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Abstract: Cachexia is a syndrome characterized by an ongoing loss of skeletal muscle mass associated
with poor patient prognosis in non-small cell lung cancer (NSCLC). However, prognostic cachexia
biomarkers in NSCLC are unknown. Here, we analyzed computed tomography (CT) images and
tumor transcriptome data to identify potentially secreted cachexia biomarkers (PSCB) in NSCLC
patients with low-muscularity. We integrated radiomics features (pectoralis muscle, sternum,
and tenth thoracic (T10) vertebra) from CT of 89 NSCLC patients, which allowed us to identify an
index for screening muscularity. Next, a tumor transcriptomic-based secretome analysis from these
patients (discovery set) was evaluated to identify potential cachexia biomarkers in patients with
low-muscularity. The prognostic value of these biomarkers for predicting recurrence and survival
outcome was confirmed using expression data from eight lung cancer datasets (validation set).
Finally, C2C12 myoblasts differentiated into myotubes were used to evaluate the ability of the selected
biomarker, interleukin (IL)-8, in inducing muscle cell atrophy. We identified 75 over-expressed
transcripts in patients with low-muscularity, which included IL-6, CSF3, and IL-8. Also, we identified
NCAM1, CNTN1, SCG2, CADM1, IL-8, NPTX1, and APOD as PSCB in the tumor secretome.
These PSCB were capable of distinguishing worse and better prognosis (recurrence and survival) in
NSCLC patients. IL-8 was confirmed as a predictor of worse prognosis in all validation sets. In vitro
assays revealed that IL-8 promoted C2C12 myotube atrophy. Tumors from low-muscularity patients
presented a set of upregulated genes encoding for secreted proteins, including pro-inflammatory
cytokines that predict worse overall survival in NSCLC. Among these upregulated genes, IL-8
expression in NSCLC tissues was associated with worse prognosis, and the recombinant IL-8 was
capable of triggering atrophy in C2C12 myotubes.
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1. Introduction

Lung cancer is the most prevalent cancer type worldwide and responsible for an estimated
1.8 million deaths, each year [1]. Most patients (~ 85%) develop non-small cell lung cancer (NSCLC) [2],
which is frequently diagnosed in an advanced stage, and consequently has an unfavorable prognosis [3].
Cancer cachexia is a syndrome that affects a considerable proportion of NSCLC patients [4]. It is
characterized by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot
be fully reversed by conventional nutritional support and is associated with significant functional
impairments [5].

The loss of skeletal muscle mass in cancer cachexia may lead to substantial weight loss and
decreased body mass index (BMI), which are associated with worse outcome in NSCLC patients [6–8].
Studies using computed tomography (CT) images have revealed occult muscle depletion in NSCLC
patients, regardless of overall body weight [4,9]. Also, both the detection of muscle depletion or low
muscle mass by CT images have been associated with shorter time to tumor progression, increased risk
of chemotherapy toxicity, and shorter survival in NSCLC patients [4,9–14]. Skeletal muscle depletion
detected by CT images in these patients also negatively affects their functional status and quality
of life [15,16]. Indeed, CT-derived pectoralis muscle area (PMA) analysis has been already used to
evaluate sarcopenia and to correlate low PMA with shorter survival and inflammation in NSCLC
patients [14,17]. To our knowledge, tumor-secreted factors with the prognostic value associated with
low PMA as detected by CT in NSCLC are unknown.

Several studies have highlighted that macromolecules secreted from cancer cells and cells within the
tumor microenvironment (secretome), including many pro-inflammatory cytokines, act systemically
leading to muscle wasting in cancer cachexia [18–20]. However, the secretome complexity and
differences found in distinct lung cancer and cells lines [21–23] illustrate the need to apply global
approaches, to identify tumor-specific secreted molecules associated with skeletal muscle depletion.
Moreover, previous “omics” studies of cancer secretome in cachexia have focused on the analysis of
cachectic conditioned media of single cancer cells lines to identify mediators of the syndrome [24–26].
However, in vitro systems ignore the contributions of the host–tumor microenvironment and the tumor
heterogeneity as well as provide no insight into the disease progression [23]. These findings emphasize
the importance of cancer cachexia studies in exploring the tumor secretome. Thus, we hypothesized
that a tumor transcriptome-based secretome analysis in NSCLC patients with low-muscularity is a
strategy capable of identifying prognostic biomarkers and mediators of cancer-associated muscle loss.

Herein, we analyzed a cohort of NSCLC patients with CT images, clinical findings, and tumor
expression microarrays data from a previous study that decoded tumor radiomics features associated
with gene expression levels [27]. For these patients, we compared the pectoralis muscle area with
muscle normalizations based on different radiomics features to select an approach for screening
muscularity. Next, we identified genes predicted to be secreted in patients with low-muscularity and
assessed their prognostic value as tumor markers of recurrence-free survival and overall survival.
Finally, we demonstrated the potential of interleukin (IL)-8 as a putative secreted marker capable of
inducing atrophy in C2C12 myotubes.

2. Results

The workflow of the integrative analyses of CT images and tumor transcriptome used to identify
potentially secreted cachexia mediators and biomarkers in NSCLC patients with low-muscularity is
depicted in Figure 1.
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Figure 1. The workflow of the integrative analyses of computed tomography (CT) images and
tumor transcriptome data to identify secreted cachexia biomarkers in non-small cell lung cancer
(NSCLC) patients with low-muscularity. (1) We selected CTs from 89 patients with NSCLC from
“NSCLC-Radiomics-Genomics” collection [28]. A total of 12 CTs features, including pectoralis muscle
area (PMA), manubrium, and sternum body lengths, six T10 (tenth thoracic) different measures, and an
anteroposterior length were used to determine an approach for screening muscularity. (2) This analysis
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revealed that PMA allows the identification of NSCLC patients with low- (third tercile, 3rd T) and
high-muscularity (first and second terciles, 1st T + 2nd T). These groups were compared by using a
tumor transcriptomic-based secretome analysis (discovery set; microarray data; GSE58661) to identify
potential cachexia biomarkers (over-expressed genes) in patients with low-muscularity. Transcripts with
increased expression were further analyzed to identify enriched terms by Gene Ontology Consortium
and to predict potentially secreted proteins using secretome and microvesicle databases. (3) The
performance of these transcripts as tumor biomarkers able to determine patients’ survival outcome
was validated in multiple independent lung cancer validation sets. (4) C2C12 myoblasts differentiated
into myotubes were used to evaluate the ability of the selected biomarker (IL-8 (interleukin-8)) in
inducing atrophy. C2C12 mouse myoblasts were cultured in a growth medium (GM) for two days.
Myoblasts with 80% to 90% of confluence were induced to differentiate in a differentiation medium
(DM) for five days when the cells were treated with recombinant IL-8 (100 ng/mL for 24 h). TCIA: The
Cancer Imaging Archive; TCGA: The Cancer Genome Atlas; LUAD: lung adenocarcinoma; LUSC: lung
squamous cell carcinoma; GSE: Gene Expression Omnibus accession numbers; NCI: National Cancer
Institute; KM: Kaplan Meier; n: number of patients; Ctrl: Control; Myh2: myosin heavy chain 2; DAPI:
4′,6-Diamidine-2′-phenylindole dihydrochloride nuclear staining.

2.1. Study Population

CT images, clinical, and microarrays data of 89 NSCLC patients, with an average age of 65.2 ±
8.7 years, were included in this study. The most common NSCLC histological type was adenocarcinoma
(47.2%), and 20.2% of the patients were diagnosed with advanced-stage cancers (stages III or IV).
Adenocarcinoma was prevalent in women, while squamous cell carcinoma was more frequent in men.
The muscle measurements revealed differences between sexes, with men and women presenting PMA
of 42.5 ± 9.3 and 27 ± 6.0 cm2, respectively. Based on this finding, the sex-specific categorical variable
was taken into consideration for further analyses. Table 1 summarizes the clinical, histopathological,
and muscle measurements in this cohort of NSCLC patients.

Table 1. Clinical findings and skeletal muscle parameters of patients with NSCLC (non-small cell lung
cancer) with low- and high-muscularity defined by pectoralis muscle cross-sectional area assessed by
computed tomography.

Characteristics All Men Women p-value *

Number of patients 89 60 29
Age 65.2 ± 8.7 66.9 ± 7.3 61.8 ± 10.3 0.011 a

Cancer Stage (%)
Early Stages (I-II) 79.7 74.6 90 0.08 b

Advanced Stages (III-IV) 20.2 25.4 10
Histological Type (%)
Adenocarcinoma 47.2 37.3 66.6 0.02 b

Squamous Cell Carcinoma 40.4 49.2 23.3
Other Subtypes 12.4 13.5 10.1
PMA (cm2) 37.3 ± 11.1 42.5 ± 9.3 27 ± 6.0 <0.001 a

HM (N) 59 40 19
LM (N) 30 20 10
LM PMA (cm2) 28.6 ± 6.5 #,c 32.3 ± 4.3 #,c 21 ± 1.4 #,c <0.001 a

HM PMA (cm2) 41.7 ± 10.2 47.5 ± 6.3 30 ± 5.2 <0.001 a

N: number of patients; PMA: Pectoralis Muscle Area; LM: low-muscularity patients; HM: high-muscularity patients.
The data represent the mean ± standard deviation. a: Student’s t-test; b: Chi-squared test; c: Mann-Whitney’ U-test;
* comparisons between men and women; # statistical difference between patients with low- and high-muscularity
(p < 0.001).
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2.2. PMA Distinguishes NSCLC Patients with Low- and High-Muscularity

Considering that CTs from NSCLC patients have information that goes beyond the tumor,
we integrated different radiomics features to determine an approach to be used for screening muscularity
(Figure S1). The non-hierarchical, unsupervised clustering analysis of the PMA and its normalization
by 11 CTs features (z-score normalized) revealed a similar pattern of patients’ distribution according to
all muscularity indexes. The clustering analysis also revealed three subgroups of patients according to
the muscularity indexes as depicted in the dendrogram in Figure S2a. Applying k-means analysis
(k-means = 3) resulted in a cluster composed of 34 patients with low-muscularity (Figure 2a).
Next, we used a descending PMA order based on gender as a sex-specific categorical variable.
Finally, we segregated into terciles to generate two groups of study based on the patients’ muscularity.
The low-muscularity group included patients within the third tercile, while the high-muscularity
group included patients within the first and second terciles, regardless of the patient gender (Figure 2a).
We highlighted that PMA could be used to select potential NSCLC low-muscularity patients; moreover,
we suggested cut-offs values of PMA <32.2 cm2 and <21 cm2 (for men and women, respectively),
as demonstrated by median values in the scatter dot plot in Figure S2b. The mean PMA differed
significantly between the high- and low-muscularity groups considering all patients or comparing
male and female patients (Table 1). We further compared high- and low-muscularity patients with
other clinical variables using patient demographic information (Figure 2b). The comparison between
these groups (high- and low-muscularity) revealed that muscularity seems to be related to tumor type
and tumor stage, rather than age and tumor size (Figure 2b). on the ordination of patients according to
their PMA in descending order using a sex-specific categorical variable followed by segregation into
terciles (high-muscularity group: 1st and 2nd terciles; low-muscularity group: 3rd tercile).
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Figure 2. Pectoralis muscle area as an approach for screening muscularity. (a) Heatmap showing
patients’ stratification into high-, medium-, and low-muscularity by non-hierarchical k-means clustering
analysis of the pectoralis muscle area (PMA) and its normalization by eleven computed tomographies
(CT) feature that includes: manubrium and sternum body lengths, six T10 (tenth thoracic) different
measures, and an anteroposterior length. Manubrium length (M); sternum Body length (B); T (M+B);
total sternum length (TSL); T10 body vertical length (T10-I); distance between T10 body and spinous
process (T10-II); T10 body horizontal length (T10-III); distance between T10 pedicles (T10-IV); distance
between T10 transverse processes (T10-V); T10 body area (T10-VI); anteroposterior distance (APD).
(b) Bar graphs comparing the percentage of patients for clinical prognostic variables between high- and
low-muscularity groups. These groups were generated based
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2.3. Patients with Low-Muscularity Upregulate Tumor Genes Previously Associated with Cachexia

Considering that mediators released from cancer cells and cells within the tumor microenvironment
have been associated with cachexia in lung cancers, we hypothesized that the identification of tumor
deregulated genes in NSCLC patients with low-muscularity could reveal potential factors associated
with cachexia. Thus, an analysis using differential gene expression between patients with low- and
high-muscularity revealed 105 genes exclusively deregulated (adj. p-value ≤ 0.05 and fold change
≥1.5) in patients with low-muscularity, of which 75 and 30 were over- or down-expressed, respectively
(Table S1). Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of
the over-expressed transcripts highlighted cytokine activity and cytokine-receptor interaction activity
as the most enriched categories in low-muscularity patients (Figure 3a). Protein-protein interaction (PPI)
analysis identified the interactions among these proteins (Figure 3b), including the pro-inflammatory
cytokines IL-6, IL-8, and Colony Stimulating Factor 3 (CSF3), which have been previously implicated
in the development of cancer cachexia [29–32].

Figure 3. Over-expressed genes in tumors from patients with low-muscularity. (a) Enriched
terms in gene ontology analysis of the 75 transcripts upregulated in patients with low-muscularity.
(b) Protein-protein interaction (PPI) network of 75 upregulated transcripts in patients with
low-muscularity generated by STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
using a high confidence interaction score (0.700).

2.4. Secretome-Related Genes with Prognostic Value in NSCLC

We then investigated whether these 75 upregulated transcripts in the tumors from low-muscularity
patients are translated into secreted proteins. The intersection of the secretome databases CBS Servers,
Vesiclepedia, Human Cancer Secretome Database, and Plasma Proteome Database showed seven
overlapping proteins: IL-8, Secretogranin II (SCG2), Neural Cell Adhesion Molecule 1 (NCAM1), Contactin
1 (CNTN1), Cell Adhesion Molecule 1 (CADM1), Neuronal pentraxin 1 (NPTX1), and Apolipoprotein
D (APOD) (Figure 4a). The microvesicle databases revealed that the predicted proteins in Evpedia
(Lipoprotein Lipase (LPL), APOD, and Collagen Type XIV Alpha 1 Chain (COL14A1)) were also identified
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in the Vesiclepedia dataset. However, the Exocarta did not show any of these proteins in lung cancer
samples, possibly due to the limited number of exosomes studies in lung cancers deposited in this database.

Figure 4. Prognostic values of the potentially secreted proteins in tumors from patients with
low-muscularity. (a) The intersection of databases used for prediction of secreted proteins revealed
seven overlapped proteins: interleukin-8 (IL-8), SCG2, NCAM1, CNTN1, CADM1, NPTX1, and APOD.
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(b) Forest plots representing the set of the seven potentially secreted biomarkers in each validation set.
The horizontal axis represents confidence intervals estimated by using a Cox proportional hazards model.
The asterisks represent the statistical significance in the patient survival outcome (*** p < 0.001 and
* p < 0.05, log-rank p-value). (c) Kaplan-Meier plots generated in SurvExpress [33] database for the
non-small cell lung cancer (NSCLC) datasets (gene expression and survival or time to recurrence): Lung
Meta-base, TCGA-LUAD, TCGA-LUSC, GSE30219, GSE31210, and Director’s Challenge Consortium
from National Cancer Institute (NCI). The Kaplan-Meier plot generated using the dataset GSE8894 was
based on gene expression and time to recurrence data. (d) The direction of expression for the seven
biomarkers in each validation set. HCS: Human Cancer Secretome; CBS: Servers TargetP, SecretomeP,
and SignalP; PP: Plasma Proteome database; N: number of patients; HR: adjusted hazard ratio; p:
log-rank p-value determined from univariate Cox regression analyses (green curve: low-risk group;
red curve: high-risk group); TCGA: The Cancer Genome Atlas; LUAD: Lung Adenocarcinoma; LUSC:
Lung Squamous Cell Carcinoma; IL-8: Interleukin-8; SCG2: Secretogranin II; NCAM1: Neural Cell
Adhesion Molecule 1; CNTN1: Contactin 1; CADM1: Cell Adhesion Molecule 1; NPTX1: Neuronal
pentraxin 1; APOD: Apolipoprotein D; GSE: Gene Expression Omnibus accession numbers.

The prognostic value related to the worse prognosis of IL-8, SCG2, NCAM1, CNTN1, CADM1,
NPTX1, and APOD tumor transcripts were evaluated in seven lung cancer transcriptome datasets
(validation set). Notably, these biomarkers were capable of distinguishing worse and better prognosis
(recurrence and survival) in seven NSCLC cohorts from the SurvExpress database (Figure 4c).
Interestingly, only IL-8 was found with increased expression in the high-risk group in all NSCLC
validation set (Figure 4d and Figure S3).

2.5. High IL-8 Expression in Tumor Tissues is Associated with Poor Prognosis in NSCLC

All seven potential biomarkers were individually analyzed in the Kaplan-Meier (KM) plotter
server using gene expression and survival data of lung cancer patients available on the database
(N = 1053), and IL-8 proved to be a strong predictor of poor survival (Figure 5a). Moreover, as IL-6 is a
key regulator of muscle mass during cachexia [34] and has been associated with worse prognosis in
lung cancer patients [35,36], we compared the prognostic value of IL-8 with IL-6 using KM plotter
server. Notably, both IL-8 and IL-6 tumor transcripts presented similar prognostic values (IL-8: hazard
ratio (HR) = 1.28, 95% confidence interval (CI) = 1.12–1.45; IL-6: HR = 1.32, 95% CI = 1.16–1.5).
These results demonstrate the upregulation of IL-8 as a new biomarker associated with poor prognosis
in lung cancer patients.

The 75 over-expressed transcripts were carefully evaluated in patients with low-muscularity in
KM plotter to detect additional potential cachexia biomarkers associated with poor prognosis in lung
cancer patients. Nine genes (IL-6, IL-8, IL-1R2, CEMIP, CLEC4E, FCGR3B, HAL, MAP2K6, and KIF1A)
were validated as over-expressed in patients with worse overall survival (Figure S4). Importantly, IL-6,
IL-8, IL-1R2, CEMIP, FCGR3B, and KIF1A were predicted as a potentially secreted protein in at least
two secretome databases (Table S2). Collectively, these results emphasize that IL-8 is highly expressed
in tumors from NSCLC patients with low-muscularity and is associated with poor prognosis in this
cancer type.
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Figure 5. Interleukin (IL)-8 is associated with poor prognosis in non-small cell lung cancer (NSCLC).
(a) Forest plot for each tumor biomarkers (IL-8, SCG2, NCAM1, CNTN1, CADM1, NPTX1, and APOD)
in NSCLC patients from the dataset available on Kaplan-Meier (KM) plotter database. The hazard ratio
(HR) with 95% confidence intervals (CI) determined by Cox proportional hazards model is represented
in the horizontal axis. *** represent the statistical significance in NSCLC patient survival outcome
(p < 0.001; log-rank p-value). (b) Kaplan-Meier overall survival curves for IL-8 or IL-6 in NSCLC
patients from the dataset available on KM plotter [35] database. The resulting p-values for the log-rank
test are shown. SCG2: Secretogranin II; NCAM1: Neural Cell Adhesion Molecule 1; CNTN1: Contactin
1; CADM1: Cell Adhesion Molecule 1; NPTX1: Neuronal pentraxin 1; APOD: Apolipoprotein D;
IL6: Interleukin-6.

2.6. IL-8 Treatment Induces In Vitro Myotube Atrophy

The ability of IL-8 in inducing muscle atrophy was evaluated by treating C2C12 myotubes with
different concentrations of this cytokine (10, 100, and 1000 ng/mL). The myotubes treated with the
supraphysiological dose of 100 ng/mL presented a significant decrease in diameter compared to the
control group after 24 h (Figure S5). The C2C12 myotubes treated with 100 ng/mL of IL-8 for 24 h were
evaluated by Myh2 (myosin heavy chain 2) immunostaining, which confirmed the significant decrease
in myotubes diameter (Figure 6a,b). Myotubes treated with IL-8 also presented a higher number of
myotubes with <10 µm of diameter compared to the control group. Conversely, a higher number
of controls myotubes with >35 µm of diameter compared to those myotubes treated with IL-8 was
observed (Figure 6c).
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Figure 6. IL-8 (interleukin-8) induces atrophy in C2C12 myotubes. (a) Immunofluorescence of
C2C12 myotubes treated with recombinant IL-8 (100 ng/mL for 24 h) immunostained for Myh2 (myosin
heavy chain 2) (red) and the nuclei were counterstained with DAPI (4′,6-Diamidine-2′-phenylindole
dihydrochloride). White rectangles represent a myotube bigger than 35 µm (Ctrl) or smaller than
10 µm (IL-8). Scale bars, 100 µm. (b) Myotube diameter (µm) quantification using ImageJ software
(ImageJ, WI, USA). (c) Determination of the frequency of myotubes according to the diameter classes.
The data represent the mean ± standard deviation from three independent experiments. The statistical
significance was analyzed using the Student’s t-test. * p-value < 0.05. Ctrl: control myotubes; IL-8:
myotubes treated with recombinant interleukin 8.

3. Discussion

Using a tumor transcriptome-based secretome analysis in NSCLC patients with low-muscularity,
we aimed to identify potential cancer biomarkers of prognostic value and mediators of cancer-associated
muscle loss. This strategy revealed increased expression levels of cachexia-related genes predicted
to be secreted in NSCLC from patients with lower PMA. These genes were further associated with
shorter recurrence-free survival and decreased overall survival in different validation sets of patients
with NSCLC. Importantly, increased expression levels of IL-8 were detected in the high-risk group in
all NSCLC validation sets, and IL-8 was sufficient to trigger atrophy in C2C12 myotubes.

Muscle depletion or low muscle mass in NSCLC patients identified by CT images has been
extensively associated with poor outcome [4,9–13,15,16]. Previous studies using the same methodology
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to ours—the objective assessment of the PMA on CT scans—reported lower PMA associated with
worse overall survival in NSCLC patients or cases with chronic obstructive pulmonary disease, despite
normalization for BMI and performance status [14,37]. Teigen et al. reported that the PMA divided by
height (used to standardize for body size) is a powerful predictor of outcome after left ventricular assist
device implantation [38]. Unfortunately, the height in our cohort of PMA CT-based analysis was not
available. However, the high quality of these CT images previously allowed the identification of new
tumor radiomics features with prognostic value in NSCLC patients [27]. Thus, we hypothesized that
the comparison of the PMA with muscle normalizations based on different radiomics features aiming
the standardization for body size could reveal new approaches for screening muscularity in NSCLC
patients. Interestingly, PMA distinguished NSCLC patients with low- and high-muscularity in all
muscle normalizations tested. Considering that CTs images of lung cancer patients are preferentially
performed in the thoracic region, our data additionally confirm that PMA is a feasible measurement
easily applied to the clinical practice to distinguish NSCLC patients with different muscularity.

Although a large range of changes in body composition has been associated with tumor-derived
factors, including many pro-inflammatory cytokines [18–20,39], only few NSCLC studies associated
CT-derived body composition with systemic inflammatory response [40,41]. These studies showed
that lower muscularity was associated with systemic inflammatory response (IL-6, C-reactive protein,
and albumin blood levels, and neutrophil-to-lymphocyte ratio). However, the specific tumor-derived
factors that induce muscle loss in NSCLC patients are still unknown. Using the tumor transcriptome
analysis of NSCLC patients with low-muscularity, we found 105 deregulated genes, of which 75 were
upregulated and 30 downregulated. The functional enrichment analysis revealed upregulated genes
related to cytokine activity (CSF3, IL-8, IL-6, BMP6, SCG2, CCL8, BMP2) and extracellular space (CSF3,
FLRT2, IL-8, PLA2G3, IL-6, ATP1B1, COL14A1, LPL, HBB, ADAMTS4). These results suggest that tumor
of patients with low-muscularity possibly secrete cachexia-associated factors.

The in silico analysis confirmed that a set of over-expressed genes were translated into proteins
presented in plasma or secretome of NSCLC patients. Seven of these predicted proteins (NCAM1,
CNTN1, SCG2, CADM1, IL-8, NPTX1, and APOD) were identified in five databases (SignalP 4.1,
SecretomeP 2.0, Vesiclepedia, Human Cancer Secretome, and Plasma Proteome), giving support to
their relevance in NSCLC. Although not all NSCLC patients with low-muscularity were cachectic,
the tumor gene expression profile identified molecules, such as IL-6 and IL-8, consistently linked to
inflammation and cancer cachexia pathogenesis [29–31,42–48]. The low muscle mass detected by CT
images can occur in the absence of systemic inflammation in other malignancies, such as colorectal
cancer, but the proportion of patients with low-muscularity is substantially greater in the presence
of systemic inflammation [49]. In cases where the inflammation coexists with low muscle mass,
the prognosis is especially poor [50]. Taken together, we identified a specific set of upregulated genes
coding for secreted proteins that may constitute potential mediators of muscle loss in NSCLC.

Based on the fact that circulating levels of tumor-derived factors were correlated with cachexia
development and predicted outcome in cancer [29–31,42–48], we also investigated the predictive
potential of seven transcripts (NCAM1, CNTN1, SCG2, CADM1, IL-8, NPTX1, and APOD). All of them
were associated with shorter overall survival and recurrence-free survival for the predicted high-risk
groups in the NSCLC validation set. However, only IL-8 was over-expressed in the high-risk group
in all cohorts of our NSCLC validation set. We further confirmed that high IL-8 expression level in
tumor tissue is a strong predictive biomarker significantly associated with worse survival (validation
cohort of 1053 NSCLC patients). In agreement with our results, IL-8 expression in tumor tissues
was recently associated with cachectic status and outcome in pancreatic cancer; cachectic patients
with high IL-8 expression in tumor tissues had shorter overall survival or disease-free survival [31].
Importantly, these authors also showed that IL-8 expression level in tumor specimen paired with a
serum sample from the same patients was associated with tumor size.

We demonstrated that IL-8 directly induced myotube atrophy, reinforcing its potential as a new
mediator of cancer cachexia. Muscle wasting in cancer cachexia has been attributed to the combinatorial
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action of mediators from host and tumor microenvironment [18–20,39]. Also, tumor expression and
serum levels of IL-8 have been associated with muscle wasting in patients with different tumor
types [29,31,42–46]. The potential direct effect of IL-8 in inducing muscle cell atrophy is still unknown.
In this study, we provide evidence that IL-8 is a biomarker of worse prognosis that has the potential to
define the cachectic state in NSCLC patients

The main strength of the present investigation is the identification of potential tumor-derived
mediators of muscle wasting in patients with low-muscularity, which have prognostic value in NSCLC.
However, our study is based on the reuse of transcriptomic and clinical data, which results in limitations
that can be pointed out. Firstly, the validation of the findings at protein levels in NSCLC patients with
low-muscularity would be a strategy to define the cachexia blood biomarkers useful for clinical routine.
Secondly, our survival analyses were restricted to the validation set; the survival information was not
available in our discovery dataset. Finally, since the IL-8 gene is not present in the rodent genome,
the atrophy phenotype observed in mice myotubes was likely induced by orthologue receptors to the
human IL-8 [51]. In agreement with our study, Gerber et al. reported that IL-8 protein expression was
significantly associated with tumor-free body weight and skeletal muscle weight in a human pancreatic
cancer xenograft mouse model [52]. Further studies are needed to elucidate the mechanisms of action
of IL-8 in human muscle cells.

4. Materials and Methods

4.1. Datasets

CT images and clinical data were downloaded from The Cancer Imaging Archive
(TCIA, http://cancerimagingarchive.net/) database [53]. The dataset (NSCLC-Radiomics-Genomics
collection) [28] contains information from 89 NSCLC adult patients treated at MAASTRO Clinic,
The Netherlands, as previously published [27]. TCIA data are anonymized, and the institutional
ethical review board approval is not needed [54]. CT images were taken on diagnosis, and the
patients were treated with surgical procedure. Clinical data (age, gender, diagnosis, tumor stage), CT
images, and tumor microarrays data are available for all 89 patients. The NSCLC-Radiomics-Genomics
microarrays data is available on Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo;
microarrays dataset GSE58661) [27].

4.2. CT Imaging Analyses

The CT collection “NSCLC-Radiomics-Genomics” on TCIA database present CT images with
radiomics features that can be used as noninvasive prognostic or predictive biomarkers [27].
This collection is also the most appropriate due to the homogeneity of the CT images. The pectoralis
muscle was analyzed on a single axial slice of the image. This region was selected by a single trained
physician (ENH) who identified the aortic arch and then selected the first image just above the arch.
The cross-sectional area (cm2) of bilateral major and minor pectoralis muscles was measured by two
independent examiners, using Slice-O-Matic software (v.5.0; Tomovision, Montreal, Quebec, CA).
Muscles were manually traced using the Region of Interest (ROI) tool by summing the appropriate pixels
determined by CT Hounsfield unit (HU) for skeletal muscle (range −29 HU to 150 HU). The borders of
the pectoralis muscles were corrected manually when necessary, as previously described [14,37,55].
The pectoralis muscle area (PMA) was calculated by adding up the four muscles area. To test the
reproducibility of this analysis, an interobserver coefficient of variation was determined by comparing
the results of the analyses conducted by the two observers. The mean of this coefficient of variation
was 8.1%.

We also compared the PMA with muscle normalizations based on different radiomics features,
as previously described [56–58], to test different approaches for screening muscularity in NSCLC
patients. For this purpose, the pectoralis muscle area was also normalized by the following sternum
measurements: 1) manubrium length; 2) sternum body length; 3) total manubrium and sternum body

http://cancerimagingarchive.net/
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lengths; 4) distance between the beginning of manubrium and the end of sternum body measured
in 90◦ (not considering the xiphoid process) (Figure S1a). Different T10 (tenth thoracic) vertebrae
measurements were also tested for muscle normalizations: 1) horizontal length of T10 body; 2) vertical
length of T10 body; 3) distance between T10 body and spinous process; 4) distance between transverse
processes; 5) distance between pedicles; 6) T10 body area. We also analyzed the body cross-section
anteroposterior diameter (APD) at the tenth thoracic vertebra (T10) level to normalize the muscle area
(Figure S1b). The bone images were selected in the cross-section where the bones appeared at a higher
extent and dimension. The measurements were performed at the tenth thoracic vertebra (T10), which
is a common region for all patients in this CT collection. Skeletal muscle index (or muscularity) was
defined as the PMA divided by each bone or body measure (mentioned above) squared (cm2/cm2).
The measurements generated were z-score normalized and submitted to a non-hierarchical k-means
clustering analysis using Bioconductor Package Complex Heatmap (v 3.5) in Rstudio software (RStudio,
Inc, MA, USA; http://www.rstudio.org/).

4.3. Gene Expression Analysis

Tumor gene expression analysis was performed by comparing low- and high-muscularity patients
using the GEO2R tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/) [59]. The adjusted p-values (adj. p)
were applied using Benjamini and Hochberg false discovery rate (FDR) method by default. The cut-off

criteria to define differential expression were adj. p < 0.05 and |Fold Change (FC)|>1.5.

4.4. Gene Ontology Enrichment Analysis

Gene ontology (GO) functional enrichment analysis was performed to identify the
overrepresented GO categories of differential expressed genes using Gene Ontology Consortium
database (http://geneontology.org/) [59]. The GO categories with p-value and FDR <0.05 were
considered significant.

4.5. Protein-Protein Interactions (PPI) Networks

PPI networks were generated using the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) tool [60,61] (http://string-db.org/). We considered experiments, database, co-expression,
neighborhood, and co-occurrence as active interaction sources. The minimum required interaction
score was 0.700 (high confidence), and the disconnected nodes in the network were hidden for display
simplifications. The PPI enrichment p-value indicates the statistical significance provided by STRING.

4.6. In Silico Identification of Secreted Proteins

The over-expressed genes in the tumor of patients with low-muscularity were filtered for genes
encoding secreted proteins or proteins presented in microvesicles based on a pipeline of seven tools:
SignalP 4.1 [62], SecretomeP 2.0 [63], ExoCarta [64], TargetP 1.1 [65], Human Cancer Secretome
(HCS) [66], Vesiclepedia [67], and Evpedia [68]. Firstly, we accessed the UniProtKB database to obtain
amino acid sequences of proteins in FASTA format [69]. These data were used in the prediction servers
SignalP, TargetP, and SecretomeP at CBS portal (http://www.cbs.dtu.dk/services/). SignalP 4.1 server
was used to identify classical secretory proteins (presenting signal peptide and D-value >0.45).
Proteins without signal peptide were evaluated in the SecretomeP 2.0 server to determine non-classical
secreted proteins, using the cut-off for a neural network (NN) score >0.6. TargetP 1.1 server was used
to selectively collect proteins involved in secretory pathways and exclude mitochondrial proteins [65].
These potentially secreted proteins were also investigated in lung cancer using the tools ExoCarta,
HCS, Vesiclepedia, and Evpedia. Finally, the Plasma Proteome Database was consulted to identify
human plasma proteins and their isoforms potentially encoded by the over-expressed genes from
low-muscularity patients [70]. The tumor over-expressed genes, detected by all eight prediction tools,
were next used to assess their prognostic performance in predicting overall survival and time to
recurrence in multiple NSCLC independent datasets (validation set).
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4.7. Prognostic Performance of Secretory Genes in Predicting NSCLC Outcome

SurvExpress [33] database (http://bioinformatica.mty.itesm.mx/SurvExpress) was used to assess
the effect of differentially expressed genes on survival (datasets: Lung Meta-base, TCGA-LUAD (The
Cancer Genome Atlas–Lung adenocarcinoma) and LUSC (The Cancer Genome Atlas–Lung squamous
cell carcinoma) [71], GSE30219 [72], GSE31210 [73,74], and the Director’s Challenge Consortium
NCI [75]) and time to recurrence (dataset: GSE8894 [76]) of NSCLC patients. This tool allowed us to
assess the expression of secretory genes in tumor tissues and their association with the survival or
time to recurrence by Cox Proportional Hazard regression according to the risk groups estimated by
an optimization algorithm. The prognostic value of the secretory genes in predicting survival was
further determined in 1053 NSCLC patients using Kaplan-Meier Plotter—KM plotter [77]. Here, gene
expression was specifically associated with survival and time to recurrence (worse prognosis) due to
the lack of other clinical characteristics available in the databases. The datasets included in all survival
analysis present other clinical variables, such as age, gender, histology, and stage, which were not
discriminated here.

4.8. Functional Assay Using the C2C12 Cell Culture

C2C12 mouse myoblasts (ATCC® CRL-1772™) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA) with 1% Penicillin-Streptomycin
(Thermo Fisher Scientific, Waltham, MA, USA) and 10% fetal bovine serum (FBS, Thermo Fisher
Scientific, Waltham, MA, USA) at 37 ◦C and 5% CO2 for growth and expansion. After reaching a
confluence of 80–90%, the myoblasts were induced to differentiate in DMEM serum-free supplemented
with 1% Penicillin-Streptomycin for five days. Human recombinant IL-8 (10, 100, or 1000 ng/mL;
Abcam, Branford, CT, USA) was added to a new differentiation medium for 24 h. All experiments
were conducted using three independent replicates per group. Control myotubes (Ctrl) received a
sterile water solution containing bovine serum albumin 0.1%, the same solution used to dilute IL-8.

4.9. Immunofluorescence Assay

C2C12 myotubes cultured in 6-well plates were fixed in 4% paraformaldehyde for 15 min,
washed with phosphate-buffered saline (PBS) and 0.1% TritonX-100 (Sigma, St. Louis, Missouri, USA),
and blocked with 3% bovine serum albumin (BSA), 1% glycine, 8% fetal bovine serum in PBS and
0.1% TritonX-100 for 1 h at room temperature. Subsequently, the cells were incubated with primary
(Myh2, 1:600 dilution, M7523, Sigma, St. Louis, MO, USA) antibody overnight at 4 ◦C. After washing,
the cells were incubated with secondary antibody at the same concentration of the primary antibody
(1 h at room temperature) and counterstained with 4′,6-diamidino-2-phenylindole—DAPI (ProLong
Gold Antifade Mountant with DAPI, Thermo Fisher Scientific, Waltham, MA, USA). All images were
acquired using scanning confocal microscope Fluoview FV10i (Olympus, Tokyo, Japan). The myotube
diameter was measured as follow: 10 fields were randomly selected and, at least, 20 myotubes were
measured in each field using the NIH ImageJ software (ImageJ, WI, USA; https://imagej.nih.gov/ij/).
Next, we determined the average diameter calculating the mean of the measures taken along the length
of the myotube, as previously described by Rommel et al. [78].

4.10. Statistical Analysis

For the statistical analyses not previously described, we used the GraphPad Prism®(GraphPad
Software, San Diego, CA, USA). Student’s t-test or Mann-Whitney U-test was applied for independent
samples with normal distributed or non-parametric data, respectively. The comparison of the effect of
three different IL-8 concentrations on C2C12 myotubes with the respective controls was performed
using one-way ANOVA followed by Tukey test. Data are expressed as mean ± standard deviation (SD).
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5. Conclusions

In conclusion, our study demonstrated that PMA is a clinical and practical method to distinguish
NSCLC patients with different muscularity from routinely acquired CT images. Tumors from patients
with low-muscularity have a set of upregulated genes coding for secreted proteins within the tumor
microenvironment, including pro-inflammatory cytokines, which predict worse overall survival in
NSCLC. Among the upregulated genes, high IL-8 expression in tumor tissues is also associated with
worse prognosis in NSCLC, and recombinant IL-8 is capable of triggering atrophy in C2C12 myotubes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/9/1251/s1,
Figure S1: Different bone measurements used for Pectoralis muscle area normalization; Figure S2: Identification of
clusters of patients according to muscularity indexes and Pectoralis Muscle Area (PMA) cut-off values; Figure S3:
Heatmaps showing gene expression findings of seven potential biomarkers in low- and high-risk groups in NSCLC
validation sets; Figure S4: Highly expressed mRNAs in tumor tissue associated with poor prognosis in NSCLC;
Figure S5: C2C12 myotubes treated with different concentrations of recombinant IL-8 (10, 100, 1000 ng/mL);
Table S1: mRNA differentially expressed in tumors of 30 NSCLC patients with low-muscularity compared with
the gene expression of 59 NSCLC patients with high-muscularity; Table S2: Potentially secreted proteins identified
in secretome-related databases based on the over-expressed genes in NSCLC patients with low-muscularity.
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