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1. Introduction

Neck pain is the number four cause of physical disability worldwide,
and it can be an important symptom in identifying degenerative pa-
thologies of the cervical spine. In most cases, acute neck pain resolves
without invasive treatment, but in nearly 50% of patients, the pain
returns or develops a chronic nature. With the current ageing population
and the relatively high prevalence of neck pain and spine disease, there is
increasing demand on radiological image analysis in healthcare (Cohen,
2015). However, the analysis of those visualizations is time-consuming
and is subject to significant interobserver variability (Urrutia et al.,
2017). Automating parts of the radiological image analysis process can
support clinicians in providing a more accurate and consistent image
assessment with increased time efficiency.

Over the last decade, the application of artificial intelligence (AI) in
medical research has become increasingly popular. Machine Learning
(ML) techniques show promise in computer aided diagnostics (CAD),
specifically for clinical tasks related to detection and segmentation, as
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well as classification and prediction (Esteva et al., 2017; Tabibu et al.,
2019; Tiulpin et al., 2018; Xu et al., 2019; Zhang et al., 2020). A ML
algorithm is able to “learn,” which means in this context that the algo-
rithm can improve performance by previous experience or provided data
to give a valid result for never-before-seen data, without being explicitly
programmed to do so (Jakubicek et al., 2020).

The majority of the available literature on image analysis concen-
trates on the thoracic and lumbar spine, while the cervical spine is
studied less often. The difference can be partly attributed to the lower
incidence of neck pain in the general population, compared to (lower)
back pain (Sinnott et al., 2017). Nevertheless, the neck is an essential part
of the body with several vital anatomical structures whose functioning
can be visualized using radiological imaging. Additionally, considering
the relative novelty of the subject matter no systematic reviews have
been published, while this could significantly improve the quality of
future research on this topic.

Therefore, we aim to create the first overview of the available Ma-
chine Learning methods for image analysis of the cervical spine, while
weighing and discussing their risks and benefits and providing
eiden, the Netherlands.
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Abbreviations

AAM Active Appearance Model
ANN Artificial Neural Network
ASM Active Shape Model
ASM-M Active Shape Model Mahalanobis Distance-Based
ASM-RRF Active Shape Model random regression forest-based
ASM-RCF-AM Active Shape Model Random Classification Forest-

based with ArgMax
Aver Average
C Cervical
COG Center of Gravity
(C)RBM (Conditional) Restricted Boltzmann Machines
CSF Cerebrospinal fluid
DNN Deep Neural Network
DC Dice Coefficient
DO Dice Overlap
DR Detection Rate
FAST FMRIB Automated Segmentation Tool, Part of FMRIB

Software Library (FSL)
GC Graphical Cut
GHT Generalized Hough Transform
GLM Grey-Level Model
GLV Grey-Level Values
GM Graphical Model
GT Ground Truth
HMM Hidden Markov Model
HD Hausdorff Distance
HT Hough Transform
IR Identification Rate

IQR Interquartile Rage
J-CNN Joint learning model Convolutional Neural Network
KDE Kernel Density Estimation
kNN k-Nearest Neighbours
LE Localization Error
MASD Mean Absolute Surface Distance
MDCP Mean Distance to the Closest Point
MRF Markov Random Field
MSE Root Mean Square Error
NLM National Library of Medicine
NHANES II Second National Health and Nutrition Examination

Survey
PCA Principe Component Analysis
QM Quantitative Morphometry
RANSC Random Sample Consensus
RCF Random Classification Forrest
R–CNN Region Based Convolutional Neural Networks
SC Spinal Canal
Sens Sensitivity
SiFC Sparse intervertebral fence composition
SP Shape Prior
Spec Specificity
SRF Structured Regression Forest
SSAE Stacked Sparse Autoencoder
SSM Statistical Shape Model
SVM Support Vector Machine
TDCN Transformed Deep Convolutional Neural Network
VolHOG Histograms of oriented gradients for volumetric data
W(S) Whole Spine
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recommendations for future research in this field. We will divide the
systematic review into two sections, one focusing onML for segmentation
and the other on applying ML to automate the study different properties,
such as segment mobility and curvature, of the cervical spine on radio-
logical imaging. The overview provided in this systematic review may
function as a reference for all authors conducting research on computer
aided diagnostics of cervical spine disease.
Fig. 1. The search strategy used to perform the
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2. Methods

2.1. Literature search

The initial literature search was performed in PubMed, EMBASE and
Web of Science, on December 18th, 2020. Two of the authors (CG, LP)
separately evaluated the articles by title, abstract and full text, when
necessary, to select the studies that met the predefined selection criteria.
systematic search in the medical databases.



Fig. 2. Flowchart illustrating the inclusion and exclusion process of articles.
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As the topic of this review touches both the medical, and the technical
research field, both points of view had to be highlighted. Therefore, an
additional literature search was performed in the Google Scholar, Scopus,
SPIE Digital Library and IEEE Explore databases, to obtain as many ar-
ticles as possible from both medical and technical journals. The search
strategies used in the different databases were based on the search string
as shown in Fig. 1.

Studies were included when they reported on a form of automated
radiologic image analysis focusing on the human cervical spine or whole
spine including the cervical vertebrae.

Studies were excluded if they met any of the following criteria: (1)
Publications not written in English; (2) Conference abstracts; (3) Narra-
tive reviews; (4) Cadaver studies without proven clinical application; (5)
Phantom studies without proven clinical application; (6) Studies that
describe a protocol without any form of analysis; (7) Studies on the
thoracic or lumbar spine; (8) Studies on radiation dose, artifact reduc-
tion, sequence analysis or robotic surgery; (9) Studies on image pro-
cessing without segmentation, landmarking or any other measurement
on the spine involved.

Any discrepancy in selection between the reviewers was resolved in
open discussion (CG, LP), and, if needed, a third reviewer was asked to
make a final decision (CVL). Reference screening and citation tracking
were performed on the identified articles. This systematic review was
conducted in accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses: the PRISMA Statement (Moher
et al., 2009).
3

2.2. Quality assessment

The methodological quality of all studies was assessed separately by
two reviewers (CG, LP), using a version of the Modified New Castle –

Ottawa Quality assessment scale for Cohort Studies (Wells et al., 2020). If
there was no consensus about the assessment, a third reviewer (CVL) was
consulted. The New Castle – Ottawa scale was manually adjusted to
better fit human to model comparison studies with a technical nature.

The items reviewed in the assessment were: 1.1 Representativeness of
cohort; 1.2 Model selection, development and implementation; 1.3
Comparison made; 1.4 Ground truth assessment and Data extraction; 2.
Applicability and Generalizability (data variability, semi-/fully-auto-
matic, different modalities); 3.1 Outcome Assessment (clear split, ground
truth objectified); 3.2 Outcome reporting (different outcome measures,
uncertainty metrics reported); 3.3 Sharing (data or code sharing). All
items could be awarded a maximum of 1 point, except for ‘Applicability
and Generalizability’, for which a maximum of 2 points could be given.
Studies could maximally be awarded 9 points. Studies were then divided
into low (7–9 points), intermediate (5–6 points) or high (4 or less points)
risk of bias.

2.3. Data extraction

Data extraction for all included articles was performed by two re-
viewers separately (CG, LP) and any controversies were resolved by a
third reviewer (CVL). From each article the following information was



Fig. 3. Number of publications plotted per year.
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collected: year of publication, image modality, spine region, model
description, degree of automation, number of images included, train to
test set distribution and description of how the ground truth was ac-
quired. The determination of the ground truth can be done by either one
or more clinical experts and can be provided in different formats; i.e.
bounding boxes, vertebra centers, or complete pixel-wise segmentations.
Only outcomes that were mentioned in the text or tables of a publication
were included into the analysis, as extracting outcomes from graphs was
deemed too imprecise and time-intensive.

In order to compare model performance, commonly reported
outcomemeasures were extracted from each publication. Outcomes were
divided in either the internal comparison group; when the model's per-
formance was compared to the ground truth, or the external comparison
group; when the model's performance was compared to model perfor-
mance from previous publications.

Outcomes of articles in the segmentation category were reported in
five major groups:

Accuracy: Accuracy, Identification Rate (IR), Detection Rate (DR)
Error (mm): Localization error (LE), Mean Distance Closest Point

(MDCP),

Mean Absolute Surface Distance (MASD), Point-to-Surface error,
Hausdorff Distance (HD), Center of Gravity (COG)

Overlap: Dice Overlap (DO), Dice Coefficient (DC), Dice Index (DI)
Time: Runtime, Efficiency.
Fig. 4. Number of publications
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Other: Precision, Sensitivity, Specificity.
The aims of studies included into the second category, cervical spine

analysis, can be divided up into five broad categories: 1. Biomechanical
analysis; 2. CVM stage; 3. Clinical prognosis/prediction; 4. Image regis-
tration/Planning; 5. Clinical/Radiological Feature Detection. Additional
variables collected for the second category articles were aim, included
vertebrae and key points.

3. Results

3.1. Article selection

Through searching PubMed, EMBASE and Web of Science, using the
predefined search strategy, 956 records could be identified. 654
remained after duplicates were removed. An added search in Google
Scholar, Scopus, SPIE Digital Library and IEEE Explore yielded an addi-
tional 28 publications. The 682 unique records were screened for title
and abstract, after which a total of 506 articles could be excluded. The
full-texts of the remaining 176 articles were screened, and 125 did not fit
all in- and exclusion criteria and were therefore removed. The remaining
51 articles were included in this systematic review and, based on their
primary aim, divided into the two main categories; 1. Segmentation (n ¼
32) and 2. Cervical Spine Analysis (n ¼ 19). The first category was then
divided into two subcategories; 1.1 Conventional Machine Learning
Segmentation (n ¼ 20) and 1.2 Deep Learning Segmentation (n ¼ 12)
(Fig. 2).
per subcategory per year.



Table 1a
Complete overview of the Risk of Bias assessment for conventional Machine Learning segmentation articles. Color coded with red (high risk of
bias), orange (intermediate risk of bias) and green (low risk of bias) (Al Arif et al., 2016; Banik et al., 2010; Burnett et al., 2004; Chen et al., 2012;
Giulietti et al., 2011; Hanaoka et al., 2017; Glocker et al., 2013; Huang et al., 2009; Klinder et al., 2009; Mehmood et al., 2017; Mirzaalian et al.,
2013; Schmidt et al., 2007; Zamora et al., 2003).
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Where articles in the first subcategory focus more on the conventional
Machine Learning methods for segmentation, studies in the second
category deploy the relatively newer, neural networks. In the second
category studies were included that did not necessarily focus on seg-
mentation but in some other way analyzed the cervical spine and its
radiologic characteristics.
5

The increasing popularity of Machine Learning for image analysis of
the cervical spine is clearly illustrated when the number of included
publications in this study is plotted against the year of publication in total
and per subcategory (Fig. 3, Fig. 4). The majority of the included articles
(n ¼ 39) is published within the last 5 years.



Table 1b
Complete overview of the Risk of Bias assessment for Deep Learning segmentation articles. Color coded with red (high risk of bias), orange (in-
termediate risk of bias) and green (low risk of bias) (Chen et al., 2015, 2020; Liu et al., 2018; Rak et al., 2019; Suzani et al., 2015; Wang et al.,
2019).
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3.2. Quality assessment

In the Conventional Machine Learning Segmentation group there was
one study included with a high risk of bias, eleven studies with an in-
termediate risk of bias and eight with a low risk of bias (Table 1a). In the
Deep Learning Segmentation group three studies showed intermediate
risk of bias and nine a low risk of bias, while there were no studies
included with a high risk of bias (Table 1b). Lastly, in the Cervical Spine
Analysis group there was one study with a high, 14 with an intermediate
and 4 with a low risk of bias (Table 1c).

In general it can be observed that the more recently studies were
published, the more likely they were to have a decreased risk of bias.
Therefore, the percentage of low risk of bias studies in the Deep Learning
Segmentation group is higher than in the Conventional Machine Learning
Segmentation group, as the latter includes more recent studies. The same
pattern - a decreased risk of bias over time - can be observed in the
Cervical Spine Analysis group.
3.3. Qualitative synthesis

3.3.1. Conventional Machine Learning Segmentation techniques
The total number of included studies involving Conventional Machine

Learning segmentation techniques is 20, of which 6 studies focused on X-
ray images, 6 on MR imaging and 8 studies on CT imaging. The major
part, consisting of 14 studies, involved two-dimensional models. The
6

remaining 6 studies used three-dimensional models, of which 4 studies
used CT imaging and 2 studies used MRI. The number of images used per
study varied widely by image modality. The range of the number of
included X-ray images was between 66 (Larhmam et al., 2014) and
10024 ( Xi et al., 2012). The range of included MR images and CTs was
diffusely reported, as publications did not only use different numbers of
scans but also different numbers of slices, sometimes differentiating per
spine region. The number of studies with semi- or fully-automated
methods was the same (n ¼ 10) (Table 2a).

The highest accuracy for MR imaging were reported by Weiss et al.
(2006); 96% for the initial model and 100% for the modified model, for
the whole spine and the cervical spine, respectively. The study included
the entire spine; the vertebrae and intervertebral disks and the ground
truth consisted of ‘independent assignments’ of neurologists. In total, 50
MR images were included, 27 were used for the initial model and 23 MR
images were used for the modified model. Image volumes are enhanced
with a tophat filter, the program assigns the threshold values and applies
a median spatial filter to the search regions. Voxels exceeding threshold
values are then subjected to additional constraints and the centroids of
these voxel clusters are then connected. 3D linear interpolation and
Gaussian filters were applied, the longest disc chains were then analyzed
in clusters, which obtained the above mentioned accuracies (De Leener
et al., 2015).

The best performing methods are VolHOG for MR images Daenzer
et al. (2014), Modified GHT and K-means clustering with the use of X-ray



Table 1c
Complete overview of the Risk of Bias assessment for cervical spine analysis articles. Color coded with red (high risk of bias), orange (intermediate risk of
bias) and green (low risk of bias) (Balkovec et al., 2018; Benjelloun and Mahmoudi, 2009; Hopkins et al., 2019; Jin et al., 2019; Lecron et al., 2012;
Makaremi et al., 2019; Nikkhoo et al., 2019; Nikkhoo and Mohammad, 2020; Pekar et al., 2007; Rashad et al., 2019; Schmitz et al., 2004; Shin et al., 2020;
Srinivasan et al., 2020).
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imaging Larhmam et al. (2014) and a statistical and Gaussian shape
model in combination with a principal component in combination with
CT imaging Clogenson et al. (2015). The research of Daenzer et al. (2014)
approached the cervical vertebra detection with a proposed novel ma-
chine learning method based on new radiological features, combined
with a linear SVM. An accuracy of 98.1% was achieved with the baseline
7

model and improved to 99.1% with the VolHOG. In addition, various
levels of artificial noise are used during the performance analysis of the
algorithm.

The ground truth in these studies is based on manually determined
datapoints by (clinical) experts. All studies reported an internal com-
parison, comparing the performance of their model to the ground truth,



Table 2a
Conventional Machine Learning Segmentation articles overview.
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and 9 studies additionally reported some form of external comparison,
with earlier publications, published in the years 2003–2009. Of all
Conventional Machine Learning segmentation studies, 7 studies reported
segmentation results for only the whole spine, while 8 reported results
for specifically the cervical spine. In 4 studies, the segmentation results
were reported for both the cervical spine specifically and the whole
spine. Clogenson et al. (2015) is an exception, just focusing on vertebra
C2, which decreases external validity as compared to the other included
studies (Table 3a).

3.3.2. Deep Learning Segmentation techniques
There was a total number of 12 studies included that proposed Deep

Learning segmentation techniques, of which two studies focused on MR
imaging, 8 studies focused on CT imaging, and just one study used X-ray
imaging. The study of Cai et al. (2016) involved both MRI and CT im-
aging. The majority, consisting of 7 studies, involved three-dimensional
models, of which one study Jakubicek et al. (2019) combined 2D and
3D. The remaining 4 studies used two-dimensional models. The number
of images used per study varied again widely per image modality, com-
parable to the Conventional Machine Learning segmentation studies. The
range of the number of included CT images was between 41 Bae et al.,
2019 and 392 (Jakubicek et al., 2019). The range of used MR images was
slightly smaller but comparable; from 60 (Cai et al., 2016) to 245 MRI
9

images (Forsberg et al., 2017). However, the interpretation of this range
is difficult as publications, like in the conventional Machine Learning
group, did not only use different numbers of scans but also different
numbers of slices, sometimes differentiating per spine region.

Almost all studies deployed fully automated methods. Only one study
used a semi-automated approach Forsberg et al. (2017), which then also
achieves highest detection accuracies (98.8–99.8%). Forsberg et al.
(2017) focused on both the cervical and lumbar spine, creating two
separated training and configuration pipelines, both having the same
CNN setup. The CNN uses fully connected layers, drop-out rate of 0.5, a
categorical cross-entropy cost function and Nesterov momentum accel-
erated Stochastic gradient descent (SGD). The included MR images,
together with the annotated spine labels, are focused on either the
lumbar or cervical part of the spine. The dataset was originated from an
image archive. The missed detections were mainly concerning partly
visible vertebrae on the available images. This research showed prom-
ising results for labeling and detection by a CNN, focusing on both the
cervical and lumbar spine (Glocker et al., 2012) (Table 2b).

The highest segmentation accuracy was achieved by the SpineCNN
from Jakubicek et al. (2019) (93.3%). Thereby, the best performing
methods are CNN based methods for both CT and MR images. The study
presents a fully automated approach based on 130 CT scans, which in-
cludes two CNNs and a spine tracing algorithm, among which a



Table 2b
Deep Learning Segmentation articles overview.
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fine-tuned AlexNet and a VGG-16 R–CNN. A population approach was
used to increase robustness. The novel combination of the CNN and the
tracing, results in almost 90% of correctly identified spinal centerlines
within 20 s of computing time (Forsberg et al., 2017).

The only study focusing on X-ray imaging Al Arif et al. (2018) used a
6-layered FCN, with an accuracy of center localization of 93.7%.

Similar to the Conventional Machine Learning segmentation studies,
the ground truth in the Deep Learning segmentation publications is based
on manually determined ground truth by (clinical) experts. The majority
of the included studies regarding Deep Learning segmentation methods
used both internal and external comparison of their results (n ¼ 9). Re-
sults were reported for the whole spine and cervical spine, in 2 and 4
studies, respectively. In 6 studies, half of the total number of studies
related to Deep Learning segmentation methods included, the results
were reported for both the cervical part and the whole spine (Table 3b).

3.3.3. Cervical Spine Analysis
There was a total number of 19 studies included involving cervical

spine analysis, of which four studies focused on MR imaging, two studies
focused on CT imaging, and the majority of the studies used X-ray im-
aging (n ¼ 11). The aims of the included studies could be further divided
into five subgroups; 1. Biomechanical analysis (n¼ 7), 2. CVM stage (n¼
3), 3. Clinical prognosis/prediction (n ¼ 2), 4. Image registration/Plan-
ning (n ¼ 4), 5. Clinical/Radiological Feature detection (n ¼ 3).

Two studies included both CT and MR imaging, of which du Bois
d'Aische et al. (2007) included PET imaging as well. The use of
two-dimensional and three-dimensional visualizations were equal (n ¼
9), and the remaining study of Kage et al. (2020) (Kage et al., 2020) used
a combination of 2D and 3D imaging. Most studies included vertebrae
C2–C6, of which several expanded with inclusion of the vertebrae C1, C7
or T1. Other studies used a smaller area of the spine, vertebrae C2–C4,
which had the aim to determinate the CVM stage K€ok et al. (2019) and
Amasya et al. (2020)). The study by Dzyubachyk et al. (2013) was the
only one to include the entire spine in the analysis model, with the aim to
create an automated reconstruction of the complete spine, based on
multistation 7TMR images. The authors applied intensity inhomogeneity
correction and used coherent local intensity clustering (CLIC) and
fuzzy-c-means-clustering. The performance of the model by Dzyubachyk
et al. (2013) was validated based on 18 different datasets, which showed
a mean registration error of 0.53 mm, which was lower than the MR
image pixel size and showed thereby sufficient accuracy.

A wide range of methods was deployed. The best method for radio-
logical feature detection is a CNN model, while the SVM model gave the
best result in terms of clinical classification. The ANN approach was re-
ported to work best for CVM stage determination and the FE model, in
11
combination with X-ray imaging, is the most-used method for biome-
chanical analysis of the spine. In the included spine analysis studies, the
amount of fully and semi-automated methods was 7 and 12, respectively
(Table 4).

3.4. Quantitative synthesis

It was considered to pool accuracy rates in the Conventional Machine
Learning and Deep Learning segmentation groups, however it was found
that outcomes in the included studies were too heterogeneously reported
for doing so. Authors chose to report different outcome metrics and the
majority did not report on uncertainty metrics (confidence intervals,
standard errors, standard deviations or p-values) with their primary
outcome. Pooling the data would therefore require statistical imputation
for the majority of the uncertainty metrics. Subsequently, this means that
heterogeneity tests, such as the I2, were not performed, as data could not
be pooled.

4. Discussion

In this systematic review an overview was provided of the literature
on the available Machine Learning techniques for automated image
analysis of the cervical spine on radiological imaging. The results of the
included studies show a wide variety of possibilities in Machine Learning
methods, depending on the aim of the application and the available
modalities. In segmentation models, Deep Learning methods show
promising results with the application of (fully automatic) CNN models
using X-ray, CT or MR imaging. Regarding cervical spine analysis, the
biomechanical properties are most often studied using finite element
models. The application of artificial neural networks and support vector
machine models looks promising for other classification purposes.

Most of the published work on image analysis of the spine focusses on
the (thoraco-) lumbar spine. This can be explained by the higher preva-
lence of lumbar spine pathology, as compared to cervical spine pathol-
ogy. However, this study, focusing on the cervical spine, is the first of its
kind and we therefore believe it can be used as a reference study for all
researchers aiming to use radiological image analysis for the cervical
spine, as well as other diseases in the neck area.

Unfortunately, results in this systematic review were too heteroge-
neously reported and therefore pooling the results was not possible.
Reporting outcomes clearly and homogenously is an important require-
ment to compare performance among publications. The authors of this
review want to plead for more consistent reporting of outcomes, i.e. the
same set of outcome variables for every segmentation, classification or
prediction study in order to increase the external validity and



Table 3a
Conventional Machine Learning Segmentation articles extracted outcomes.
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Table 3b
Deep Learning Segmentation articles extracted outcomes..
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reproducibility of these type of studies. Several guidelines that describe
the appropriate reporting process for Machine Learning studies have
been published (Heil et al., 2021; Luo et al., 2016). However, after
reviewing the vast amount of data from the included studies in this
systematic review it can be concluded additional guidelines for reporting
specifically on image analysis studies using machine learning, are
needed. Apart from the recommendation to report a minimal of accuracy
(in percentages from 0 to 100%) and error (in mm), reporting uncertainty
metrics (confidence intervals, standard errors or standard deviations)
with the primary outcome metrics should be required, as it is essential in
order to unify the reporting process and aids pooling of results from
future studies. Another essential recommendation is for authors to share
code. The majority of publications included in this systematic review did
not share their code. Creating an academic environment in which code
sharing is promoted is essential to keep improving the work in this field.

The concept of ‘Grand Challenges’ presents a promising alternative to
current comparative research on the topic of image analysis, by elimi-
nating a range of biases. The aim of these public challenges is to let
participants apply their algorithms to the provided Grand Challenge task,
using the public test set of images provided by the challenge organizers.
In a Grand Challenge organized for analysis of breast histology images, a
total of 64 submitted algorithms improved the state-of-the-art in classi-
fication of microscopy images to an accuracy of 84% (Aresta et al., 2019).

This systematic review demonstrates a solid body of evidence
describing effective segmentation of the cervical spine, with CNN
15
achieving highest accuracy combined with the lowest computing times.
Additionally, publications on the different applications for cervical spine
analysis show high potential for Machine Learning for several classifi-
cation and prediction tasks. However, the possibilities for implementa-
tion are far-reaching and several newer applications still deserve more
attention in future research, including; automated detection, localization
and classification of degenerative changes, specifically in the cervical
spine. On thoracolumbar CT machine learning was used for automated
detection of sclerotic metastases and detection, localization and classi-
fication of traumatic vertebral body fractures (Burns et al., 2013, 2016),
something that has not been done for the cervical spine yet. On thor-
acolumbar lateral X-rays the intervertebral disc height measurements
were conducted for 1186 participants using machine learning (Allaire
et al., 2017), while the study included in this review on the same topic for
the cervical spine showed results for only 1 patient (Tan et al., 2012).

The challenges in future research are not just in focusing on the
cervical vertebrae or increasing the numbers of images, but also in the
integration of different models into one fully automated pathway.
Incorporating both radiological and clinical parameters into a fully-
automatic model and implementing those into the clinical workflow is
the end goal. As was established in this review, the detection and seg-
mentation of the cervical spine have achieved sufficient attention in
research, but it is the clinically important classification and prediction
tasks, and combining those with detection and segmentation into a fully
automatic structure, what future research should focus on.



Table 4
Cervical Spine Analysis articles overview and extracted outcomes.
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