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Abstract
Purpose: Methodologies for optimization of SPECT image acquisition can be
challenging due to imaging throughput, physiological bias, and patient comfort
constraints. We evaluated a vendor-independent method for simulating lower
count image acquisitions.
Methods: We developed an algorithm that recombines the ECG-gated raw data
into reduced counting acquisitions. We then tested the algorithm to simulate
reduction of counting statistics from phantom SPECT image acquisition, which
was synchronized with an ECG simulator. The datasets were reconstructed
with a resolution recovery algorithm and the summed stress score (SSS) was
assessed by three readers (two experts and one automatic).
Results: The algorithm generated varying counting levels, simulating multiple
examinations at the same time. The error between the expected and the simu-
lated countings ranged from approximately 5% to 10% for the ungated simula-
tions and 0% for the gated simulations.
Conclusions: The vendor-independent algorithm successfully generated lower
counting statistics datasets from single-gated SPECT raw data. This method
can be readily implemented for optimal SPECT research aiming to lower the
injected activity and/ or to shorten the acquisition time.
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1 INTRODUCTION

Single photon emission computed tomography
(SPECT) is a widely used imaging method for the
diagnosis and management of many diseases.1,2 The
method consists of injecting radiopharmaceuticals
to map their distribution in an organ. Optimizing the
imaging protocols to lower the amount of administered
radiopharmaceutical activities to patients, and/ or to
shorten the acquisition duration, is recommendable.3–10
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Advances in detectors, reconstruction software, and
imaging protocols allow for the reduction of counting
statistics (which is a function of the administered activity
and the acquisition duration) without compromising the
image quality.4–17 However, defining the optimal counts
requires to access various counting acquisition levels of
the same patient.

Experimental schemes in image optimization stud-
ies play a key role in SPECT research. Physiologi-
cal changes in patients between experiments, facility
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imaging throughput, and patient comfort are important
research constraints. Most studies scanned the patient
two times using a variety of acquisition durations4–8

or preferably used list-mode acquisition.9–13 List-mode
enables the use of the same image dataset to simulate
various scanning durations and/or injected activity. With
SPECT, only a few systems allow for simulating multi-
ple scan durations9,10 or setting up multiple acquisition
times concurrently.17–18 Therefore, vendor-independent
methods that allow for nuclear medicine practioneers to
easily simulate varying counting levels could facilitate
the execution of protocol optimization studies.14–16

The gated SPECT (G-SPECT) has been used in
most clinical settings to assess the functional informa-
tion (e.g., ejection fraction, wall motion, and thickness in
cardiac studies).19 Since G-SPECT employs a partition-
ing method that splits the acquisition data into subsets
of defined number of frames, it could be a promising
candidate to make lower counts simulations widely
available.14

In this study, we used G-SPECT to present a vendor-
independent method to simulate varying amounts of
counting levels.

2 METHODS

In a typical ECG-gated SPECT acquisition, the cardiac
cycle is divided into 8 or 16 frames, with each frame
corresponding to a specific phase of the cardiac cycle
in the tomographic projection.20 The images acquired
from the same frame are summated at each projection
and subsequently reconstructed using all projections to
generate the diagnostic image.

Our method consists of partitioning the cardiac cycle
into ƞ frames using the gama-camera workstation, and
then recombining a subset of these frames to a required
counting level using our software, forming a new image
with eight frames. Figure 1 illustrates a cardiac cycle
divided into ƞ = 32 frames. Following this, new simu-
lated images can be reduced to 3/4 (Figure 1b), 1/2
(Figure 1c),1/4 (Figure 1d),or recombined to the original
ungated and gated images (Figure 1a).

An algorithm for implementation of the example in Fig-
ure 1e was developed in Phyton21 (Supporting informa-
tion 1).After input of the G-SPECT image with ƞ frames,
the algorithm generates new datasets with simulated
100%,75%,50%,and 25% countings of the ungated and
the gated images.

Phantom image acquisition and reconstruction were
used to analyze our algorithm. According to Table 1,
image acquisitions were performed with three Siemens
SPECT systems using either the static cardiac phan-
tom ECT/TOR/P (Data Spectrum Corporation)22 or the
PET/SPECT Phantom Source Tank (76-823) with the
Cardiac Insert (76-825) (Fluke Biomedical). The image
acquisitions were performed synchronized either with an
ECG simulator (Cardiac Trigger Monitor 7600) or syn-

TABLE 1 Experimental schemes

Scheme
SPECT
system

ECG
simulation

Cardiac
phantom

1 e.cam Cardiac Trigger
Monitor 7600

ECT/TOR/P

2 Symbia Evo Cardiac Trigger
Monitor 7600

76-823 / 76–825

3 Symbia Intevo Healthy
volunteer

ECT/TOR/P

TABLE 2 Absolute error %Diff

Scheme SimulationA B C D

1 gated 0.00% 0.00% 0.00% 0.00%

1 ungated 4.96% 4.98% 5.02% 4.95%

2 gated 0.00% 0.00% 0.00% 0.00%

2 ungated 9.65% 9.66% 9.64% 9.68%

3 gated 0.00% 0.00% 0.00% 0.00%

3 ungated 9.60% 9.60% 9.54% 9.57%

Note: A–D: 100%, 75%, 50%, and 25% simulated counts, respectively.

chronized with the heart cycle of a healthy volunteer
(C.Q.) (ƞ = 32 frames).Detailed imaging parameters are
available at supporting information 2.

The image raw data were retrieved from the Siemens
workstations and transferred to another workstation with
the software, recombined into four datasets and then
sent back to the Siemens workstation.

For each simulated image, the absolute error in the
new datasets was estimated by calculating the per-
centage difference in the expected counting statistics,
according to Equation (1):

%Diff = 100.
(

E − S
E

)
, (1)

where E corresponds to the theoretical expected count-
ing statistics and S corresponds to the counting statis-
tics of 64 summed projections in the simulated image.

Projections were reconstructed using the Flash3D™
resolution recovery algorithm and the summed stress
score (SSS) (17-segment polar map) was com-
puted using Corridor4DM™ software (Michigan, United
States).23 Each simulated dataset was scored manually
by two experienced nuclear medicine physicians, and
scored automatically with the Corridor4DM™.The mean
and 95% confidence interval (CI) of SSS was assessed
for each counting level.

3 RESULTS

The absolute error between the expected and the simu-
lated counting statistics (Equation (1)) for schemes 1–3
is presented in Table 2.
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F IGURE 1 Partitioning and recombination of frames into lower counting statistics data. The colored marks indicate the selected frame to be
rebinned into new simulated images. (A) 100% simulated statistics of the original data, 32 frames divided into 8 frames. (B) 75% simulated
statistics of the original data, 24 frames divided into 8 frames. (C) 50% simulated statistics of the original data, 16 frames divided into 8 frames.
(D) 25% simulated statistics of the original data, 8 frames divided into 8 frames. (E) Simulated dataset with reduced frames merged into its
respective spot. (F) Reconstructed image of the summated frames

G-SPECT generates a standard ungated perfusion
image by summating temporal frames together.24 The
Siemens systems, however, generate two independent
gated and ungated datasets with 5%–10% less counts
in the gated dataset. Since our software used the gated
image to generate the simulated ungated, the reduced
counts in the original gated image was propagated to
the simulated ungated image.

The left-hand side of Figure 2 shows a projection
of the partitioned/recombined raw data for the simu-
lated ungated images. On the right is the reconstructed
image showing the short, horizontal, and vertical axis
of the phantom. Counting levels relative to the origi-
nal input are shown in percentage terms as 100, 75,
50, and 25 from top to bottom. Figure 3 shows the
simulated data for the gated image with 100% and
25% countings.

Figure 4 presents the polar map with the SSS quantifi-
cations for the reconstructed ungated images.The mean
SSS value over three observers for 100%, 75%, 50%,
and 25% counting levels were, respectively, 6.0±2.0,
8.3±1.1, 7.3±1.1% and 7.3±3.0 for the e.cam system;
0.3±1.1,0.3±1.1,0.0±0.0% and 0.3±1.1 for the Symbia
Evo; and 9.0±2.0, 8.7±3.0, 8.3±3.0, and 8.7±1.1 for the
Symbia Intevo.

4 DISCUSSION

We developed and provided a vendor-independent algo-
rithm for raw data partitioning/ recombination of G-
SPECT into varying counting levels to adequately sim-
ulate lower injected activity (or shorter acquisition dura-
tion) of SPECT studies. The feasibility of our method
was validated in a phantom experiment and success-
fully produced reliable results.

Assessment of image quality through clinical indices
has been widely reported.6–12,22 We showed a typical
example of an optimization workflow to demonstrate the
validity of our method. Experimental schemes resulted
%Diff between 5% and 10%, suggesting older genera-
tion e.cam system yields slightly less counting loss in the
gated image than current generation Symbia systems.

As expected, the reduction of the counting statis-
tics did not significantly influence the SSS quantifica-
tion. Lacchi and colleagues obtained similar trends at
the same counting levels in a human model, where the
SSS quantification was affected only for overweight and
obese subjects.13 Here, we used a phantom that did not
mimic the photon attenuation. Furthermore, we used a
resolution recovery reconstruction algorithm, which is
known to produce good image quality performance in
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F IGURE 2 Simulated ungated projections (left) and reconstructed images (right). Simulated ungated imagens with 100% (A), 75% (B), 50%
(C), and 25% (D) of the original raw data
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F IGURE 3 Gated projections (left) and reconstructed (right) images. Simulated statistics of the 8-frames gated data with 100% (A) and
25% (B) counts of the original raw data

various count levels.4–8,11,13,22 In addition, the phantom
model produces images from the static activity distri-
butions, while a real patient model would have moving
organs and thus lower quality images. Then, these may
have improved the image quality over the lower counting
levels seen in Figure 2.

In this study, we used ƞ = 32 frames which is the
maximum setup available at the Siemens systems.
Rebinning ƞ into 8 frames using our software results
in a standard cardiac-gated image and enables the
recovery of perfusion and gated information. This
application of our method is appropriate for the most
complex human model, where capturing the information
(ECG-synchronized) of the moving organ is required.
Moreover, any simpler rebinings can provide lower

counting statistics for other clinical applications such as
neurology and oncology.4 This example is also available
(supporting information 1) to generate new datasets
with 1/ ƞ rebinnings.

The ability to set up multiple acquisition times is
not likely to be available in most commercial sys-
tems.We therefore provided a vendor-independent algo-
rithm which is readily applicable to different SPECT
exams. This technique is easy to implement, able
to be performed rapidly, and is highly robust. Our
method improves the image optimization process
since the patient is submitted to one only image
acquisition, which increases patient comfort, while
enhancing the routine throughput during optimization
studies.



6 of 7 QUEIROZ ET AL.

F IGURE 4 polar map quantifications for the simulated ungated images. (A–D) represents quantifications of the ungated simulations for
100%, 75%, 50%, and 25% of the original data statistics, respectively. AUTO: automatic quantification using standard database of normality. EX1
and EX2: nuclear medicine expert quantifications. SSS: summed stress score for 17-segment polar map
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