor and descendant for any one biomass component:

(1) the ancestor had only one nutrient-driven route to produce it and zero byproduct-driven routes, (2) the

nutrient was available in that environment, (3) the ancestor gained at least one byproduct-driven route to

produce it, i.e., there was at least one such route in the descendant, (4) the byproduct was available as a

community byproduct, and (5) the ancestor lost the coupled nutrient-driven route during the transition

to descendant. Similarly, in each environment-community combination, we assumed we detected a pure

gene-loss mediated dependency if, for any biomass component: (1) the ancestor had only one nutrient-

driven route to produce it and zero byproduct-driven routes, (2) the biomass component was available

as a community byproduct, and (3) the ancestor lost the nutrient-driven route during the transition to

descendant.
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