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Abstract

Background: Bioinformatic research is increasingly dependent on large-scale datasets, accessed either from private or
public repositories. An example of a public repository is National Center for Biotechnology Information’s (NCBI’s) Reference
Sequence (RefSeq). These repositories must decide in what form to make their data available. Unstructured data can be put
to almost any use but are limited in how access to them can be scaled. Highly structured data offer improved performance
for specific algorithms but limit the wider usefulness of the data. We present an alternative: lightly structured data stored in
Apache Kafka in a way that is amenable to parallel access and streamed processing, including subsequent transformations
into more highly structured representations. We contend that this approach could provide a flexible and powerful nexus of
bioinformatic data, bridging the gap between low structure on one hand, and high performance and scale on the other. To
demonstrate this, we present a proof-of-concept version of NCBI’s RefSeq database using this technology. We measure the
performance and scalability characteristics of this alternative with respect to flat files. Results: The proof of concept scales
almost linearly as more compute nodes are added, outperforming the standard approach using files. Conclusions: Apache
Kafka merits consideration as a fast and more scalable but general-purpose way to store and retrieve bioinformatic data, for
public, centralized reference datasets such as RefSeq and for private clinical and experimental data.
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Key Points
� Big genomic datasets are generally available in formats that

are either very general but slow to access or faster to access
but too specific to a given algorithm. Taking National Center
for Biotechnology Information’s (NCBI’s) Reference Sequence
(RefSeq), for example, it’s either available via the search in-
terface itself (fast but specific) or as flat fasta files that can be
FTPed (file transer protocol) from NCBI.

� Apache Kafka offers a unique architecture that can be har-
nessed by bioinformatic organizations to make data available

at high speed, in a flexible manner, without committing too
early to an algorithm-specific structure.

� Apache Kafka is persistent; it stores its data in a distributed
and replicated fashion on contiguous disk space using an
append-only log data abstraction. It is also fluid; data can be
continuously updated and ”compacted” in order to keep the
data ”live.”

� We measured the speed and scalability of Apache Kafka in
relation to flat fasta file access from RefSeq to give a sense of
the gains that can be made thanks to this optimized struc-
ture.
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2 Field of Genes

� Given these characteristics and its excellent integration with
complementary tools such as Spark, Flume, NiFi, Hadoop,
and others, we propose Apache Kafka as a ”data nexus” that
bridges the gap between low-structure/low-speed and high-
structure/high-speed solutions. We feel this is suitable to
larger organizations to store either public or private genomic
databases for general-purpose processing or for easier trans-
formation to more specialized data formats.

Background

Bioinformatic data are available from a number of authorita-
tive organizations. One such example is the Reference Sequence
(RefSeq) database, which maintains records of genomic DNA
for model organisms [1]. RefSeq is maintained by the National
Center for Biotechnology Information (NCBI),and its website in-
cludes three mechanisms for accessing the data: by search-
ing for sequences using the Basic Local Alignment Search Tool
(BLAST) program, by downloading the database files used by
BLAST, and by downloading the underlying fasta files used to
create the database.

BLAST is an invaluable tool for bioinformaticians who are
searching for a particular genetic sequence [2]. It performs an
alignment of a query sequence against a database of known se-
quences, returning results based on similarity. However, BLAST
is a search engine, not a database. If the data are presented
only through this search engine, all we can do with that data
is search.

On the other hand, if we have access to the raw data, we
can process it in any way we need in order to answer biologi-
cal questions. NCBI provides a means for retrieving the under-
lying raw data by accessing the anonymous file transfer pro-
tocol (FTP) server (ftp://ftp.ncbi.nlm.nih.gov/), navigating to a
database folder, and downloading the contents. In the case of
RefSeq, this means downloading (at time of writing) 217 files
of approximately 1 GBeach. Each file must be unzipped and un-
tarred in order to reveal a number of BLAST-specific binary files.
Those binaries can then be converted into text fasta files by
means of a Linux-based BLAST command-line tool supplied by
NCBI [3]. Each 1-GB download expands to around 4 GBwhen con-
verted to fasta format, so the result of downloading RefSeq is al-
most 1 TBof data spread across a few hundred fasta files, stored
on a local drive.

This structure limits the usefulness of the data, in partic-
ular, by hindering parallelization. If we wish to process every
sequence in a group of fasta files, our parallelization factor is
limited to the number of files, as each file must be read from
start to finish by one process or thread. Here, we measure these
structure-based limits and present an alternative, using Apache
Kafka to overcome them.

The structure of data

Data may be presented in many different ways for different
users, depending on who they are and what they want to do with
the data. This structure constrains the way in which such data
may reasonably be used.

One characterizing quality of bioinformatic data is that the
data are vast and growing. From an engineering perspective, the
only rational way of processing this data is in a parallel fash-
ion. Consequently, our data should be structured in a way that
facilitates this.

What are the properties of such a structure? We propose the
following nonexhaustive list of such properties.

Distribution
In order to free the data of hardware bottlenecks such as network
adaptors, central processing units (CPUs), and memory, paral-
lel data should be distributed across multiple machines. This is
analogous to exposing the largest possible working surface area
of data, in contrast to the limiting effect of storing all data on one
physical server. To use a biological metaphor, when data are not
spread out over a network, it is like a gene whose DNA is super-
coiled around its histones and so cannot be expressed.

Reliability
It is a property of distributed systems to be both more and less
reliable, in the sense that they no longer have a single point of
failure (more reliable), but on the other hand, there are more ele-
ments that can break (less reliable). Distributed data’s structure
should protect it from this latter effect while promoting the for-
mer.

Streaming
The advantage that streaming brings is that consumers of a
stream do not have to wait until all data are downloaded be-
fore beginning to process that data. An everyday example of
this is Netflix, the Internet streaming service for movies. In con-
trast with previous models of download-and-view, where the
movie must be downloaded entirely before viewing can begin,
with Netflix it takes 90 minutes to watch a 90-minute movie.
The streaming advantage is particularly relevant for biological
data that are often processed in pipelines, i.e., serialized stages
of processing where the output of one stage acts as the input to
the next. Although not all bioinformatic processing can be per-
formed on partial data, much of it can, and by including this
element of streaming, we allow for an extra dimension of paral-
lelization when processing genomic data.

Apache Kafka

Apache Kafka [4] is not commonly considered to be a database.
It is generally viewed as a message broker, i.e., an intermedi-
ary program that transfers messages (general-purpose units of
information) either asynchronously or synchronously from one
program to another via a topic. In this capacity, it has been iden-
tified in previous research as a suitable technology for bioinfor-
matic applications [5]. However, Kafka’s developers at LinkedIn
implemented it with a wider scope of usage in mind, includ-
ing “source-of-truth data storage” [6]. Kafka’s topics are imple-
mented as (distributed) transaction logs, an abstract data type
to which new data are only ever appended, never overwritten.
Moreover, Kafka topics can be configured to never expire; this
means that the same data can be read over and over again. Top-
ics are stored in contiguous disk space, much like files, confer-
ring important speed advantages. However, a single topic may be
traversed by a number of co-operating readers in parallel. These
features combine to allow Kafka to operate as a data repository
with extremely high read and write speeds.

In the following paragraphs, we describe some of the features
of Kafka and explain how they confer the parallel properties we
seek.

Consumers and producers
A Kafka installation is comprised of a cluster of Kafka brokers on
which independent producers (writers) and consumers (readers)
operate. The same piece of software can be both a consumer and
a producer. We comment further on the importance of this fact
later in the article.
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Figure 1: Anatomy of an Apache Kafka topic and partitions (from the Apache

Kafka website).

Figure 2: Consumer groups (from Apache Kafka website).

Partitions
Topics are normally single entities in message brokers, but in
Kafka, they are divided into partitions, as shown in Fig.1. The
partition is the unit of parallelization. If a topic is configured
to have N partitions, then N consumers can read independently
and in parallel, but in concert, from the same topic. Topics can
also be configured to have a replication factor, R. This is the num-
ber of copies of a partition maintained across the cluster, so that
if up to R− 1 machines in the cluster fail, no data are lost. For ex-
ample, if a cluster has seven nodes and a replication factor of 3
for all topics (i.e., each partition has 3 copies, each on a different
machine) then a loss of any 2 machines (R− 1) cannot delete all
copies of any partition. Importantly, partitions also confer scal-
ability. Topics can become arbitrarily large, holding more data
than any given machine in the cluster can permit.

Consumer groups
Another important feature of Kafka is the concept of a consumer
group. Figure 2 shows a small cluster with two servers and a sin-
gle topic broken into four partitions. Kafka allocates one parti-
tion each to the four consumers of consumer group B. However,
in consumer group A, where there are only two consumers, each
consumer is given two partitions to read. This organization al-
lows a group of consumers to collaborate in order to ”drain” a
topic in parallel.

Another important thing to note is that any given partition is
only read by one consumer within a consumer group at a time.
This means that the order of reading is preserved for any given
partition. Because order is preserved, we can know when a parti-
tion has been completed by adding a ”back marker” at the end of
each partition. This adds another useful element to Kafka-as-a-
data-store. We can do an exhaustive sweep of a topic and know
when we have touched everything.

Producers and message keys
In contrast to consumers that are dedicated to one or more par-
titions, producers can insert data into any partition of a topic.
Every message is composed of an optional key and a value. Pro-
ducers use a partitioning strategy to select a destination parti-
tion based on the key of the message or they can choose a ran-
dom partition where no key is present. This strategy can be cus-
tomized by any given producer.

Log compaction
Another important and useful aspect of message keys is their
role in log compaction. As mentioned earlier, messages are con-
tinuously appended to partitions and do not overwrite old val-
ues. However, Kafka has a mechanism for dealing with cases
where new values for old messages are sent or where messages
are deleted. This is called log compaction and works as follows:
on a scheduled basis, Kafka will recopy a partition, moving from
oldest to youngest message and removing any messages that
have a younger version (based on key identity). Deletion of mes-
sages is brought about when the youngest message with a given
key has a null value.

Thanks to this mechanism, Kafka can continue to append
new messages to topics without the topic growing indefinitely. In
other words, in contrast to using files, new and changed data can
be made available to users without obliging them to download
very large files that contain very few changes. Of course, where
new keys are added, the amount of space needed will increase
over time, and Kafka caters to this by allowing new brokers to be
added to the cluster and then rebalancing the load. This aspect
of Kafka entails a certain level of complexity in the management
of the cluster and this is discussed in the Discussion section.

Streaming
Finally, the Kafka application programming interface (API),
which is available in the Java language, includes support for
streams. Moreover, many other frameworks and platforms, such
as Flume and Spark, have developed their own stream-based
Kafka integration libraries.

More recently, Kafka libraries have emerged to support the
Reactive Streams API [7], which includes the automatic manage-
ment of back pressure when chaining many streams together
into a pipeline. As part of our research, we used a Scala-based
library from the Akka framework 8].

Methods

In order to measure the performance characteristics of a Kafka-
based genomic data repository with respect to flat files and also
to understand what other properties might emerge from such an
implementation, we produced a proof of concept that loads up
to 11% of the RefSeq database into a single Kafka topic, spread
over 4, 8, and 12 cloud servers. Each message in the topic is either
a full sequence or a part thereof in the case of sequences larger
than 100,000 nucleotides. In order to convey the image of the ex-
tended ”‘working surface area” that we seek to create, we named
this proof of concept ”Field of Genes.” What follows is a descrip-
tion of how to build the Field of Genes and how to measure its
performance and scalability. Measurements of its performance
with respect to the use of flat files (the de facto alternative) are
presented in the Results section.
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Figure 3: NCBI download agent.

Field of Genes

To facilitate reproduction of our findings for independent ver-
ification, we made extensive use of Docker to deploy Field of
Genes. While it is outside the scope of this article to describe
Docker in detail, we refer readers to a number of articles that
propose the wider use of this technology to enhance repro-
ducibility in bioinformatics [9-12], an issue that we previously
highlighted [13].

What follows are the steps taken to create and populate the
Field of Genes and to measure its performance and scalability.
Where appropriate, we indicate the name of corresponding soft-
ware modules under source control [14].

Computational fabric on the cloud
The data storage and computational fabric for Field of Genes
is built on a Kubernetes cluster [15] using Google Container
Engine (https://cloud.google.com/kubernetes-engine/). We cre-
ated clusters of hosts (4, 8, and 12, depending on re-
quirements), each with 8 vCPUs, 30 GB of memory, and
750 GBof solid state disk hard drive space, using gcloud
(https://cloud.google.com/sdk/gcloud) from a Linux command
line.

Kafka cluster deployment
On this Kubernetes cluster we deployed an equal number of
Kafka broker instances. We were able to use off-the-shelf Docker
images for Kafka, so no extra coding was required. We used open
source examples of Kubernetes instructions to manage the de-
ployment.

NCBI file upload java library
We then developed Java library code (module loader) to down-
load, untar, unzip, and convert a single RefSeq file from NCBI.

Scala/Akka loader agent
Finally, we used the Scala language and the Akka streams API
library to create a loader agent. This is a small autonomous
program that processes instructions from one Kafka topic, uses
the Java library to download the contents of a single NCBI file,
and then sends the downloaded sequences to another Kafka
topic (loader-agent module). We chose Scala and Akka because
they are suited to parallel and streamed programming. However,
given the wide range of programming platforms that have good
Kafka integration, the agents could have been implemented in
one of many other ways (e.g., as Flume agents or using Spark).

Figure3 is a representation of this agent. It shows a process
that downloads from the NCBI FTP site and pushes sequences
to a RefSeq topic. The figure also shows that Kafka topics have
been used to send instructions to the agent. When choosing how
to send instructions to the agents and how to receive responses,
it made sense to use the Kafka infrastructure already in place.

This design decision had interesting beneficial effects that are
examined in the Emerging Characteristics subsection.

Scala/Akka loader agent deployment
Using Kubernetes, we deployed the loader agent using different
levels of parallelization, 4, 8, 12, 16, 20, and 24, to obtain an in-
dicative download speed for each level, as well as to test for lin-
earity of scalability. Note that as we raised the level of paral-
lelization, we similarly increased the amount of data to be pro-
cessed by increasing the number of downloaded files. We are
measuring how well the benchmark and the Field of Genes can
adapt to high load. A scalable system should show a flat hori-
zontal line for time taken as both load and parallelization are
increased in tandem.

Each agent was part of the same consumer group with regard
to the loader instructions topic that, as explained in the Apache
Kafka subsection, means that the partitions of that topic were
evenly allocated across the agents. We set the number of parti-
tions of the loader instructions topic to be the same as the level
of parallelization.

The producer responsible for writing to the loader instruc-
tions topic used incremental numeric keys for the messages and
relied on the default partitioning strategy (also explained in the
Apache Kafka subsection). In this way, we could be confident
that the instruction messages were spread evenly across the par-
titions.

These configurations combined to ensure the most efficient
spread of data and computation across the cluster.

Loader measurement and benchmark
For each level of parallelization, we measured the time elapsed
from when the first loader instruction message was sent to
when the last RefSeq sequence was written to its destination
topic.

Our benchmark for comparison was a single server of exactly
the same specifications as those used by Field of Genes, using
multithreading to achieve whatever levels of parallelization the
system could support. Our hypothesis was that by spreading the
genomic data over a wider ”working surface area,” we can attain
levels of parallel access and scalability that more than compen-
sate for any performance loss due to transmitting data between
machines. Therefore, this benchmark architecture, i.e., a single
server where no network traffic is required and no streaming is
performed, is appropriate.

The Docker technology allowed us to reproduce the same
server environment and change only the software components
under test. This was accomplished by creating a single Docker
host and deploying a single container that, with varying num-
bers of threads, downloads from NCBI using the same Java li-
brary the Field of Genes agents used. Note, however, that due
to the limitation of using a single node, compared to a cluster,
we were not able to run the benchmark to the same levels of
parallelization as with the experiment. As will be seen from the
results reported in the Results section, we still arrive at a useful
comparison of absolute performance and relative scalability be-
tween the benchmark and Field of Genes. The very fact that we
were limited in how parallel we could make the benchmark is
an indication of the problem we are addressing and the suitabil-
ity of our proposed solution. This is discussed in the Discussion
section.
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Figure 4: GC content agent.

GC content calculation example

The previous subsection described how the Field of Genes is con-
structed and populated with RefSeq data. In this section we de-
scribe one implementation of a bioinformatically useful agent
that operates on that data. The ratio of cytosine and guanine
bases (the Cs and Gs of the genetic code) to adenine and thymine
(the As and Ts) is a biologically meaningful property of any given
DNA sequence [16]. Measuring this value for a large number of
sequences is an example of a parallel processing problem and
therefore is suitable as an initial test for the Field of Genes, as
well as a good placeholder for more sophisticated processing (gc-
content module).

Gc-content agent
The elements of this implementation are very similar to the
loader agent elements of the previous subsection. We construct
and deploy (using varying levels of parallelization) independent
agents that consume from some topics and produce into oth-
ers (gc-content-agent module). Figure 4 gives an overview of this
agent.

From this we can see that the output of the loader agent has
become the input of the GC Content agent, hinting at the oppor-
tunity to parallelize these tasks into a streaming pipeline, as dis-
cussed earlier. Moreover, there is another discernible opportu-
nity here, which is the pipelining of responses and instructions.
We explore some aspects of this in the Emerging Characteristics
subsection.

GC content agent deployment
As with the loader agent experiment, we used Kubernetes to de-
ploy the GC Content agent with increasing levels of paralleliza-
tion. In each case, we set the number of GC Content Instruction
partitions to be the same as the level of parallelization.

GC Content measurement and benchmark
The measurements taken for GC Content using Field of Genes
are used to gauge if this architecture leads to improved perfor-
mance and scalability. As with the Loader experiment, we com-
pare Field of Genes to a multithreaded, single-server solution us-
ing a single instance of precisely the same server configuration.
For the same reasons given in the section on the loader agent
benchmark, we consider this a valuable comparison. Again, our
measurements are made by increasing the parallelization factor
and the amount of data to be processed, in tandem, looking for
a flat system response.

The method of measurement for Field of Genes in this case is
slightly different than the loader measurement. streams are ef-
fectively infinite sources of data. In order to know when a stream
is ”complete,” we either set some ”back-markers” in each parti-

Table 1: Download times (seconds)

T/A DLb DLFoG − 4 DLFoG − 8 DLFoG − 12

4 94 96 116 99
8 216 179 165 152
12 333 381 174 146
16 445 508 259 202
20 395 214
24 484 275

T/A: number of threads (Benchmark) or agents (Field of Genes). DLb: download
on Benchmark. DLFoG − 4: download on Field of Genes cluster, size 4, etc.

Figure 5: Scalability of download.

tion to indicate that the end has been reached or we wait for the
system to reach a kind of equilibrium where the output is no
longer changing. The notion of equilibrium is discussed in the
Discussion section.

We chose this latter approach for our experimental measure-
ments. Using Kafka’s administration API, we regularly measured
the size of the output topic. The stream was considered com-
plete when its size did not change in a defined period of time; in
our case, two consecutive periods of 10 seconds.

Results

Table 1 shows the download time in seconds for the Benchmark
(DLb) and Field of Genes with 8 and 12 servers in the cluster, re-
spectively (DLFoG − 8 and DLFoG − 12). Each row shows the results for
the same fixed number of RefSeq files and level of paralleliza-
tion, threads in the case of the Benchmark and agents in the
case of Field of Genes (T/A). Note that the last two rows of the
Benchmark are empty as the single server did not have enough
space to store 20 files or more.

When we plot these download values with parallelization
factors along the X-axis and download time on the Y-axis, as
shown in Fig.5, we can compare how well the two options scale
up. A flat horizontal line represents perfect scalability where the
overall time to download does not change when extra data are
added, as long as the parallelization factor increases to the same
degree. In this kind of plot, the scalability can be seen to be
inversely proportional to the slope of the line. The greater the
slope, the less scalable the system.

The same formats of data (Table 2) and plot (Fig. 6) are pre-



6 Field of Genes

Table 2: GC content times (seconds)

T/A GCb GCFoG − 4 GCFoG − 8 GCFoG − 12 Sequences

4 207 260 260 270 1.56· 105

8 335 275 261 262 3.1· 105

12 498 326 276 249 4.58· 105

16 664 475 288 274 6.16· 105

20 315 284 7.7· 105

24 348 286 9.27· 105

T/A: number of threads (Benchmark) or agents (Field of Genes). GCb: GC content on Benchmark. GCFoG − 4: GC content on Field of Genes cluster, size 4, etc.

Figure 6: Scalability of GC content.

Figure 7: Processing rates of GC content (seq/sec).

sented for the case of the GC content processing. In this case, we
see a departure between the 8-node and 12-node cluster behav-
ior. The limits of scalability for the 8-node cluster start to arise
between 20 and 24 RefSeq files, for reasons discussed in the Dis-
cussion section. The 12-node cluster, however, is able to extend
scalability further.

Whereas the previous plots are designed to show scalabil-
ity, Fig. 7 compares the raw performance of the Benchmark and
Field of Genes systems using sequences per second as a metric
(where sequences are strings of genetic code up to 100,000 char-

acters long). In this format, the greater the value on the Y-axis,
the better the system performs.

Discussion
Interpretation of results

The results presented in the previous section lead us to draw a
number of clear conclusions.

When downloading data from NCBI, the two alternatives
show very different characteristics. The Benchmark solution is
similar to the Field of Genes with four nodes. The Field of Genes
performance improves as the number of nodes increases. Note
that while the Benchmark process downloads, unzips, and con-
verts the RefSeq files from NCBI, the Field of Genes process does
all this and then writes the sequences to Kafka.

The GC content processing presents a similar picture, but,
in this case, even the four-node Field of Genes cluster per-
forms better than the Benchmark. This advantage becomes
more pronounced as the cluster size increases. The 12-node
cluster shows an effectively flat response, indicating almost per-
fect scalability. This ability to arbitrarily extend performance by
scaling out (distributing across more nodes) is one of the fea-
tures of Kafka that makes it such a suitable repository for bioin-
formatic data.

Emerging characteristics

Implementing any software system involves a certain amount of
”on-the-fly” design. One can never know what the complete so-
lution will be until the finer complexities have been encountered
and dealt with in the code itself. This is what is meant by the
term ”emergent design”, and it is a useful exercise to look back
on any implementation, including (in fact, especially) proofs of
concept, in order to see what else can be learned from the ex-
periment beyond the original hypothesis.

In the case of Field of Genes, we would like to point out two
unanticipated features that we believe may be worth building
on.

First, we note that a system that uses Kafka to store data
will also tend, for expediency, to use Kafka to store instructions.
This is especially the case when large numbers of autonomous
agents operating on the data need to be coordinated. An emerg-
ing feature of this tendency is the ability to pipeline not only
the data but also these instructions, so that the results from
one agent might trigger the behavior of another. As we do not
wish to spend too much time predicting where this may lead,
it is enough for now to point out something that every biolo-
gist knows: from many small and simple co-operating elements,
very complex and intelligent pathways may be constructed.

Second, another feature of stream-based programming,
which we touched on when describing measurement in the GC
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Content Calculation Example subsection, is the idea that a pro-
cess in some sense may never be finished and, instead, arrives
at equilibrium, at which point the most recent results may be
read off a final topic. As new source data are fed upstream into
such a system, it creates a ripple of computation, resulting in a
refreshing of the final results. While this is not the behavior that
is typically expected of software systems, in the era of big ge-
nomic data that is constantly changing, it may become accepted
as a suitable paradigm.

Drawbacks and alternatives

Given its characteristics, Kafka is not suitable for some appli-
cations and contexts. It is complex software that is designed
to run in a cluster, so it can be difficult to deploy and main-
tain correctly. For this reason, at least for the time being, it is
suitable only for teams with specialized software engineering
skills. We believe that this situation will improve over time as
Kafka becomes easier to deploy in a containerized setting. We
also note recent commercial offerings of “Kafka as a Service,”
(see https://www.cloudkarafka.com or https://www.confluent.io
for examples) which would outsource this complexity.

There are alternative systems available whose characteris-
tics overlap with Kafka. One such system is Apache Flume [17].
The overlap in their functionality relates to the fact that both
Kafka and Flume are message brokers; they provide a channel
for message producers and consumers to exchange data.

However, there are significant design differences that sepa-
rate them. Most importantly, Kafka is designed to be persistent
and replicated, making it suitable as a primary data repository.
Flume typically uses in-memory queues, which lose data in the
event of a failure. While Flume more recently includes a file-
based channel, this is not replicated and so is only as reliable
as the disks that it uses.

The point is that there are “horses for courses.” Flume
should be considered primarily a platform for transporting and
transforming data, especially data intended for Hadoop storage.
Kafka, while also transporting general-purpose data, was de-
signed from the outset to persist that data in a replicated fash-
ion. We describe how these differences can be harnessed in a
collaboration in the next section.

Potential implications

Field of Genes presents a fast and scalable access point to raw
data and has a structure that is independent of any particular
algorithm. It is an open-ended system that can accept updates
in real time and propagate those updates onward. Given this, it
would make a suitable central repository or nexus into which
bioinformatic data could be sent from a variety of sources and
from which bioinformatic data could be accessed for a variety of
uses. We envisage two kinds of usage scenarios.

The first scenario would be to use Kafka as an initial stag-
ing point (and potentially source-of-truth repository) of low-
structure data, to be converted to high-structure data of different
formats including, but not limited to, Cassandra and BLAST.

Kafka has good integration points with many other technolo-
gies, and so is well placed to act as a parallelized and streamed
data nexus.

Upstream, a system such as Apache NiFi [18] or Apache
Flume could be configured to load data into Kafka topics. Down-
stream, Kafka topics can feed into databases and computation
platforms as diverse as Cassandra, Hadoop, Flume, Spark, and
BLAST. For example, Kafka’s disk-stored topics could be the data

source for Spark’s resilient distributed datasets (RDDs), an espe-
cially interesting use case when the RDD storage level is con-
figured to be “memory only.” These high-structure platforms
would serve as the basis for SQL-like queries (on Cassandra or
on Hadoop with the help of Phoenix) or more specialized queries
(such as BLAST searches). Such downstream high-structure data
could be continuously updated as new data are appended to
Kafka.

The contrasting features of Flume and Kafka can make them
ideal partners in a single data ecosystem. Flume-Kafka integra-
tions (informally “Flafka”) have been developed to make it eas-
ier to write Flume agents to act as producers and consumers of
Kafka topics.

The second scenario would be the use of Kafka as a platform
for performing high-speed, parallel processing directly on the
low-structure data. The gc-content agents described here were
developed in order to demonstrate this second usage scenario
and also in order to demonstrate Kafka’s scalability. However,
this scalability and parallelization would apply to any stream-
based consumer of Kafka topics, even off-the-shelf systems such
as Flume, and not just custom-built agents.

The technology we used for the agents, Reactive Streams us-
ing Scala and Akka, were designed specifically with Kafka in
mind and have been previously described by the authors as suit-
able for genomic applications [19]. However, as stated above,
many other suitably streamed and parallel platforms have good
Kafka integration, freeing users to process the Kafka topics using
their preferred technologies.

Figure 8 represents this dual approach. It shows Kafka as
a central nexus of relatively unstructured data: the “source of
truth.” These data can be processed in place, from one Kafka
topic to another, or transformed into structures more suitable
for specific algorithms.

Suggested applications

The gc-content calculation on RefSeq in our experiment was
chosen to serve as a placeholder for more meaningful work
of the same nature: exhaustive, parallel transformations or
searches on large datasets. Here, we consider some specific po-
tential applications. The following list is intended to be indica-
tive rather than comprehensive:

� Variant annotation: Kafka as a storage for genetic variants with
a view to predicting phenotypes (e.g., disease risks in hu-
mans, antibiotic resistance in bacteria).

� Differential expression analysis: Perform clustering on sequenc-
ing reads (preservation of ordering is important).

� Genomics: Quality control and error correction of large ge-
nomic datasets.

� Taxonomy: Calculation of average nucleotide identity of query
genomes against subject genomes.

To take the last of this list, the OrthoANI [20] algorithm
finds average nucleotide identities between query and sub-
ject genomes by breaking both query and subject into frag-
ments, finding query and subject fragments with reciprocally
best matching nucleotide identities, and using only these recip-
rocal matches to calculate the average nucleotide identity.

In a Kafka implementation, one topic each could represent
the query fragments and another the subject fragments. A con-
sumer group could read the subject fragments topic to com-
pletion, and build a BLAST database using each fragment as a
database entry. It would then stream the query fragment topic
and for each query fragment, find the best match and its nu-
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Figure 8: Example use context of Apache Kafka.

cleotide identity, sending the resulting match (and nucleotide
identity) to an output topic. A second consumer group would do
the same thing, but opposite: reading the query topic to comple-
tion and streaming the subject topic.

The two resulting output topics, from the opposite pro-
cesses above, would be treated differently. One would be read
to completion to create an indexed lookup table in a distributed
database such as Cassandra. The other would be iterated over by
another consumer group, finding cases where the match is re-
ciprocal. Reciprocal matches would be written to a final output
topic from which a running average would be calculated. This
running average would move to the OrthoANI for the query and
subject genomes.

The above, necessarily brief, example demonstrates a num-
ber of advantages of using Kafka:

� A high degree of parallelization (set by the size of the con-
sumer groups);

� A pipeline parallelization (each phase can begin as soon as
output from the previous phase starts to arrive);

� Examples of data format transformation to more structured
data when required (BLAST and Cassandra in this case)

� Examples of data being processed directly from the Kafka
topics (the invoking of BLAST to find matches, and the cal-
culation of running average)

� An equilibrium-based system (the calculation will tend to-
ward the result, even before the processing is complete,
which may be enough to decide whether, e.g., the query and
subject belong to the same species).

Further work

We chose to put RefSeq into a single topic rather than, e.g., divid-
ing it across different topics based on taxonomic classification
of the sequences.

Similarly, while we emphasized the processing of entire sets
of genomic data, we made no mention of the fact that individ-
ual messages in Kafka can be directly accessed based on a three-
values index: topic, partition, and offset. While these were rea-

sonable choices, further research is needed in order to arrive at
optimal design decisions related to this technology.

Creating working systems from proofs of concept is rarely
trivial. In the case of Field of Genes, a distributed, cloud-based
approach that tends toward points of equilibrium, this is espe-
cially true. Such complex clusters require a secondary manage-
ment infrastructure for updating, monitoring, scaling, and sim-
ilar processes. They suffer from particular issues that must be
understood and remediated. For these reasons, further work will
be required in order to implement a stable, public-facing plat-
form based on the Field of Genes approach. Moreover, such an
approach would be more suited, at least initially, to larger in-
stitutions with solid software engineering capabilities and re-
sources.

Availability of supporting data

A snapshot of the code is available in the GigaScience GigaDB
repository [14].

Availability of source code
� Project Name: Field of Genes
� Project home page: https://github.com/blawlor/field-of-gene

s
� SciCrunch RRID: SCR 016155
� Operating system(s): Linux/Docker
� Programming language: Java and Scala
� Other requirements: Docker
� License: Apache 2.0
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