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ARTICLE INFO ABSTRACT

Keywords: The objective of this study was to apply the multi-agent system (MAS) collision model to predict seasonal
Disease transmission influenza epidemic in Tokyo for 5 seasons (2014-2015 to 2018-2019 seasons). The MAS collision model assumes
Influenza each individual as a particle inside a square domain. The particles move within the domain and disease trans-
g;l:(ig:lt system mission occurs in a certain probability when an infected particle collides a susceptible particle. The probability

was determined based on the basic reproduction number calculated using the actual data. The simulation started
with 1 infected particle and 999 susceptible particles to correspond to the onset of an influenza epidemic. We
performed the simulation for 150 days and the calculation was repeated 500 times for each season. To improve
the accuracy of the prediction, we selected simulations which have similar incidence number to the actual data in
specific weeks. Analysis including all simulations corresponded good to the actual data in 2014-2015 and
2015-2016 seasons. However, the model failed to predict the sharp peak incidence after the New Year Holidays in
2016-2017, 2017-2018, and 2018-2019 seasons. A model which included simulations selected by the week of
peak incidence predicted the week and number of peak incidence better than a model including all simulations in
all seasons. The reproduction number was also similar to the actual data in this model. In conclusion, the MAS
collision model predicted the epidemic curve with good accuracy by selecting the simulations using the actual

data without changing the initial parameters such as the basic reproduction number and infection time.

1. Introduction

Seasonal influenza epidemics result in nearly 3 to 5 million cases of
severe illness a year and have a great importance in public healthcare [1].
Influenza also causes cardiovascular disorders as well as other compli-
cations [2]. Therefore, controlling and preventing the epidemic of
influenza is an important issue [3]. Mathematical models, such as trun-
cated model and the SIR model [4, 5], have been introduced to predict
the transmission of infectious diseases [6]. The strength of these models
is the simplicity of calculation due to the deterministic nature and the
results would be identical for fixed initial values. However, disease
transmission is a sum of many small individual effects, and random
events cannot be ignored [7]. Therefore, stochastic models might predict
disease transmission better than deterministic models.

A multi-agent system (MAS) model is a stochastic method to predict
various phenomena. MAS approach has been applied for hepatitis C virus
infection modelling [8], pre-hospital emergency management [9],
real-time scheduling for out-patient clinics [10], tumor growth [11], and
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immune responses [12]. Stochastic spatial models have also been applied
to epidemic forecasting [13, 14]. Most of these studies apply a mathe-
matical method to estimate the interaction between different compart-
ments. In contrast, by representing each individual as a particle, collision
of particles would correspond to interaction between individuals. A
previous study introduced a kinetic model of mobile susceptible and
infective individuals in a two-dimensional domain [15]. They applied
this model to predict the epidemic curve of measles. However, this was
an in vitro study which compared to the SIR model. We referred to this
model as a MAS collision model and sought that this model could be
applied for prediction of actual seasonal influenza epidemic. Recent
studies using MAS models attempt to increase the precision by including
multiple parameters in order to simulate the daily schedule of each in-
dividual [16, 17]. However, the calculation cost increase tremendously
when sophisticated models are used, and a supercomputer would be
necessary to perform these methods. Conversely, a simple model just
focusing on collision might be able to predict the influenza epidemic
using a commercially available computer. Our hypothesis was that a
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simplified model focusing only on collision of people with calibration
using data of the first 4 weeks after onset could predict the epidemic
curve of seasonal influenza. Therefore, the purpose of this study was to
apply the MAS collision model to predict seasonal influenza epidemic in
Tokyo for 5 seasons.

2. Methods
2.1. Data

Weekly sentinel influenza surveillance in Tokyo is performed in 419
clinics or hospitals. Weekly data of new cases per site are available at the
Tokyo Metropolitan Infectious Disease Surveillance Center website
(http://idsc.tokyo-eiken.go.jp/diseases/flu/flu/, Supplemental Table 1).
A case is reported 1) if a patient has all four clinical symptoms (high-
grade fever, malaise, cough, and sore throat of sudden onset) or 2) if a
patient has some symptoms and is tested positive for influenza via a rapid
antigen detection by immunochromatography using a nasopharyngeal
swab sample [18]. The influenza season starts in the 36" week and ends
in the 35" week of the next year. We collected the data of 5 seasons: from
2014-2015 to 2018-2019 seasons.

The influenza epidemic threshold was defined as weekly onset of >1
patient per site. We started the prediction model at the onset of the
corresponding season. The basic reproduction number (Ry) for each
season was determined as the mean reproduction number of 5 weeks
including the onset of the epidemic: for example, if the influenza
epidemic started at week N, we calculated the mean reproduction num-
ber from week N—2 to N+2. The calculation method of the reproduction
number is described below.

2.2. The MAS collision model

2.2.1. Hardware and software

Model experiments including the MAS collision model and the SIR
model were performed on a computer with 16 GB CPU memory, an Intel
Core i7-7700 3.60 GHz CPU (Intel, Santa Clara, CA), using Python 3.7.

2.2.2. Basic principle

We assumed each individual as a particle inside a square domain (0 <
x <1,0 <y <1)with aradius of 0.0075. The initial interparticle spacing
was approximately 0.03 in this simulation. Susceptible, infectious, and
removed individuals were drawn as green, red, and purple particles,
respectively (Figure 1). The initial position of each particle was selected
randomly. To correspond to a heterogenous population, the initial par-
ticle velocity was randomly determined based on a normal distribution
with a standard deviation of 0.1 times the mean speed. The particles
move within the domain and are elastically reflected off the walls. When
two particles collide, the velocities change such that both energy and
momentum is conserved.

We determined the total number of particles as 1,000 to correspond to
the number of covered people per clinic or hospital in Tokyo. The esti-
mation was performed using the following data. First, the number of
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clinics and hospitals in Tokyo was 13,429 and 647, respectively, in 2018,
which is available at the Bureau of Social Welfare and Public Health
website  (http://www.fukushihoken.metro.tokyo.lg.jp/kiban/chosa_to
kei_iryosisetsu/heisei30nen.html). Next, the population of Tokyo in
December 2018 was 13,859,764. This leads to a mean population
coverage of 985 people per clinic or hospital.

2.2.3. Particle velocity and number of collisions

Before performing the main experiment, we investigated the rela-
tionship between the mean particle velocity and the number of collisions.
The number of particles and the size of the domain was the same as the
main experiment. A total of 12 frames were performed in each simulation
and the total number of collisions was recorded. We performed this
experiment in 23 different particle velocities ranging from 0.56 to 1.00
with a step of 0.02, and 50 simulations were performed for each velocity.

2.2.4. Main experiment

The initial number of susceptible and infectious individulals was 999
and 1, respectively, because epidemic onset was defined as >1 patient
per clinic or hospital and each site covers a population of approximately
1,000. Based on the preliminary experiment, we adopted 0.98 as the
mean initial particle velocity. This makes approximately 250 collisions
per frame. We defined 6 frames to correspond to a single day. This results
in 3 contacts per particle per day (250 x 6x2/1,000). Note that because 1
collision account for 1 contact with each particle, the total contacts
would be the twice of the collision number. We performed the simulation
for 900 frames (900/6 = 150 days).

In Japan, the activity of people decreases during the New Year Hol-
idays. The number of new influenza patients reduces during the holidays
each year. We performed simulations using the SIR model described
below with various reproduction numbers during the holidays (data not
shown). We determined that reduction of reproduction number to 75%
during the 51 and 52™¢ week would be feasible. This accounts for
reduction in particle velocity to 70% based on the preliminary experi-
ment (Figure 2). We did not perform velocity reduction in 2015-2016
season because the epidemic started in the 1% week of 2016.

The infectious period (1/y) was estimated as 5 days [6, 19]. There-
fore, an infectious individual turns removed in 5 days (30 frames). When
an infectious individual collides a susceptible individual, the susceptible
individual turns infectious with a predefined probability. The probability
was calculated from the Ry determined from the actual influenza sur-
veillance data using the following method. An infectious individual
transmits to a total of Ry susceptible individuals during the infectious
period (1/y). The infectious individual contacts 1 / yx 3 times during the
infectious period. Therefore, the probability of an infectious individual to
transmit to a susceptible individual would be Ryxy / 3 per contact. To
correspond to this probability, a random number between 0 to 1 were
generated when an infectious individual collides a susceptible individual,
and the susceptible individual would turn infectious when the number
was < Roxy / 3.

To explore the closeness of the estimation of the model to the actual
incidence number, we performed 500 simulations for each season.

Figure 1. A sample image of simulation number
102 in 2018-2019 season. We assumed each in-

dividual as a particle. The particle color repre-
sents the status: green, red, and purple particles
correspond to susceptible, infectious, and
removed individuals, respectively. Initially, one
particle is infectious while the remaining parti-
cles are susceptible (A). At week 7, 49 particles
are infectious while 188 particles are removed
(B). Finally, at week 21, no particles are no longer
infectious, and 353 particles are removed (C). A
total of 647 particles remained susceptible.
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Figure 2. Relationship between the mean particle velocity and the number of collisions. Quadratic regression analysis (red dotted line) showed a strong positive

correlation between the two values (R? = 0.99). CI, confidence interval.

2.3. Comparison with the SIR model

The SIR model is a compartment model to describe the transmission
of infectious disease [5]. All individuals are classified as one of the 3
compartments: susceptible (S), infected (I), and removed (R). The total
number of individuals (N = S(t)+I(t)+R(t)) is fixed to 1,000. The model is
described by the following ordinary differential equations.

as_ _ps
d N
dr_pis_
dt™ N
dR

"

B is the transmission rate, calculated by multiplying Ry and y. The f value
was calculated from the Ry value, and we used a fixed y value of 0.2 as
described above. The initial values were determined as follows: S(0) =
999, I(0) = 1, R(0) = 0. We performed the simulation for 150 days.

2.4. Estimation of reproduction number

2.4.1. Reproduction number using weekly incidence

The actual data for influenza incidence was reported weekly. We
performed a following numerical analysis to estimate the reproduction
number using the adjacent weekly incidence data. First, we started with 1
infected individual at day 0. When the reproduction number is 1 and the
infectious period is 5 days, the individual will transmit to 0.2 individuals
in days 1-5. Next, incident individuals at day 1 will transmit to 0.04 (=
0.2 / 5) individuals in days 2-6. Furthermore, incident individuals at day
2 (0.24 = 0.2 + 0.04) will transmit to 0.048 (= 0.24 / 5) individuals in
days 3-7. Daily incidence of influenza patients could be obtained by
repeating this method. Using this data, we calculated the ratio of weekly
incidence which is defined as (weekly incidence at week N+1) / (weekly
incidence at week N). Because peak in daily incidence number is
observed every 5 days during the first few weeks, the ratio will not sta-
bilize until approximately week 7 (data not shown). Therefore, we
calculated the daily incidence to 70 days and used the data of week 10 for

analysis. We performed this analysis with a reproduction number be-
tween 0.30 and 2.50 with a step of 0.01 (Supplemental Table 2). We used
this table to estimate the reproduction number when only weekly data is
available.

2.4.2. Reproduction number using daily incidence

The reproduction number R(t) can be estimated by the ratio of the
number of new infections generated at time t, N(t), to the total incident
individuals at time t, given by i N(t — s)w(s), where w(s) is the

s=1

weighting factor of the infectivity [20]. In practice, transmissibility can
change over time, and the generation time distribution is difficult to
measure. Given that the infectious period was set to 5 days, we estimated
that w(s) = 0.2 during s = 1 to 5, otherwise w(s) = 0. In the real world, the
viral shedding and the transmission potential is highest just after the
onset and declines thereafter [19, 21]. We assumed the transmission
potential as the same during the infectious period to simplify the model
in this study. We further calculated the reproduction number over sliding
weekly windows.

2.5. Statistical analysis

2.5.1. The MAS collision model: preliminary experiment

A regression analysis was performed to assess the relationship be-
tween the mean particle velocity and the number of collisions. We used a
quadratic regression analysis rather than a linear regression analysis
because a quadratic analysis fitted better than linear analysis in low and
high velocities.

2.5.2. The MAS collision model: main experiment

Weekly new patients were recorded in each simulation. The means
and 95% confidence intervals were calculated for each season. Because
this model is a stochastic model, the number of infected patients in total
varied from approximately <10 to >500 patients. In order to improve the
prediction, we applied the following filter as a checkpoint at specific
weeks to select the simulations for prediction analysis: when the number
of weekly incidence was N(i) in week i, simulations with weekly inci-
dence between N(i)x0.6 and N(i)x1.4 were eligible. We analyzed the
simulated data using the following 4 models by applying the filter: Model
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1, include all data with no exclusion; Model 2, apply the filter at week 2;
Model 3, apply the filter at weeks 2 and 4; Model 4, apply the filter at the
weeks with peak number of incidence before and after the New Year
Holidays. Only a single peak was found in the 2015-2016 season.
Therefore, we applied the filter at the week with peak incidence and 4
weeks later. We recorded the calculation time for each simulation.

2.5.3. The SIR model

The ordinary differential equations were solved using the odeint
function found at scipy.integrate class. We assigned the initial state
(numbers of susceptible, infected, and removed individuals), time in-
terval for calculation, and the basic parameters (p and y) in the function.
The time interval was 1/100 day for calculation. The function gives the
state of each compartment (susceptible, infected, and removed in-
dividuals) by numerically solving the equation. We recorded the daily
status of each compartment.

2.5.4. Comparison of models

We calculated the mean absolute error (MAE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE) to compare
the accuracy of the models. The calculations were performed as follows.

1 n
MAE=-"|P, - A/
n t=1
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P, — A,

t

x 100%

1 n
MAPE:EZ

t=1

where P, is the predicted value and A; is the actual value.

2.5.5. Sensitivity analysis

We performed a qualitative sensitivity analysis in Model 1 to assess
the robustness of the calculation [22]. The week and number of maximal
weekly incidence of influenza patients was calculated using the first and
last 250 simulations. We compared the results with the data using all
simulations.

3. Results
3.1. Actual epidemic data

The influenza epidemic started in the 47, 46, 47" and 49™ week
of 2014-2015, 2016-2017, 2017-2018, and 2018-2019 season,
respectively. The epidemic of 2015-2016 season started in the 1% week
of 2016. Therefore, decrease in the weekly incidence during the New
Year Holidays was not observed in this season. The Ry were estimated as
follows: 2014-2015 season, 1.31; 2015-2016 season, 1.32; 2016-2017
season, 1.18; 2017-2018 season, 1.21; 2018-2019 season, 1.30.

Table 1. Week and number of maximal weekly incidence of influenza patients.

Season Model Week Number
2014-2015 Actual data 5 32.9
MAS model 1 6+ 37 48.1 £ 25.2
MAS model 2 7 +3.7 43.3 + 25.6
MAS model 3 6 +33 37.7 £23.9
MAS model 4 7 +3.6 51.8 + 15.9
SIR model 13 40.2
2015-2016 Actual data 4 39.4
MAS model 1 5+ 3.0 52.7 + 33.9
MAS model 2 6+ 3.0 56.0 + 30.9
MAS model 3 6 + 2.5 64.6 + 23.9
MAS model 4 5+22 52.7 £17.0
SIR model 11 46.7
2016-2017 Actual data 10 38.7
MAS model 1 6 + 3.5 32.8 +19.2
MAS model 2 7 +£35 29.5 +19.3
MAS model 3 7 +£32 26.7 £ 20.4
MAS model 4 10 + 2.2 45.3 +£11.0
SIR model 19 16.5
2017-2018 Actual data 9 54.1
MAS model 1 6+ 3.6 34.0 +20.8
MAS model 2 7 +39 31.1 £ 20.0
MAS model 3 7 +£4.0 31.4 + 20.4
MAS model 4 10 +£1.7 52.4 +£15.0
SIR model 17 21.9
2018-2019 Actual data 7 64.2
MAS model 1 6+ 3.7 48.1 +25.1
MAS model 2 7 +£3.7 43.3 + 25.5
MAS model 3 6 +33 37.1 £23.9
MAS model 4 7 £35 52.5 £ 16.5
SIR model 14 39.9

Numbers are reported as mean + standard deviation or N.
MAS, multi-agent system.
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The week with maximal number of weekly incidence ranged from the
4™ t5 10™ week after onset (Table 1). The maximal number of weekly
incidence ranged from 32.9 to 64.2 (Table 1).

3.2. The SIR model

The calculation time ranged from 0.808 to 0.112 s (Table 2). The
week of the maximal number of weekly incidence ranged from 11 to 19
weeks, and the number of maximal weekly incidence ranged from 16.5 to
46.7 (Table 1). The increase in the weekly incidence was lower, and the
week of peak incidence was approximately 8 weeks later than the actual
data. The number of maximal weekly incidence was close to the actual
data when the peak was before the New Year Holidays (2014-2015
season), and when reduction in incidence was not observed (2015-2016
season). However, when the incidence dramatically increased after the
New Year Holidays (2016-2017, 2017-2018, and 2018-2019 seasons),
the maximal weekly incidence was around 2 to 3 times higher than the
number predicted using the SIR model. The errors between the SIR model
and the actual data were larger than the error between the MAS collision
models and the actual data (Table 3).

3.3. The MAS collision model: preliminary experiment

Quadratic regression analysis was performed, and a strong positive
relationship was observed (R? = 0.99) between the mean particle ve-
locity and the number of collisions (Figure 2). We assumed that a mean
velocity of 0.98 would result in approximately 3,000 collisions per 12
frames including the lower limit of the 95% confidence interval. We also
estimated the mean particle velocity to correspond to reduction in
collision count to 75% (3,000 x 0.75 = 2,250) during the New Year
holidays. Velocity reduction to 70% (0.686) would result in a total
collision count of 2,255. Hence, we reduced the particle velocity to 70%
during the holidays.

3.4. The MAS collision model: main experiment

The mean calculation time was approximately 30 min per one
simulation (Table 2). The analysis including all simulations (Model 1)
corresponded good to the actual data in 2014-2015 and 2015-2016
seasons (Figure 3, Table 3). However, the model failed to predict the high
peak incidence after the New Year Holidays in 2016-2017, 2017-2018,
and 2018-2019 seasons. In the latter 3 seasons, the peak weekly inci-
dence was higher (Supplementary Figure A) and the week of peak inci-
dence was later (Supplementary Figure B) than expected. The
reproduction number after the holidays was higher than the Ry, which
resulted in a steep curve (Figure 4). Sensitivity analysis showed that the
week and number of maximal weekly incidence did not differ between
the first and the latter half of the simulations (Supplemental Table 3).
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Simulations in models 2 and 3 were selected based on the weekly
incidence of week 2, and weeks 2 & 4, respectively. The selected simu-
lations ranged 20-29%, and 6-9% of the total simulations, respectively
(Table 3). The prediction error was slightly better in 2014-2015,
2016-2017, 2017-2018 seasons, but it was still difficult to predict the
high peak after the New Year Holidays (Figure 3, Supplementary Figure
B). The reproduction number after the New Year Holidays was lower
than the actual value in the latter 3 seasons (Figure 4).

Model 4 included simulations selected by the week of peak incidence.
Therefore, the simulated incidence curve was close to the actual curve in
all seasons (Figure 3). The reproduction number was also similar to the
actual data (Figure 4). However, the proportion of selected models were
smaller than models 2 and 3, ranging from 3% to 9% (Table 3).

4. Discussion

The present study applied the MAS collision model to predict the
influenza epidemic and tested the method in 5 influenza seasons. A
model including all simulated cases (Model 1) predicted the peak number
of incidence and week of peak incidence well in 2014-2015 and
2015-2016 seasons, but it underestimated the peak number of weekly
incidence in the remaining 2016-2017, 2017-2018, and 2018-2019
seasons. In these three seasons, a small peak was observed before the
New Year Holidays, but a second peak after the holidays showed a much
higher number of incidence than the first peak. The initial model could
not thoroughly predict the second peak, but models which selected the
appropriate simulations worked better than the initial model. The pro-
posed method might be close to the pairwise model [23, 24], but this
model is different in that pairs are generated visually by the collision of
particles. The MAS collision model (especially Model 4) might be criti-
cized that it is just presenting the best fit result, because we filtered the
results using the actual incidence at the 4" week, which is the week of
the peak incidence in the first two seasons. However, the peak arrived
much later (ranging from 7 to 10 weeks) during the last three seasons.
The MAS collision model 4 was able to predict the week and intensity of
the peak in these seasons.

We mentioned to the model proposed in this study as a MAS collision
model, but there are number of studies which used MAS models to pre-
dict the transmission of influenza. A simple model just focusing on the
number of collisions might not predict the actual curve with good pre-
cision. Therefore, a number of studies attempted to improve the precision
by including other parameters as follows in order to simulate the daily
schedule of each individual: compartments such as home, supermarket,
school, and workplaces, temperature, cognition to self-awareness, day of
the week, age, and railway line [16, 17]. Sophisticated models including
the aforementioned parameters would help to perform a mean field
approximation using stochastic models. However, unknown parameters
might affect the epidemic curve and the results might change even when

Table 2. Calculation time per simulation.

Season Model Time (s)

2014-2015 MAS model 1766 + 70
SIR model 0.0808

2015-2016 MAS model 1775 + 84
SIR model 0.110

2016-2017 MAS model 1745 + 76
SIR model 0.0998

2017-2018 MAS model 1739 + 65
SIR model 0.104

2018-2019 MAS model 1751 + 71
SIR model 0.112

Numbers are reported as mean + standard deviation. Standard deviation was not available for the SIR model because calculation was performed once.

MAS, multi-agent system.
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Table 3. Error between the simulation and the actual data.

Season Model N~ MAE RMSE MAPE
2014-2015 MAS model 1 500 4.00 5.18 55.7%
MAS model 2 129 3.58 5.09 58.7%
MAS model 3 43 3.25 4.79 45.3%
MAS model 4 45 6.23 8.32 94.9%
SIR model N/A 15.4 19.3 438%
2015-2016 MAS model 1 500 2.54 3.55 41.9%
MAS model 2 146 3.87 5.19 73.0%
MAS model 3 61 5.48 8.34 64.0%
MAS model 4 46 2.99 3.76 89.7%
SIR model N/A 16.9 20.7 921%
2016-2017 MAS model 1 500 9.76 12.1 89.2%
MAS model 2 97 7.29 10.3 50.5%
MAS model 3 30 7.14 10.0 49.4%
MAS model 4 19 3.92 4.52 52.3%
SIR model N/A 8.90 12.5 66.6%
2017-2018 MAS model 1 500 9.80 17.0 45.8%
MAS model 2 99 8.44 15.9 33.7%
MAS model 3 37 8.29 15.6 38.0%
MAS model 4 13 3.98 5.83 35.9%
SIR model N/A 16.2 21.0 393%
2018-2019 MAS model 1 500 8.41 14.2 118%
MAS model 2 148 8.85 15.4 122%
MAS model 3 44 8.46 15.4 113%
MAS model 4 23 7.49 10.9 132%
SIR model N/A 21.9 26.6 925%

MAE, mean absolute error; MAPE, mean absolute percentage error; MAS, multi-agent system; RMSE, root mean squared error.

* Number of simulations included in the model.
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the initial conditions are the same. The mean value of the predicted curve
might not precisely forecast the actual epidemic each year. Selecting the
appropriate simulations after performing numerous simulations using a
simplified model would be another approach to increase the precision.
The MAS collision model in the present study only focused on the
transmission process, hence the calculation time would be shorter than
the other sophisticated models. Because of the simplicity of the model,
the daily contact number was determined as 3 times per day. This is
smaller than the daily contact number in the real world, which ranges
from 7 to 18 contacts per day shown in the POLYMOD study [25]. In the
model we proposed, the main concept was to focus on the collision, while
considering the stochastic nature of each collision. We did not

10 15 20
Weeks

incorporate time schedule or compartment to keep the model simple. In
other words, this model is a mean field approximation of the real world.
Because the model itself is quite simple, this model could be easily
implemented to a compartment model representing each district of
Tokyo without increasing the calculation cost too much. Although the
contact number per day was low, we adjusted the probability of trans-
mission from an infectious individual to a susceptible individual as RO xy
/ 3. This approach might not be robust when the number of individuals
included in the model is small, but increasing the number of individuals
would make the calculation results robust.

Another strength of the proposed model is that the initial particle
velocity was determined to be normally distributed. In the real world, the
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epidemic curve would substantially change when a “super spreader” is
infected. An infected high-velocity-particle would collide more particles
than a particle with intermediate velocity. The mean epidemic curve of
this model might be close to the SIR model, but the result includes sim-
ulations when a highly active infected particle causes a surge in the
epidemic curve. Also, the velocity of particles does not need to be nor-
mally distributed. If the mean age is young, a Poisson distribution with
more particles with higher velocity than a normal distribution could be
adopted. The activity of the population could be translated as velocity
distribution in a easy way using this method.

The estimated peak using the SIR method in the present study was
approximately 8 weeks later than the actual data. This occurred because
the Ry derived from the data around the epidemic onset was smaller than
the actual reproductive number especially at the beginning of the
epidemic. Mercer et al. [26] showed that reproduction numbers are
commonly overestimated early in a disease outbreak due to imported
cases and outbreaks arising in subpopulations. In the MAS collision
model, while some simulations ended with only a few infected in-
dividuals, some simulations showed a steep incidence curve. This reflects
the rise in transmission rate due to outbreaks in subpopulations. The
difference between the SIR model and the MAS collision model is that
individuals in each compartment change continuously in the SIR model,
but the change is discontinuous in the MAS collision model because a
particle could not be divided into small parts. Therefore, a single infected
particle might transmit to multiple particles in a short time and make a
cluster, which does not arise in the SIR model [24]. The precision of
incidence curve using the SIR model could be improved by correcting the
reproduction number after the disease outbreak. The strength of the MAS
collision model is that prediction could be performed using the repro-
duction number around the beginning of the season.

A previous study proposed a real-time prediction model of influenza
outbreaks by calibrating the parameters used in the SIR model (§ and y)
every week [6]. Although the precision of the weekly incidence curve
improves with the calibration method, data of peak incidence is neces-
sary to increase the precision, similar to Model 4 in the present study.
Therefore, predicting the key parameters using a small data might be
difficult. In this context, multi-step prediction method which uses pre-
vious annual epidemic data could more accurately predict the epidemic
[27]. A previous study using this method showed that implementing
multiple single-output prediction in a six-layer long short-term memory
structure achieved good accuracy to predict influenza incidence of 2-13
weeks ahead. A study by Yang et al. [28] attempted to forecast influenza
epidemics in Hong Kong using Kalman filter in conjunction with the SIR
model. In this model, when a new observation arrives, the system
(including all model variables and parameters) is updated per filter

40

algorithm. Although we acknowledge that this filtering is a sophisticated
method, the main parameters which is used to calculate the SIR model is
constantly renewed. However, the principal finding of the present study
is that the incidence curve with good correlation with the actual data
could be selected without changing the R, value. This is explained by the
stochastic nature of the MAS collision model.

Numerous factors influence the transmission of influenza including
vaccination rate [29], age [30], and temperature [1]. Also, ascertain-
ability might change with different age groups [30]. These factors were
not included in the MAS collision model. Influenza epidemic curve is
influence by these factors, and including these factors might further help
to increase the precision. McGowan et al [31] showed the superiority of
statistical models with stochasticity vs. SIR models and concluded that
SIR models should include major environmental determinants for pre-
dicting peaks. Additionally, ensemble forecasts including various pre-
diction models perform better than one single model and the SIR model
can also be included into the ensemble. One challenge in the weekly
incidence data of Tokyo is how to account for the decrease in detected
patients during the New Year Holidays. First, the number of patients who
visit to hospitals and clinics decreases because a lot of them are closed
during the holidays. Second, the population of Tokyo decreases around
50-60% during the holidays because many residents return to their
hometown (https://www.blogwatcher.co.jp/case/report_newyear
_2017/). If the reproductive number maintains the same value, the
weekly incidence in the first week of the new year should increase
dramatically. The actual data shows that the incidence curve shifts to-
wards right without showing a severe increase after the holidays.
Therefore, we determined that the transmission declines during the
holidays, but further investigation is needed to confirm the actual
reduction in the reproduction number. Using a real-time surveillance
data might serve to answer this question [32, 33].

We acknowledge the following limitations in this study. First, the
proposed model was verified in only 5 influenza seasons in Tokyo.
Further study is needed to validate the MAS collision method in different
epidemic seasons and different cities or countries. Second, there are
multiple methods to estimate the Ry value [3, 34] and the results might
change when different methods are used. Third, we did not consider the
vaccination rate in Japan. The vaccination rate is gradually increasing
from 14.9% to 28.0% between 2014 and 2018 (https://www.mhlw.go.jp
/shingi/2008/06/dl/s0618-9a.pdf). The increase in the vaccination rate
might have reduced the transmission of influenza. Vaccine effectiveness
of influenza differs between seasons [35]. Forth, the model we proposed
was based on the SIR model, but the precision might improve using other
models such as the SEIR model. The latent period of influenza is about 2
days and the transmission occurs 1-2 days before onset [21]. The
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infectious period starts just after the exposure of influenza. Therefore, the
SIR model adopted in this study would fit well for influenza virus
transmission. Finally, the calculation time was 30 min per simulation,
which could be reduced by advancement in CPU or improvement in
programming.

5. Conclusions

We applied the MAS collision model to predict seasonal influenza
epidemic for 5 years in Tokyo. The model predicted the epidemic curve
with good accuracy by selecting the simulations using the actual data
without changing the initial parameters such as the basic reproduction
number and infection time.
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