
Oncogene (2018) 37:3924–3936
https://doi.org/10.1038/s41388-018-0245-9

ARTICLE

APOBEC3B and APOBEC mutational signature as potential predictive
markers for immunotherapy response in non-small cell lung cancer

Shixiang Wang1,2,3
● Mingming Jia1,2,3 ● Zaoke He1,2,3 ● Xue-Song Liu1

Received: 24 September 2017 / Revised: 12 March 2018 / Accepted: 13 March 2018 / Published online: 26 April 2018
© The Author(s) 2018. This article is published with open access

Abstract
Non-small cell lung cancer (NSCLC) is known to carry heavy mutation load. Besides smoking, cytidine deaminase
APOBEC3B plays a key role in the mutation process of NSCLC. APOBEC3B is also reported to be upregulated and predicts
bad prognosis in NSCLC. However, targeting APOBEC3B high NSCLC is still a big challenge. Here we show that
APOBEC3B upregulation is significantly associated with immune gene expression, and APOBEC3B expression positively
correlates with known immunotherapy response biomarkers, including: PD-L1 expression and T-cell infiltration in NSCLC.
Importantly, APOBEC mutational signature is specifically enriched in NSCLC patients with durable clinical benefit after
immunotherapy and APOBEC mutation count can be better than total mutation in predicting immunotherapy response. In
together, this work provides evidence that APOBEC3B upregulation and APOBEC mutation count can be used as novel
predictive markers in guiding NSCLC checkpoint blockade immunotherapy.

Introduction

Lung cancer is the leading cause of cancer death worldwide,
and the two main types are small cell lung cancer (SCLC)
and non-SCLC (NSCLC). About 80–85% of lung cancers
are NSCLC, and about 10–15% are SCLC. The three main
subtypes of NSCLC are adenocarcinoma, squamous cell
carcinoma and large-cell carcinoma [1]. NSCLC is known
for its heavy mutation load, and smoking is one major cause
of the heavy mutation load of NSCLC [2]. Besides smok-
ing, expression of APOBEC family members, especially
APOBEC3B was reported as a key source of mutations in
NSCLC [3].

The APOBEC family of zinc-coordinating enzymes
convert cytosines to uracils (C-to-U) in single-strand DNA.
The enzymatic activity of this family member is essential
for both adaptive and innate immune responses [4]. Nota-
bly, APOBEC3B is upregulated, and its preferred target
sequence is frequently mutated and clustered in several
cancers especially NSCLC [3]. Tobacco smoking-related
mutations appear to have a strong role in tumor initiation,
whereas APOBEC-related mutations are more prominent at
a later stage of NSCLC development and are associated
with tumor progression and metastasis [5, 6].

Although it is known that APOBEC3B plays a critical
role in NSCLC, targeting APOBEC3B overexpressed
NSCLC is still a big challenge. It was assumed to suppress
cancer progression through inhibiting APOBEC3B expres-
sion. Currently, there are no available drugs that can inhibit
APOBEC3B expression or function. Traditionally, NSCLC
is treated by radiation, surgery and chemical therapy.
Recently, immunotherapy with antibodies targeting immune
checkpoints programmed cell death protein-1 (PD-1) and
ligand (PD-L1) signaling have been approved for the
treatment of human cancers [7–12]. In advanced NSCLC,
therapies with an antibody targeting PD-1 demonstrated
response rates of 17–21%, with some responses being
remarkably durable [8]. Although clinical studies have
shown promise for targeting PD-1, PD-L1 signaling in
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NSCLC, the factors that predict which patients will be
responsive to checkpoint blockade are not fully understood.

Here we report through systematic cancer genomics and
transcriptomic association studies that APOBEC3B over-
expression is associated with immune gene expression and

known immunotherapy response biomarkers, APOBEC
mutational signature is specifically enriched in patients with
durable clinical benefit (DCB) after immunotherapy and
APOBEC mutation count can be better than total mutation
count in predicting immunotherapy response. Our study
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Fig. 1 APOBEC3B expression, prognosis and mutational signature in
non-small cell lung cancer (NSCLC). a APOBEC3B mRNA expres-
sion in NSCLC primary tumors (n= 1017) and normal control (n=
110) lung tissues are shown. The values of mRNA expression are log2
based normalized count. b Kaplan–Meier overall survival curve of
NSCLC patients are shown. Patients are separated into two groups
based on APOBEC3B mRNA expression. APOBEC3B high (n= 190
with matched survival information) was defined as samples with
APOBEC3B mRNA expression values above the population mean,
whereas the remaining samples were defined as APOBEC3B-low (n=
172). c Correlations between APOBEC3B copy number and mRNA

expression in NSCLC (n= 1017). APOBEC3B-UP (n= 254) was
defined as samples with APOBEC3B mRNA expression values above
the third quartile, whereas APOBEC3B-DOWN (n= 254) was defined
as samples with APOBEC3B mRNA expression values below the first
quartile. d Mutation counts (left panel) and enrichment values of the
APOBEC mutagenesis signature (middle and right panel) between
APOBEC3B-UP (133 samples with matched mutation information)
and DOWN (215 samples matched) NSCLC samples. The boxplot is
bounded by the first and third quartile with a horizontal line at the
median. The notch shows the 95% confidence interval of the median
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Fig. 2 APOBEC3B upregulation is associated with T-effector and
interferon-γ (IFN-γ) gene signature. a Heatmap depicting mRNA
expression levels of genes in T-effector and interferon-γ (IFN-γ) gene
signature. b Quantitative analysis of the genes in T-effector and IFN-γ

gene signature based on APOBEC3B expression status. Both
APOBEC3B-UP and APOBEC3B-DOWN group contain 254 NSCLC
samples. Unpaired Student's t-test was performed and FDR adjusted P-
values are shown
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Fig. 3 APOBEC3B expression positively correlates with PD-L1 and
other immune checkpoint genes expression in NSCLC. a Correlations
between APOBEC3B and PD-L1 mRNA in normal lung tissue (n=
110) and NSCLC samples (n= 1017) are shown. b PD-L1 protein
expression levels were compared between APOBEC3B UP (112 sam-
ples with matched PD-L1 protein expression data) and APOBEC3B
DOWN (99 samples matched) groups based on TCGA datasets. c PD-
L1 mRNA expression levels were compared between APOBEC3B UP
and APOBEC3B DOWN groups based on two NSCLC datasets,

TCGA (n= 254 for both UP and DOWN group) and GSE72094 (n=
111 for both UP and DOWN group) and Cancer Cell Line Encyclo-
pedia (CCLE) dataset (n= 47 for both UP and DOWN group). d
Heatmap representation of relative mRNA expression levels of
selected immune inhibitory checkpoints. e Quantitative analysis of
immune checkpoints gene mRNA expression based on APOBEC3B
expression status (n= 254 for both UP and DOWN group). Unpaired
Student's t-test was performed and FDR adjusted P-values are shown
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implicates APOBEC3B and APOBEC mutational signature
as novel predictive biomarkers for checkpoint blockade
immunotherapy response in NSCLC.

Results

APOBEC3B expression and mutational signature in
NSCLC

NSCLC is a leading cause of death worldwide. Its typical
features include heavy mutation load, and cytidine deami-
nase APOBEC3B has been implicated as an important
source of mutation in NSCLC [3, 13]. APOBEC3B-related
mutational process fuels cancer evolution and treatment
resistance, and still remains a big challenge for NSCLC
treatment. APOBEC3B expression was reported to be

upregulated in lung cancer [3, 14], and this is independently
verified in NSCLC with TCGA datasets (Fig. 1a). However,
how APOBEC3B expression is regulated during cancer
evolution still remain elusive. Our analysis based on public
TCGA database implicates APOBEC3B copy number var-
iation (CNV) is amplified (gistic2 thresholded CNV >= 1
or gistic2 CNV >= 0.1) in 29.9% (304 of 1017) NSCLC
samples, and APOBEC3B CNV significantly positively
correlates with APOBEC3B mRNA (Fig. 1c), implicating
CNV amplification is one driving force for APOBEC3B
mRNA upregulation during cancer evolution. APOBEC3B
CNV is usually co-amplified with the whole APOBEC3
locus.

Increased APOBEC3B predicts worse outcomes in lung
cancer [15]. This was also verified with TCGA NSCLC
datasets (Fig. 1b). Probably APOBEC3B expression stimu-
lates mutation process, and accelerates tumor evolution
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Fig. 4 APOBEC3B upregulation
is associated with increased CD8
+ T-cell infiltration in NSCLC. a
CD8A and CD8B mRNA
expressions were compared
between APOBEC3B UP and
APOBEC3B DOWN groups
based on TCGA dataset. b The
correlation between APOBEC3B
expression status and tumor
microenvironment immune
types classified based on PD-L1
and CD8 expression. Positive
PD-L1 and CD8 were defined as
above-median expression. c and
d Abundance of CD8+ immune
cell infiltration was quantified
based on mRNA expression data
with TIMER (c) or
CIBERSORT (d) (Wilcoxon
test, details see methods). n=
254 for both APOBEC3B-UP
and APOBEC3B-DOWN group
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Fig. 5 APOBEC mutational signature is specifically enriched in
patients with durable clinical benefit (DCB, n= 14) but not patients
with no durable benefit (NDB, n= 17). a, b A Bayesian NMF algo-
rithm was applied to identify signatures from the matrix of mutation
counts across NSCLC patients with DCB a or patients with NDB b.
Three distinct mutational signatures were identified in DCB patients,

whereas NDB samples contain two distinct mutational signatures. c, d
Cosine similarity analysis of identified mutational signatures in
NSCLC with DCB c or NSCLC with NDB d. The specifically iden-
tified W3 mutational signature in DCB patients is similar to previously
reported mutational signature 2, 13, which are known to be caused by
the action of APOBEC
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speed, and thus leads to bad prognosis for APOBEC3B high
NSCLC. We further checked mutation load and APOBEC
mutational signature in NSCLC. Total mutation counts are
significantly upregulated in APOBEC3B UP patients com-
pared with APOBEC3B DOWN patients (Fig. 1d). As
expected APOBEC3B UP also leads to significantly
increased APOBEC-related mutations (Fig. 1d).

Association between APOBEC3B expression and
immune gene expression signature in NSCLC

Due to the critical role of APOBEC3B in lung cancer
progression and prognosis, we investigated the functional
correlation of APOBEC3B expression in both NSCLC
patient samples and lung cancer cell lines. The specifically
enriched signaling pathway in APOBEC3B-overexpressing
samples can be surrogate targets for APOBEC3B. Samples
were separated into two groups based on APOBEC3B
expression. Gene set enrichment analysis (GSEA) was
performed on significantly different expressing genes
between these two groups. Immune response-related gene
sets are among top enriched gene signatures when com-
pared APOBEC3B up with APOBEC3B down samples
(Supplementary Figures S1a and b). These immune
response-related gene signatures include: “Hallmark inter-
feron gamma response” (Supplementary Figure S1a). The
enrichment of immune signature in both NSCLC patient
samples and lung cancer cell lines implicates a cancer cell
intrinsic mechanism for the association between APO-
BEC3B and immune response gene expression. Genes
included in these immune response signatures contain
STAT1, CXCL10, CXCL9 (Fig. 2). Interestingly, the pre-
treatment expression of these immune genes has been
shown as predictive factor in cancer Immunotherapy [16].

Association between APOBEC3B expression and
known immunotherapy predictive biomarkers in
NSCLC

PD-L1 and PD-1 antibody have already been approved for
treating NSCLC. But clinical predictors of response to these
therapies remain incompletely characterized. Currently
known biomarkers of response to anti‑PD-1/PD-L1 thera-
pies include: PD-L1 expression [17, 18], tumor mutational
load [19, 20], DNA mismatch repair (MMR) deficiency [21]
and CD8+ T-cell intensity [22, 23]. We observed a sig-
nificant positive correlation between APOBEC3B expres-
sion and PD-L1 mRNA expression in NSCLC samples (Fig.
3a). APOBEC3B upregulation also leads to significantly
increased PD-L1 protein expression (Fig. 3b). And this
positive association between APOBEC3B and PD-L1 has
been confirmed in different NSCLC databases GSE72094,
and also lung cancer cells lines Cancer Cell Line

Encyclopedia (CCLE) database. This further implicates
cancer cell intrinsic mechanism for APOBEC3B and PD-L1
expression correlation (Fig. 3c). In addition, a significant
correlation between APOBEC3B expression and genes
encoding other immune checkpoints, including PD-L2 was
also observed (Figs. 3d, e).

APOBEC3B upregulation was found to be associated
with significantly increased CD8A and CD8B expression
(Figs. 4a, b). CD8+ T-cell infiltration levels can be quan-
tified based on mRNA expression [24]. Significantly
increased CD8+ T-cell infiltration was observed in APO-
BEC3B UP compared with APOBEC3B DOWN NSCLC
samples (Fig. 4c, d). In together, our analysis indicates
APOBEC3B expression positively correlates with PD-L1
expression and CD8+ T-cell infiltration, two known
immunotherapy predictive biomarkers, suggests that APO-
BEC3B expression itself can be served as a novel predictor
for immunotherapy response.

Specific enrichment of APOBEC mutational
signature in NSCLC with good immune therapy
response

Analyses of tumor-derived genome sequences have shown
that APOBEC over-activation leads to distinct patterns of
base-substitution mutations termed signature 2 and sig-
nature 13 [25, 26]. These mutation patterns, among others,
can be recognized via non-negative matrix factorization
(NMF), a technique used to identify recurring patterns (i.e.,
signatures) in the spectra of mutations from a set of tumors
and to estimate the contributions of these signatures to the
mutational landscape of the individual tumors [26]. It has
been reported previously that total mutation load predicts
immunotherapy response [20], but it was still not known if
some types of mutation is better than other mutation types
in predicting immunotherapy response. We then compare
the mutational signatures between patients with DCB and
patients with no durable benefit (NDB) after immunother-
apy based on recently published NSCLC anti-PD-1 immune
checkpoint blockade therapy dataset [20].

In DCB patients, three mutational signatures are recur-
rently enriched in 100% simulations, whereas in 72%
simulations two mutational signatures are enriched in NDB
patients (Fig. 5 and Supplementary Figure S2). Mutational
signature W3 is the distinct mutational signature specifically
enriched in DCB patients (Fig. 5a, b). Cosine similarity
analysis indicates that W3 is similar to previously reported
mutational signature 2 and 13 (Fig. 5c, d). It is known that
mutational signature 2 and 13 are caused by APOBEC
family members [25, 26]. Thus, only DCB patients show
enrichment of APOBEC mutational signature. The over-
lapping mutational signature W1, W2 in DCB and NDB
patients are predicted to be caused majorly by DNA
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mismatch repair defect and smoking respectively (Fig. 5c,
d) [26]. Interestingly, in 28% simulations only one muta-
tional signature (W2, smoking signature) is enriched in
NDB patients (Supplementary Figure S2), and this is in line
with the fact that DNA mismatch repair (W1 mutational
signature) is already approved as a specific marker for DCB
patients [21]. In together, our study implicates for the first
time that APOBEC mutational signature is specifically
associated with patients with good immunotherapy
response.

Pre-therapy immune gene expression has been shown to
predict immunotherapy response [27]. We compared the
difference between APOBEC signature mutation and other
types of mutation in association with immune gene
expression using 1000 TCGA NSCLC samples. Four
mutational signatures are enriched in this dataset, named as
W1 through W4 (Supplementary Figure S3a). Cosine
similarity analysis indicate W4 signature is caused by
APOBEC (Supplementary Figure S3b). These NSCLC
samples were ranked from left to right based on the average

Log2 expression of 60 immune genes [28], and the con-
tribution of each mutational signatures to all the samples are
listed below (Supplementary Figure S3c). Statistical ana-
lysis indicates only W4 signature (caused by APOBEC)
mutation show significant (P= 0.04656) association with
increased immune gene expression (Supplementary Figure
S3d). This study supports our original observation that
APOBEC mutation could be specific mutation type that are
associated with immune gene expression and immune
therapy response.

APOBEC mutation count can be a novel predictive
biomarker for immunotherapy efficacy

APOBEC activation in cancer leads to elevated levels of
genomic C-to-U deamination events, which manifest as C-
to-T transitions or C-to-G transversions within TCW (W=
A or T) trinucleotide contexts [3]. Combined mutations in
TCW context (including: TCA to TTA or TGA, TCT to
TTT or TGT) can be a represent of APOBEC mutation

Fig. 6 TCW mutation count (APOBEC mutation count) can be better
than total non-synonymous mutation count in predicting PD-1
blockade immunotherapy clinical response. TCW (W=A or T)
mutation count (including: TCA to TTA or TGA, TCT to TTT or
TGT) can be a represent of APOBEC mutation count. a TCW muta-
tion count and total non-synonymous mutation count of 31 NSCLC

patients with durable clinical benefit (DCB, n= 14) or no durable
benefit (NDB, n= 17) after immunotherapy are shown. b The
goodness-of-fit were performed by Hosmer–Lemeshow test, which
showed that the TCW mutation counts is more suitable for predicting
prognosis of patients than total non-synonymous mutation counts
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count. To evaluate, the practical usage of APOBEC muta-
tion count as a predictive biomarker for NSCLC immune
therapy response. We calculate APOBEC mutation count in
the exome sequencing dataset of NSCLC samples with
durable or no DCB to immunotherapy (Fig. 6a). Average
APOBEC mutation count in all NSCLC samples is 23 (n=
31, range 0–222). Interestingly, in all five patients (100%)
with >24 APOBEC mutation count show DCB to immu-
notherapy. The average APOBEC mutation count of DCB
patients is 38 (n= 14), compared with 10 of NDB patients
(n= 17), is 2.8-fold higher. Average total mutation count is
268 (range 11–1192). Eight of 11 (72.7%) patients with
more than average total mutation show DCB after immu-
notherapy. The average total mutation of DCB patients is
384, and is 1.3-fold higher than NDB patients.

Logistic regression is the appropriate regression analysis
to conduct when the dependent variable is dichotomous
(binary). Here we use logistic regression to compare the
efficiency of TCW mutation and total mutation in predicting
immunotherapy clinical response. Relationship between
prognosis (patients with DCB or no DCB) and TCW
mutation count or total mutation count was analyzed. The
goodness of fit was performed by Hosmer–Lemeshow test
(H-L test). The H-L test P-value of total mutation count is
0.0657 (Fig. 6b, left), close to 0.05, implicate the difference
between prediction and expectation is close to significant.
The H-L test P-value of TCW mutation count is 0.5791
(Fig. 6b, right), higher than the H-L test P-value of total
mutation count, suggesting TCW mutation count is more
suitable for predicting prognosis of patients than total
mutation count. This analysis implicates APOBEC mutation
count (represented by TCW mutation count) could be better
than total mutation count in predicting immunotherapy
response, and is in line with the observation that APOBEC
mutational signature is specifically enriched in NSCLC
patients with DCB after immunotherapy.

APOBEC3B overexpression, TP53 mutation and
Nuclear Factor Kappa B (NF-κB) activation in
immune regulation

To investigate the potential mechanism behind APOBEC-
associated immune signature and immunotherapy response.
We further studied the association between APOBEC3B
expression and other common genetic alterations in
NSCLC. TP53 is a frequently mutated gene in NSCLC [29].
Recently it has been reported that TP53 mutation is asso-
ciated with immune gene expression signature, and can be
served as an indicator of immune therapy response [30]. In
breast cancer, it has been reported that APOBEC3B
expression tends to lead to increased TP53 mutation [31].
We found, similar to the situation in breast cancer, APO-
BEC3B expression is also associated with increased TP53

mutations based on two independent NSCLC genomic
databases (Supplementary Figures S4a and b). TP53
mutation is also significantly associated with APOBEC3B
mRNA expression but not CNV status (Supplementary
Figures S4c and d). In addition, we observed that common
NSCLC genetic alterations, KRAS and STK11 mutations,
are associated with downregulated APOBEC3B expression
(Supplementary Figures S4a and b). This different mutation
pattern may reflect the different stages when those muta-
tions happen, as APOBEC-associated mutation tends to
happen in late stage of cancer [5].

It is possible that APOBEC3B expression can directly
lead to TP53 mutation, or the selection of TP53 mutated
cells [31]. Wild-type TP53 was also reported to repress the
transcription of APOBEC3B [32]. Inactivated TP53 can
directly lead to NF-κB activation [33]. And NF-κB was
reported to be able to stimulate the transcription of APO-
BEC3B, PD-L1 and other immune response genes [34, 35].
In TP53 mutated NSCLC, we did observe NF-κB activation
and immune response signature (Supplementary Figure S5).
APOBEC3B upregulation is significantly associated with
both TP53 mutation and NF-κB activation (Supplementary
Figures S6a and b). Thus, APOBEC3B, TP53 and NF-κB
may form an interconnected circuit in regulating immune
response gene expression and consequently immunotherapy
response (Supplementary Figure S6c).

Discussion

APOBEC3B is known to play key roles in NSCLC muta-
genic process, contributing to subclonal diversification,
intra-tumor heterogeneity and tumor evolution [6]. APO-
BEC3B upregulation is also associated with poor NSCLC
prognosis [15]. Here our study is focused on APOBEC3B.
The function of other APOBEC3 family members in cancer
is also been reported [36, 37]. The expression of some
APOBEC3 family members (like APOBEC3A), but not
others (like APOBEC3H) show similar expression pattern
as APOBEC3B (Supplementary Figure 7a). Similar to
APOBEC3B, overexpression of APOBEC3A, but not
APOBEC3H predict poor NSCLC prognosis (Supplemen-
tary Figure 7b). Thus, APOBEC3 family members can play
distinct and also overlapping function in NSCLC. Through
combined cancer genomic mutation analysis and gene
expression analysis, here we identified a significant corre-
lation among APOBEC3B expression and immune gene
expression, tumor immunotherapy response. Thus, our
study suggests immunotherapy as a novel treatment option
for APOBEC3B overexpression NSCLC.

Monoclonal antibodies against PD-1, PD-L1 yield sig-
nificant clinical benefit for lung cancer patients by inhibiting
immune checkpoint activity, but clinical predictors of
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response to these therapies remain incompletely character-
ized. Based on existing publications, the predictive markers
for immune checkpoint inhibitor therapy include: PD-L1
expression [17, 18], tumor mutational load [19, 20], DNA
mismatch repair (MMR) deficiency [21] and CD8+ T-cell
intensity [22, 23]. We found APOBEC3B upregulation is
positively associated with PD-L1 expression and immune
cell infiltration, two known markers for immunotherapy
response. Interestingly, a recent study also reported the
association between PD-L1 expression and Kataegis muta-
tional signature (caused by APOBEC), APOBEC3 expres-
sion [38]. Our results substantiate this observation, and
additionally provide evidence to support the potential usage
of APOBEC3B expression and APOBEC mutational sig-
nature as predictive biomarker for immunotherapy response.

Further study indicates that APOBEC mutational sig-
nature is specifically enriched in patients with good
immunotherapy response, and APOBEC mutation count
can be better than total mutation load in predicting immu-
notherapy response. As immune checkpoint blockade ther-
apy is already in clinical use for NSCLC, APOBEC3B and
APOBEC mutation count can be novel predictive markers
for immune therapy response. DNA mismatch repair defi-
ciency has recently been approved by FDA as the first
tissue-agnostic biomarker for immunotherapy with pem-
brolizumab (anti-PD-1 antibody) [21]. APOBEC mutation
is also widespread in human cancer patients, it is possible
that APOBEC mutation in other types of cancer can also be
served as biomarker for predicting immunotherapy
response.

Based on association study, APOBEC3B, TP53 and NF-
κB form an interconnected circuit in regulating immune
gene expression and immunotherapy response in NSCLC.
This hypothesis is in line with previous observation that
TP53 mutation is a predictive marker for immune check-
point blockade therapy response [30]. Besides PKC/NF-κB
signaling, APOBEC3B expression was also reported to be
induced by DNA-damaging drug [39] and DNA replication
stress [40]. These DNA-damaging or stress signaling are
known to stimulate TP53 and select TP53 mutation for cell
to survival and proliferation.

Genetic alterations in somatic cell genomic DNA are
major driving forces for cancer. Precision medicine based
on individual cancer genome information show huge pro-
mise for future cancer treatment [41]. Previous reports
imply that the sheer number of somatic aberrations could
trigger an immune response, there was also report showing
that total mutation load is not sufficient or not accurate for
prediction of immune gene expression, and specific types of
mutation can be more effective than others in doing so [42].
For tumor immunotherapy response, total mutation load
was also reported to be not sufficient and accurate for
predicting immunotherapy response in melanoma [43].

Some types of mutation could be better markers than total
mutation load in predicting immunotherapy response. Our
study implicates for the first time that APOBEC mutational
signature can be a predictive marker for checkpoint block-
ade immunotherapy response. In together, our study not
only suggests a novel therapeutic option for so far difficult
to treat APOBEC3B-overexpressing NSCLC, but also
identifies novel predictive markers for immunotherapy
response.

Materials and methods

Clinical cohorts and cancer cell lines

The Cancer Genome Atlas (TCGA) NSCLC datasets
include mRNA expression profiling (IlluminaHiSeq pancan
normalized), gistic2 copy number, gene mutation, somatic
mutation and patient prognosis information of 515 lung
adenocarcinoma samples and 502 lung squamous cell car-
cinoma. GSE72094 cohort contains 442 patients with
detailed mRNA expression data and EGFR/KRAS/TP53/
STK11 Sanger sequencing data [44]. CCLE includes 187
lung cancer cell lines with detailed mRNA expression data
[45]. The units of gene expression, copy number and pro-
tein expression of TCGA-NSCLC dataset are pan-cancer
normalized log2(norm_count+ 1), Gistic2 copy number
and normalized RPPA value, respectively. The unit of gene
expression of GSE72094 and CCLE datasets is log2 nor-
malized RNA expression.

Clinical samples, lung cancer cell lines sort and
analysis of genes differential expression

For TCGA-NSCLC and GSE72094 mRNA expression data,
the patients of APOBEC3B mRNA expression above the
third quartile were defined as APOBEC3B UP group and
the patients of APOBEC3B mRNA expression below the
first quartile were defined as APOBEC3B DOWN group.
Similarly in CCLE mRNA expression data, the lung cancer
cell lines of APOBEC3B mRNA expression above the third
quartile were defined as APOBEC3B UP group and the
lung cancer cell lines of APOBEC3B mRNA expression
below the first quartile were defined as APOBEC3B
DOWN group. Sample sort, analysis of genes differential
expression and heat map were done by using MeV (Mul-
tiple Experiment Viewer) software (http://mev.tm4.org/
#/welcome).

Gene set enrichment analysis

Pathways analysis was performed using the GSEA mole-
cular signatures database (MSigDB) hallmark gene sets
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[46]. The query returned the top 10 gene sets showing
significant enrichment. Color bar shading from light green
to black, where lighter colors indicate more significant FDR
q-values (<0.05) and black indicates less significant FDR q-
values (≥0.05). FDR, false discovery rate; q value, mini-
mum FDR at which the test was significant.

mRNA expression profiling and reverse phase
protein array (RPPA) analysis

For NSCLC samples included in the TCGA cohort,
experimental procedures regarding tumor RNA extraction,
mRNA library preparation, sequencing, quality control, and
subsequent data processing for quantification of gene
expression have been previously reported [29]. Gene
expression data for the GSE72094 lung adenocarcinomas
was obtained from GEO repository (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE72094). mRNA
expression of GSE72094 tumors were profiled using a
custom Affymetrix GeneChip. mRNA expression data for
lung cancer cell lines was obtained from the CCLE [45].
Protein expression was based on RPPA from TCGA data-
base. The RPPA methodology and data analysis have been
previously described [29].

APOBEC mutational signature analysis

TCGA-NSCLC level 3 mutation data were downloaded
from http://gdac.broadinstitute.org/. APOBEC mutagenesis
signature was analyzed by using “P-MACD” R packages
[36, 47]. APOBECs deaminate cytidines predominantly in a
TCW motif (W=A or T). The APOBEC mutagenesis
signature is composed of approximately equal numbers of
two kinds of changes in this motif: TCW→ TTW and
TCW→ TGW mutations. The analysis calculates the
enrichment of the APOBEC mutational signature among all
mutated cytosines in comparison with the fraction of cyto-
sines that occur in the TCW motif among ±20 nucleotides
surrounding each mutated cytosine on a per sample basis,
and is described in detail in Roberts et al. [13]. APOBE-
C_enrich mean the enrichment over random of APOBEC
pattern mutations. This is calculated as: {[(TCW to TGW)
+ (TCW to TTW)]/[(C to G)+ (C to T)]}/[TCW/C]. The
enrichment value > 2, which implies that in such samples at
least 50% of APOBEC signature mutations have been in
fact made by APOBEC enzyme(s). APO-
BEC_MutLoad_MinEstimate is the minimum estimate of
number of APOBEC induced mutations in a sample. This
estimate is calculated using the formula: [TCW to TGW+
TCW to TTW]×[(APOBEC_enrich-1)/APOBEC_enrich] to
determine the number of APOBEC signature mutations in
excess of what would be expected by random mutagenesis.
Calculated values are rounded to the nearest whole number.

Mutational signature analysis

The mutational signature analysis was done by using latest
R packages “SignatureAnalyzer” [48]. Somatic mutations in
cancer genomes are caused by cumulative actions of several
mutagenic processes that operate over the patient’s lifetime,
including exposure to exogenous DNA-damaging agents or
carcinogens (tobacco smoking or UV radiation), endogen-
ous mutagens (reactive oxygen species or AID/APOBEC
cytidine deaminases), or genomic defects in DNA repair or
replicative processes [49, 50]. Non-NMF algorithm has
been widely used in deciphering mutations signatures in
cancer somatic mutations stratified by 96 base substitutions
in trinucleotide sequence contexts. “SignatureAnalyzer”
exploits a Bayesian variant of NMF algorithm to extract
mutational signatures [48].

Immune cell infiltration analysis

The abundance of immune cell infiltration was inferred by
deconvolution approach TIMER [24], which can accurately
resolves relative fractions of diverse cell subsets based on
gene expression profiles from complex tissues. Only the
relative fractions of CD8+ T cells are shown here. Another
method called CIBERSORT was used to validate the
results. CIBERSORT is an analytical tool developed by
Newman et al. to provide an estimation of the abundances
of cell types in a mixed cell population using gene
expression data [51].

Cancer immunotherapy dataset

Clinical and mutation data for 34 NSCLC patients were
retrieved from cbioPortal (http://www.cbioportal.org/study.
do?cancer_study_id= luad_mskcc_2015). These patients
were treated with pembrolizumab (anti-PD-1 antibody)
followed the protocol NCT01295827 (KEYNOTE-001).
Overall, 14 patients show DCB (partial or stable response
lasting >6 months), and 17 patients show NDB after treat-
ment, the remaining 3 patients did not reach 6 months
follow-up [20].

Statistical analyses

Data between two groups were compared using a two-tailed
unpaired Student’s t-test or Wilcoxon rank-sum test (also
known as ‘Mann–Whitney’ test) depending on normality of
data distribution (Typically, preprocessed expression data
are normally distributed and mutation data show non-
normal distribution). The lower and upper hinges of boxplot
correspond to the first and third quartiles (the 25th and 75th
percentiles). Notches are used to compare groups; if the
notches of two boxes do not overlap, this suggests that the
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medians are significantly different. The upper whisker
extends from the hinge to the largest value no further than
1.5 × IQR from the hinge (where IQR is the interquartile
range, or distance between the first and third quartiles). The
lower whisker extends from the hinge to the smallest value
at most 1.5 × IQR of the hinge. Data beyond the end of the
whiskers are called “outlying” points. All reported P-values
are two tailed, and for all analyses, P ≤ 0.05 is considered
statistically significant, unless otherwise specified. Multiple
testing P-values were corrected by Benjamini–Hochberg
method. Kaplan–Meier curves of overall survival were
compared using the log-rank test. The goodness-of-fit for
logistic regression was performed by H-L test using R
package “ResourceSelection”. Small H-L test P-values
mean that the model is a poor fit.
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