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Reaction of Ru3(CO)12 with two equiv of 6-bromopyridine alcohols 6-bromopyCHROH
[(R = C6H5 (L1); R = 4-CH3C6H4 (L2); R = 4-OMeC6H4 (L3); R = 4-ClC6H4

(L4); (R = 4-CF3C6H4 (L5); R = 2-OMeC6H4 (L6); R = 2-CF3C6H4 (L7)] and 6-
bromopyC(Me)2OH (L8) in refluxing xylene afforded novel trinuclear ruthenium complexes
[6-bromopyCHRO]2Ru3(CO)8 (1a-1g) and [6-bromopyC(Me)2O]2Ru3(CO)8 (1h). These
complexes were characterized by FT-IR and NMR spectroscopy as well as elemental
analysis. The structures of all the complexes were further confirmed by X-ray
crystallographic analysis. In the presence of tert-butyl hydroperoxide (TBHP) as the
source of oxidant, complexes 1a-1h displayed high catalytic activities for oxidation of
primary and secondary alcohols and most of oxidation reactions could be completed
within 1 h at room temperature.

Keywords: ruthenium carbonyl complexes, alcohols oxidation, t-butyl hydroperoxide, pyridine alcohols,

chemoselectivity

INTRODUCTION

As a class of common starting materials, alcohols can beeasily converted into a variety of useful
compounds via organic synthesis methods (Salvatore et al., 2001; Crabtree, 2017). Among all
transfer strategies, oxidation of alcohols into their corresponding carbonyl compounds is one of
the fundamental and important chemical reactions (Sheldon et al., 2000, 2002; Mallat and Baiker,
2004; Vazylyev et al., 2005; Parmeggiani and Cardona, 2012; Cao et al., 2014; Wang et al., 2017) and
the oxidation products, including aldehydes, ketones and carboxylic acids, are important building
blocks for synthesis of pharmaceuticals and fine chemicals (Caron et al., 2006; Bianchini and Shen,
2009; Simon and Li, 2012; Balaraman et al., 2013). Conventional oxidation methods to access these
compounds usually require stoichiometric amounts of inorganic oxidants, such as chromium(VI)
compounds (Canielli and Cardillo, 1984; Tojo and Fernández, 2007), hypervalent iodine reagents
(Uyanik and Ishihara, 2009) or radical oxidants i.e.,N-methylmorpholine-N-oxide (NMO) (Kumar
et al., 2007; Gunasekaran et al., 2011; Saleem et al., 2013), 2,2,6,6-tetramethyl-1-piperidinyloxyl
(TEMPO) (Dijksman et al., 2001; Wang et al., 2008; Allen et al., 2013). Such reactions often result
in the generation of numerous wastes which caused serious environment problems. To ease this
issue, great efforts have been devoted to the development of atom-economic and green methods.

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2019.00394
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2019.00394&domain=pdf&date_stamp=2019-06-04
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:haozhiqiang1001@163.com
mailto:linjin64@126.com
https://doi.org/10.3389/fchem.2019.00394
https://www.frontiersin.org/articles/10.3389/fchem.2019.00394/full
http://loop.frontiersin.org/people/711161/overview


Yan et al. Alcohol Oxidation With t-butyl Hydroperoxide

Molecular oxygen is one of the green oxidants and the H2O is
the only by-product (Punniyamurthy et al., 2005). But in most
aerobic alcohol oxidation systems, the additives e.g., TEMPO and
large amounts of base are also needed, which makes the reaction
system more complicated (Wang et al., 2005; Kumpulainen and
Koskinen, 2009; Hoover et al., 2012). In addition, H2O2 is also
used as an environmentally benign oxidant (Campestrini et al.,
2004; Zhou et al., 2013; Ren et al., 2015; Vermaak et al., 2018).
However, due to its limited oxidation capacity, the catalytic
system should be assisted by carboxylic acid or H2SO4 as an
additive to achieve a high efficiency (Dai et al., 2015; Miao et al.,
2017). Compared with above oxidants, tert-butyl hydroperoxide
(TBHP) is an alternative suitable oxidant and widely used in
oxidation reactions, particularly in olefin epoxidation (Chen
and Luck, 2016; Kashani et al., 2018) and C–H bond oxidation
(Murahashi et al., 2000; Kudrik and Sorokin, 2017; Sarma et al.,
2018). There are also some successful examples of using TBHP
as an external oxidant in alcohol oxidation (Sarkar et al., 2014;
Annunziata et al., 2018; Borah et al., 2018). In spite of this
progress, less attention has been paid to this research area.
Therefore, it is in an urgent demand to develop mild and efficient
oxidation systems using TBHP as an oxidant.

It is well-known that transition metal complexes play a
crucial role in oxidation process. Many transition metal catalysts
including ruthenium (Shapley et al., 2000; Lybaert et al., 2017;
Sarbajna et al., 2017; Moore et al., 2019), palladium (Stahl, 2004;
Sigman and Jensen, 2006; Ho et al., 2018), copper (Velusamy
et al., 2006; Jehdaramarn et al., 2018; Lagerspets et al., 2019),
and iron (Coleman et al., 2010; Stanje et al., 2018) have
been reported for promoting the oxidation of alcohols. Among
them, ruthenium compounds are intensively studied because of
their rich structures and various valence states. For example,
Ramesh and co-workers reported that ruthenium(II) carbonyl
2-(arylazo)phenolate complexes could oxidize sensitive group-
contained alcohols with moderate to high conversion (Kumar
et al., 2007). The group of Zhang synthesized several ruthenium
complexes containing 2-(biphenylazo)phenolate ligands that
successfully achieved high catalytic activity in the presence of
NMO without diminishing chemoselectivity (Tang et al., 2018).
However, very few examples were focused on di-or tri-nuclear
ruthenium complexes and their applications in organic reactions
were limited. Recently, we have reported a series of triruthenium
carbonyl complexes and their efficient oxidation behavior toward
secondary alcohols, while these Ru compounds showed poor
reactivity in oxidation of primary alcohols (Hao et al., 2018a,b,
2019). As part of our continuing efforts in developing novel
ruthenium carbonyl complexes and their applications in alcohol
oxidation, herein, we reported the synthesis and characterization
of several ruthenium carbonyl complexes supported by pyridine-
alkoxide ligands and their catalytic properties in the oxidation of
primary and secondary alcohols using TBHP as an oxidant.

EXPERIMENTAL

Materials and Methods
All manipulations were performed under a nitrogen atmosphere
using standard Schlenk techniques. Solvents for reaction were

distilled from appropriate drying agents under N2 before use. All
the chemical reagents were purchased from commercial sources.
Ru3(CO)12 was prepared by literature methods (Fauré et al.,
2003). NMR spectra were measured using a Bruker Avance
III-500 NMR spectrometer at room temperature with TMS as
internal standard.Melting points were determined using an SGW
X-4A Digital Melting Point Apparatus. IR spectra were recorded
as KBr disks on a Thermo Fisher iS 50 spectrometer in the range
4,000–600 cm−1 and elemental analyses were performed on a
Vario EL III analyzer.

Preparation of
6-bromopyCH(2-CF3C6H4)OH (L7)
To a dried Et2O (30mL) of 2, 6-dibromopyridine (3.55 g,
15 mmol) at −78◦C, n-BuLi (9.5mL, 15 mmol) was added
dropwise via a syringe in 10min and the solution was stirred at
−78◦C for 1 h. After addition of 2-(trifluoromethy)benzaldehyde
(2.61 g, 15 mmol), the mixture was allowed to warm to room
temperature and stirred overnight. The reaction solution was
neutralized with aqueous NH4Cl and the organic phase was
separated. The aqueous layer was extracted with CH2Cl2 (3 ×

10mL), and combined organic fractions were dried over MgSO4

and the residue was placed in an Al2O3 column with ethyl
acetate/petroleum ether as an eluent to give L7 as a off-white
powders (2.04 g, 46%). 1H NMR (CDCl3, 500 MHz, 298K): δ

7.69 (d, J = 7.9Hz, 1H, Py-H), 7.53 (t, J = 7.7Hz, 1H, Py-H),
7.45–7.49 (m, 2H, C6H4), 7.41 (d, J = 8.2Hz, 2H, C6H4), 6.96

SCHEME 1 | Synthetic routes of Ru complexes.
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(d, J = 7.7Hz, 1H, Py-H), 6.15 (s, 1H, CH), 4.93 (s, 1H, OH).
13C NMR (CDCl3, 125 MHz, 298K): δ 161.9, 141.1, 140.8, 139.5,
132.6, 129.9, 128.4, 128.2, 127.2, 125.5 (q, JC−F = 5.5Hz), 123.1
(q, JC−F = 272Hz), 120.6, 69.5 ppm.

FIGURE 1 | Perspective view of 1a with thermal ellipsoids are drawn at the
30% probability level. Hydrogens have been omitted for clarity. The selected
bond lengths (Å) and angles (◦): Ru(1)-Ru(3) 2.7743(10), Ru(2)-Ru(3)
2.7625(10), Ru(1)-O(1) 2.140(5), Ru(2)-O(1) 2.084(6), Ru(1)-N(2) 2.237(7),
Ru(2)-N(1) 2.252(7); N(2)-Ru(1)-Ru(3) 157.9(2), N(2)-Ru(1)-Ru(2) 102.2(2),
Ru(2)-O(1)-Ru(1) 91.4(2), Ru(1)-O(2)-Ru(2) 91.1(2), Ru(2)-Ru(3)-Ru(1) 66.20(3).

FIGURE 2 | Perspective view of 1c with thermal ellipsoids are drawn at the
30% probability level. Hydrogens and solvent have been omitted for clarity.
The selected bond lengths (Å) and angles (◦): Ru(1)-O(1) 2.083(3), Ru(2)-O(1)
2.132(3), Ru(1)-Ru(3) 2.7649(5), Ru(2)-Ru(3) 2.7552(6), Ru(1)-N(1) 2.258(4),
Ru(2)-N(2) 2.240(4); Ru(1)-O(1)-Ru(2) 92.33(12), Ru(2)-O(3)-Ru(1) 92.00(12),
N(1)-Ru(1)-Ru(3) 157.10(10), N(2)-Ru(2)-Ru(3) 157.01(12), Ru(2)-Ru(3)-Ru(1)
66.848(15).

Preparation of
(6-bromopyCHC6H5O)2Ru3(CO)8 (1a)
A solution of ligand precursor L1 (0.248 g, 0.938 mmol) and
Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of xylene was refluxed
for 10 h. After evaporation of the solvent in vacuo, the residue was
placed in an Al2O3 column. Elution with ethyl acetate/petroleum
ether gave 1a as orange crystals (yield 0.307 g, 62%). Mp: 168–
169◦C. Anal. Calc. for C32H18Br2N2O10Ru3: C, 36.48; H, 1.72; N,
2.66. Found (%): C, 36.30; H, 1.85; N, 2.71. 1H NMR (CDCl3,
500 MHz, 298K): δ 7.61 (d, J = 7.7Hz, 2H, Py-H), 7.25–7.29
(m, 8H, Py-H, C6H4), 7.15 (d, J = 6.5Hz, 4H, C6H4), 6.62 (d,
J = 7.7Hz, 2H, Py-H), 5.58 (s, 2H, CH) ppm. 13CNMR (CDCl3,
125 MHz, 298K): δ 205.9, 202.9, 200.8, 190.1, 170.8, 144.8, 143.4,
138.2, 128.7, 128.4, 128.3, 128.0, 120.0, 91.7 ppm. IR (υCO, KBr,
cm−1): 2081(s), 2015(s), 1998(vs), 1909(s).

Preparation of
[6-bromopyCH(4-MeC6H4O)]2Ru3(CO)8 (1b)
Complex 1bwas prepared in a similar procedure to that described
above for preparation of 1a. Reaction of L2 (0.261 g, 0.938
mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of xylene
generated complex 1b as orange crystals (yield 0.358 g, 70%).
Mp: 173–175◦C. Anal. Calc. for C34H22Br2N2O10Ru3: C, 37.76;
H, 2.05N, 2.59. Found (%): C, 37.91; H, 2.19, N, 2.45. 1H
NMR (CDCl3, 500 MHz, 298K): δ 7.60 (d, J = 7.7Hz, 2H, Py-
H), 7.26 (t, J = 7.7Hz, 2H, Py-H), 7.09 (d, J = 7.9Hz, 4H,
C6H4), 7.04 (d, J = 8.0Hz, 4H, C6H4), 6.60 (d, J = 7.7Hz,
2H, Py-H), 5.54 (s, 2H, CH), 2.30 (s, 6H, CH3) ppm.
13C NMR (CDCl3, 125 MHz, 298K): δ 206.0, 203.0, 200.9,
190.2, 171.0, 144.7, 140.5, 138.1, 138.0, 129.3, 128.2, 127.9,
119.9, 91.5, 21.4 ppm. IR (υCO, KBr, cm−1): 2085(s), 2015(s),
2000(s), 1909(s).

FIGURE 3 | Perspective view of 1g with thermal ellipsoids are drawn at the
30% probability level. Hydrogens have been omitted for clarity. The selected
bond lengths (Å) and angles (◦): Ru(1)-O(1) 2.089(4), Ru(1)-O(1i) 2.147(4),
Ru(1)-N(1) 2.313(5), Ru(2)-Ru(1) 2.7560(7), Ru(2)-Ru(1i) 2.7560(7),
Ru(1)-O(1)-Ru(1i) 92.06(15), N(1)-Ru(1)-Ru(1i) 97.72(13), Ru(1)-Ru(2)-Ru(1i)
67.17(2).
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Preparation of [6-bromopyCH(4-
OMeC6H4O)]2Ru3(CO)8 (1c)
Complex 1cwas prepared in a similar procedure to that described
above for preparation of 1a. Reaction of L3 (0.276 g, 0.938
mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30ml of xylene
generated complex 1c as orange crystals (yield 0.337 g, 65%). Mp:
176–177◦C. Anal. Calc. for C34H22Br2N2O12Ru3: C, 36.67; H,
1.99, N, 2.52. Found (%): C, 36.53; H, 2.10, N, 2.44. 1H NMR
(CDCl3, 500 MHz, 298K): δ 7.59 (d, J = 7.7Hz, 2H, Py-H),
7.26 (t, J = 7.7Hz, 2H, Py-H), 7.07 (d, J = 8.6Hz, 4H, C6H4),
6.81 (d, J = 8.6Hz, 4H, C6H4), 6.60 (d, J = 7.7Hz, 2H, Py-H),
5.55 (s, 2H, CH), 3.76 (s, 6H, OCH3) ppm. 13C NMR (CDCl3,
125 MHz, 298K): δ 206.0, 203.0, 200.9, 190.2 171.1, 159.6, 144.7,
138.1, 135.9, 129.3, 128.2, 120.0, 114.1, 91.2, 55.4 ppm. IR (υCO,
KBr, cm−1): 2078(s), 2004(s), 1993(vs), 1912(s).

Preparation of
[6-bromopyCH(4-ClC6H4O)]2Ru3(CO)8 (1d)
Complex 1d was prepared in a similar procedure to that
described above for preparation of 1a. Reaction of L4 (0.281 g,
0.938 mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of

xylene generated complex 1d as orange crystals (yield 0.267 g,
51%). Mp: 182–183◦C. Anal. Calc. for C32H16Br2Cl2N2O10Ru3:
C, 34.24; H, 1.44, N, 2.50. Found (%): C, 34.34; H, 1.52, N, 2.48.
1HNMR (CDCl3, 500MHz, 298K): δ 7.64 (d, J = 7.5Hz, 2H, Py-
H), 7.31 (t, J = 7.7Hz, 2H, Py-H), 7.29 (d, J = 8.3Hz, 4H, C6H4),
7.08 (d, J = 8.3Hz, 4H, C6H4), 6.61 (d, J = 7.7Hz, 2H, Py-H),
5.54 (s, 2H, CH) ppm. 13C NMR (CDCl3, 125 MHz, 298K): δ

205.8, 202.8, 200.9,189.7, 170.1,144.9, 141.8, 138.3, 134.2, 129.3,
129.0, 128.6, 119.9, 90.9 ppm. IR (υCO, KBr, cm−1): 2084(s),
2012(s), 1998(s), 1915(s).

Preparation of [6-bromopyCH(4-
CF3C6H4O)]2Ru3(CO)8 (1e)
Complex 1ewas prepared in a similar procedure to that described
above for preparation of 1a. Reaction of L5 (0.339 g, 0.938
mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of xylene
generated complex 1e as orange crystals (yield 0.267 g, 48%). Mp:
177–179◦C. Anal. Calc. for C34H16Br2F6N2O10Ru3: C, 34.33; H,
1.36, N, 2.36. Found (%): C, 34.44; H, 1.30, N, 2.43. 1H NMR
(CDCl3, 500 MHz, 298K): δ 7.67 (d, J = 7.7Hz, 2H, Py-H), 7.57
(d, J = 8.1Hz, 4H, C6H4), 7.35 (t, J = 7.8Hz, 2H, Py-H), 7.29

TABLE 1 | Oxidation of 1-phenylethanol catalyzed by complex 1a under various conditionsa.

Entry Cat.

(mol%)

TBHP

(mmol)

Solvent Yieldb

(%)

TOFc

(h−1)

1 1.0 2.0 Toluene 64 113

2 1.0 2.0 Acetone 77 120

3 1.0 2.0 CH3CN 85 138

4 1.0 2.0 CH2Cl2 53 69

5 1.0 2.0 THF 44 60

6 1.0 2.0 Dioxide 40 31

7 2.0 2.0 CH3CN 88 90

8 1.5 2.0 CH3CN 86 102

9 0.5 2.0 CH3CN 85 228

10 0.5 1.0 CH3CN 80 129

11 0.5 1.5 CH3CN 84 164

12 0.5 2.5 CH3CN 90 240

13 0.5 3.0 CH3CN 91 257

14d 0.5 2.5 CH3CN 72 206

15e 0.5 2.5 CH3CN 54 72

16 – 2.5 CH3CN Trace –

17 0.5 – CH3CN – –

aReaction conditions: 1-phenylethanol (1.0 mmol), solvent (2.0mL), reaction time 1 h.
bYield was determined by GC.
cTOF was calculated at 30% conversion of 1-phenylethanol.
dT = 50◦C.
eT = 80◦C.
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(d, J = 8.0Hz, 4H, C6H4), 6.64 (d, J = 7.6Hz, 2H, Py-H), 5.61
(s, 2H, CH) ppm. 13C NMR (CDCl3, 125 MHz, 298K): δ 205.6,
202.7, 200.9, 189.5, 169.7, 146.9, 145.0, 138.5, 130.7, 128.9, 128.2,
125.8 (q, JC−F = 2.7Hz), 123.1 (q, JC−F = 270.5Hz), 120.0, 91.1
ppm. IR (υCO, KBr, cm−1): 2083(s), 2017(s), 1993(s), 1912(s).

Preparation of [6-bromopyCH(2-
OMeC6H4O)]2Ru3(CO)8 (1f)
Complex 1fwas prepared in a similar procedure to that described
above for preparation of 1a. Reaction of L6 (0.276 g, 0.938
mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of xylene
generated complex 1f as orange crystals (yield 0.298 g, 57%). Mp:

FIGURE 4 | Influence of the reaction time on catalytic performance of complex
1a (1-phenylethanol 1.0 mmol, complex 1a 0.5 mol%, TBHP 2.5 mmol,
CH3CN 2.0mL).

TABLE 2 | Comparison of catalytic activity of Ru complexesa.

Entry Catalyst TBHP

(mmol)

Solvent Yieldb

(%)

TOFc

(h−1)

1 1a 2.5 CH3CN 91 240

2 1b 2.5 CH3CN 93 273

3 1c 2.5 CH3CN 96 281

4 1d 2.5 CH3CN 87 228

5 1e 2.5 CH3CN 85 220

6 1f 2.5 CH3CN 90 243

7 1g 2.5 CH3CN 74 210

8 1h 2.5 CH3CN 92 256

9 Ru3(CO)12 2.5 CH3CN 30 –

aReaction conditions: 1-phenylethanol (1.0 mmol), catalyst (0.5 mol%), solvent (2.0mL),

reaction time 1 h.
bYield was determined by GC.
cTOF was calculated at 30% conversion of 1-phenylethanol.

183–184◦C. Anal. Calc. for C34H22Br2N2O12Ru3: C, 36.67; H,
1.99, N, 2.52. Found (%): C, 36.75; H, 2.12, N, 2.45. 1H NMR
(CDCl3, 500MHz, 298K): δ 7.59 (d, J = 7.7Hz, 2H, Py-H), 7.24–
7.19 (m, 4H, C6H4, Py-H), 6.85 (d, J = 8.2Hz, 2H, C6H4), 6.76
(t, J = 7.4Hz, 2H, C6H4), 6.61 (d, J = 7.6Hz, 2H, Py-H), 6.50
(d, J = 7.5Hz, 2H, C6H4), 6.04 (s, 2H, CH), 3.94 (s, 6H, OCH3)
ppm. 13C NMR (CDCl3, 125 MHz, 298K): δ 206.2, 203.1, 201.1,
190.7, 171.2, 157.3, 144.9, 138.0, 131.7, 129.4, 128.3, 128.1, 120.0,
119.2, 110.3, 84.9, 55.2 ppm. IR (υCO, KBr, cm−1): 2086 (s), 2020
(vs), 1995 (s), 1960 (s), 1905 (s).

Preparation of [6-bromopyCH(2-
CF3C6H4O)]2Ru3(CO)8 (1g)
Complex 1gwas prepared in a similar procedure to that described
above for preparation of 1a. Reaction of L7 (0.339 g, 0.938
mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of xylene
generated complex 1g as orange crystals (yield 0.212 g, 38%). Mp:
186–188◦C. Anal. Calc. for C34H16Br2F6N2O10Ru3: C, 34.33; H,
1.36, N, 2.36. Found (%): C, 34.25; H, 1.41, N, 2.43. 1H NMR
(CDCl3, 500 MHz, 298K): δ 7.69 (d, J = 7.8Hz, 2H, Py-H),
7.62 (d, J = 7.9Hz, 2H, C6H4), 7.43 (t, J = 7.6Hz, 2H, Py-H),
7.35–7.30 (m, 6H, C6H4), 6.51 (d, J = 7.7Hz, 2H, Py-H), 5.61
(s, 2H, CH) ppm. 13C NMR (CDCl3, 125 MHz, 298K): δ 204.9,
203.1, 200.8, 190.0, 169.9, 145.3, 141.9, 138.5, 132.3, 129.9, 128.7,
127.9, 126.4, 125.7 (q, JC−F = 4.6Hz), 123.0 (q, JC−F = 273.8Hz),
119.8, 85.5 ppm. IR (υCO, KBr, cm−1): 2089(m), 2022(s), 2001(s),
1969(s), 1914(s).

Preparation of
[6-bromopyCH(Me)2O]2Ru3(CO)8 (1h)
Complex 1h was prepared in a similar procedure to that
described above for preparation of 1a. Reaction of L8 (0.202 g,
0.938 mmol) with Ru3(CO)12 (0.300 g, 0.469 mmol) in 30mL of
xylene generated complex 1h as orange crystals (yield 0.305 g,
68%). Mp: 171–172◦C. Anal. Calc. for C24H18Br2N2O10Ru3: C,
30.11; H, 1.89; N, 2.93. Found (%): C, 30.25; H, 1.99; N, 2.81. 1H
NMR (CDCl3, 500MHz, 298K): δ 7.51 (d, J = 7.6Hz, 2H, Py-H),
7.41 (t, J = 7.7Hz, 2H, Py-H), 6.89 (d, J = 7.6Hz, 2H, Py-H),
1.37 (s, 6H, CH3), 1.18 (s, 6H, CH3) ppm. 13C NMR (CDCl3,
125 MHz, 298K) δ 206.9, 202.9, 202.7, 191.0, 175.7, 145.6, 138.8,
128.2, 118.7, 87.7, 34.7, 31.1 ppm. IR (υCO, KBr, cm−1): 2080(s),
2007(s), 1966(s), 1906(s).

General Procedure for Catalytic Oxidation
of Alcohols
An alcohol substrate (1.0 mmol), complex 1c (0.005 mmol) and
TBHP (2.5 mmol) was placed in a 2-neck 25mL round bottom
flask and degassed 2 times. Two milliliter of dried CH3CN
was then added and the resulting mixture was reacted at room
temperature for 1 h under an N2 atmosphere. After the reaction
was complete, the solvent was removed under reduced pressure
and the residue was purified by Al2O3 column chromatography
(eluent ethylacetate/petroleum ether v/v = 1/15) to afford the
desired product, which was identified by comparison with the
authentic sample through NMR and GC analyses.
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TABLE 3 | Oxidation of various of secondary alcohols to ketones catalyzed by 1ca.

Entry Alcohol Conv.b

(%)

Yieldc

(%)

TOFd

(h−1)

1 R = 4-Me 96 92 286

2 R = 3-Me 99 93 290

3 R = 4-OMe 97 94 305

4 R = 4-Cl 96 93 270

5 R = 4-Br 94 90 256

6 R = 3-Br 91 85 250

7 R = 4-CF3 90 87 243

8 96 90 285

9 97 91 275

10 99 96 292

11 97 93 274

12 98 92 280

13e 94 90 88

14e 92 88 85

15e 91 90 80

(Continued)
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TABLE 3 | Continued

Entry Alcohol Conv.b

(%)

Yieldc

(%)

TOFd

(h−1)

16e 93 91 81

aReaction conditions: alcohol (1.0 mmol), catalyst 1c (0.5 mol%), solvent (2.0 mL).
bConversion was determined by GC.
c Isolated yields.
dTOF was calculated at 30% conversion of alcohol.
eReaction time 3 h, yield was determined by GC.

Crystal Structural Determination
Single crystals of complexes 1a-1h suitable for X-ray crystal
structural analysis were obtained from aCH2Cl2/n-hexanemixed
solvent system. Data collection was performed on a Bruker
SMART 1000 diffractometer, using graphite-monochromated
Mo-K radiation (ω-ϕ scans, λ = 0.71073 Å). The structures were
solved by direct methods and refined by full-matrix least squares.
All calculations were using SHELXTL crystallographic software
packages (Sheldrick, 1997). The crystal data and summary of
X-ray data collection are presented in Tables S2, S3.

RESULTS AND DISCUSSION

Synthesis of Ligands and Ruthenium
Complexes
6-bromopyridine alcohol ligands L1-L6 and L8 were synthesized
according to the literature procedure (Tsukahara et al., 1997;
Song and Morris, 2004) and identified by NMR and elemental
analysis prior to use. L7 was synthesized following similar
methods. 2,6-Dibromopyridine reacted with n-BuLi and 1 equiv
of o-substituted aldehydes was added to the reaction mixture,
then hydrolysis led to the target ligand.

Ruthenium clusters were prepared in moderate to high yields
from Ru3(CO)12 by treating with 2.0 equiv of ligands L1-L8 in
refluxing xylene, respectively. The general synthetic route for
these new compounds is depicted in Scheme 1. These trinuclear
Ru complexes were identified by FI-IR, NMR spectroscopy and
elemental analysis. The FT-IR spectra of all the complexes exhibit
several absorption peaks around 1906–1950 cm−1, which can
be assigned to the characteristic stretching vibration of the
terminally coordinated CO. In the 1H NMR spectra of 1a-1g,
the characteristic signal of –OH disappeared and the singlets
resonance for the methyne adjacent to oxygen were observed
at 5.5–6.1 ppm, which were shifted upfield when compared to
those in the free ligands (L1-L7). In the 13C NMR spectra,
the resonance signals around 85–92 ppm correspond to the
methynes mentioned above, which are in good accordance
with compound [pyC(Me)2O]2Ru3(CO)8 (δ 87.6 ppm) and
[pyCHC6H5O]2Ru3(CO)8 (δ 89.3 ppm), which were previously
reported in the literature (Hao et al., 2018b).

Crystal Structures of Complexes 1a-1h
Complexes 1a-1h were further characterized by X-ray
crystallography. The molecular structures of 1a, 1c, and 1g

TABLE 4 | Oxidation of various primary alcohols to aldehydes catalyzed by 1ca.

Entry Alcohol Conv.b

(%)

Yieldc

(%)

TOFd

(h−1)

1 R = H 94 88 279

2 R = 4-Me 95 90 286

3 R = 3-Me 97 90 290

4 R = 4-OMe 99 93 302

5 R = 4-Cl 94 85 271

6 R = 4-Br 95 90 276

7 R = 4-NO2 97 91 277

8 98 92 300

9 95 90 287

10e 87 82 88

11e 89 85 92

12e 84 81 83

aReaction conditions: alcohol (1.0 mmol), catalyst 1c (0.5 mol%), solvent (2.0 mL).
bConversion was determined by GC.
c Isolated yields.
dTOF was calculated at 30% conversion of alcohol.
e1.5 mol% of 1c was used.

are shown in Figures 1–3 with selected bond lengths and
angles, respectively. Those of 1b, 1d-1f, and 1h are shown in
Figures S1–S5, respectively. Details of the structural parameters
are also given in Tables S2, S3. X-ray diffraction analysis shows
that all the complexes 1a-1h are trinuclear ruthenium clusters
accompanied by two pyridylalkoxo ligands simultaneously via
their pyridyl N and hydroxy O atoms. Three Ru atoms adopt
a pseudooctahedral coordinated mode. The unit cell of 1a
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SCHEME 2 | Proposed mechanism for alcohol oxidation catalyzed by Ru/TBHP system.

contains two crystallographically-independent molecules which
possess similar connectivity and only one molecular structure
is depicted in Figure 1 for clarity. In complexes 1a-1h, the
distances between the two Ru atoms directly connected to the
ligands are in the range of 3.0236(10)-3.0516(10) Å, which
are comparable to the Ru–Ru bond distances in complexes
(µ-OC6H4OMe-2)2Ru3(CO)8 (3.012(1) Å) (Santini et al., 1987)
and [PyCH=C(Ph)O]2Ru3(CO)8 (3.0693(6) Å) (Ma et al.,
2017). The bond lengths of Ru(1)–N(1) varying from 2.252(7)
Å to 2.330(14) Å observed in all complexes are slightly longer
than those Ru–N bond lengths found in complexes {µ2-µ5:η1-
(C5H4N)(C9H5)}Ru3(CO)9 [2.164(3) Å] (Chen et al., 2010) and
(6-bromopyCMeC6H5O)Ru3(CO)9 (2.229(4) Å) (Hao et al.,
2018b). The Ru(1)–O(1) bond lengths for 1a-1h are all similar
and are in the range of 2.072(3)-2.093(5) Å, showing that the
substitutions at 2- or 4- positions of benzene ring have no
significant effect on bond lengths.

Catalytic Activity on Oxidation of Alcohols
We commenced our study by using complex 1a as precatalyst
and 1-phenylethanol as a simple substrate to obtain the
appropriate conditions. Initially, various oxidants (NMO, H2O2,
t-BuOOH, TEMPO) were tested to oxidize 1-phenylethanol.
Among diffrerent oxidants applied in this studies, t-BuOOH was
found to be the best oxidant and acetophenone can be obtained
in a high yield of 75% (Table S1). The effect of solvent on

this oxidation process was then evaluated (Table 1, entries 1–6).
When the reaction was performed in CH2Cl2, THF or dioxide,
the oxidation product was obtained in low yields (<55%). When
using toluene or acetone as solvent, the the yield was enhanced
slightly. To our delight, the yield of the desired ketone in CH3CN
was 85%, which is higher than that in other solvents. Thus,
acetonitrile was selected as the optimal solvent. The subsequent
lowering the loading of 1a from 2.0 to 0.5 mol% did not
significantly affect the yield, thus only 0.5 mol% catalyst 1a is
sufficient for catalyzing the present reaction (Table 1, entries 3
and 7–9). Subsequently, the effect of TBHP on the reaction was
examined. Upon increasing the amounts of TBHP from 1.0 to
3.0 mmol, the yield of acetophenone was gradually improved to
91%, and 2.5 mmol of TBHP was selected as the most suitable
amount from the view of cost-saving (Table 1, entries 10–13). It
was found that the reaction temperature had an obvious impact
on the reaction efficiency. As shown in Table 1, when elevating
the temperature from room temperature to 50 or 80◦C, the yield
of product decreased dramatically to 72 and 54%, respectively
(Table 1, entries 14 and 15). Furthermore, the effect of reaction
time on the rate of oxidation was investigated (Figure 4). When
the reaction time was extended from 0 to 20min, an almost
linear increase of the yield was observed during the oxidation of
1-phenylethanol. After 40min, the yield increased slightly, and
further extension of the time after 60min could hardly increase
the yield. Finally, control experiments indicated that only traces
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(8%) of the desired product was formed without using complex
1a and almost no oxidation product was generated in the absence
of TBHP (Table 1, entries 16 and 17).

The above interesting results encouraged us to continue the
optimization study using different ruthenium complexes and
the obtained results are summaried in Table 2. The complexes
containing electronically rich ligands (1a-c, 1f, and 1h) exhibited
higher catalytic activity than those bearing electronically poor
ligands (1d, 1e, and 1g), suggesting that the catalytic behavior
of Ru complexes was influenced by the electronic nature of the
ligands. Catalysts 1f and 1g with ortho-substituents in the phenyl
ring exhibited lower catalytic activity than their para-substituted
analogs 1c and 1e (Table 2, entries 3–4 vs. 6–7). This difference is
likely due to the fact that substitutions at 2-position of ligands
caused more steric hindrance around the metal centers, thus
influencing the coordination of metals with substrates. Besides,
catalytic oxidation of 1-phenylethanol was also carried out in
the presence of Ru3(CO)12 and the yield of the desired product
was only 30% (Table 2, entry 9). Thus, the optimized reaction
conditions are as follows: alcohol (1.0 mmol), TBHP (2.5 mmol),
catalyst 1c (0.5 mol%), reaction time (1 h) at room temperature.

Under optimized conditions, we set out to test the catalytic
performance of complex 1c in oxidation of different secondary
alcohols. As listed in Table 3, a diverse array of functional
groups including methyl-, chloro-, and trifluoromethyl-
etc. on the phenyl ring of substituted 1-phenylethanol
were tolerated (Table 3, entries 1–7). Additionally, several
sterically encumbered substrates undergo oxidation in
>90% yields (Table 3, entries 8–10). The fused-ring
alcohols, that are 1,2,3,4-tetrahydro-1-naphthol and 1-
indanol could be also converted to target product in 93
and 92% yields, respectively (Table 3, entries 11 and 12).
As for secondary aliphatic alcohols, a prolonged reaction
time (3h) was required to achieve high yields (Table 3,
entries 13–16).

Moreover, the oxidation of primary alcohols was also tested
in the standard conditions and the results were summarized in
Table 4. The reaction of benzyl alcohols bearing electron-rich
or electron-deficient substituents in the aromatic ring proceeded
efficiently to furnish the corresponding benzaldehyde derivatives
in excellent yields (Table 4, entries 1–7). Only trace amount of
benzoic acids were detected, which demonstrated the superiority
of the present catalytic system in terms of chemoselectivity. 2-
Naphthalenemethanol showed satisfactory reactivity to provide
2-naphthaldehyde in>90% yield (Table 4, entry 8). The substrate
having sensitive group (internal alkene) was also tolerated in
this system, the carbon-carbon double was preserved in the final
product (Table 4, entry 9). While the catalytic system displayed
a diminished activity for oxidation of heterocyclic primary
alcohols such as 2-furanmethanol and 2-thiophenemethanol,
and <70% yields of the target products were obtained under
optimized condition. This outcome can be explained by the
strong coordination ability of heteroatoms with Ru centers,
which led to the deactivation of the catalyst. Delightfully, decent
yields of the heterocyclic products could be obtained by simply
increasing the catalyst loading of 1c to 1.5 mol% (Table 4,
entries 10–12).

Based on our preliminary data and related Ru-catalyzed
alcohol oxidation processes, a plausible inner-sphere mechanism
for alcohol oxidation catalyzed by present ruthenium carbonyl
complexes/TBHP system is proposed in Scheme 2. First, the
catalyst A reacted with two molecules of TBHP to give Ru-
oxide species I and tBuOH. Subsequent reaction of intermediate
I with alcohol to form a five-membered ring transient state
II, which then released water to give the alkoxide species III.
Finally, the break of Ru-O bond in this intermediate occurred
to regenerate catalyst A for next catalytic cycle and afforded the
target carbonyl product.

CONCLUSIONS

In summary, a series of ruthenium carbonyl complexes
bearing pyridine-alkoxide ligands were synthesized and
exhibited excellent catalytic activity for the oxidation of
both primary and secondary alcohol substrates, showing
broad substrate scope. Of particular note was the effective
oxidation of primary alcohols to desired aldehydes without
over-oxidation, displaying good chemoselectivity. A
striking advantage associated with this catalytic system
is that the oxidation reaction can be completed within
only 1 h at room temperature for most cases, which is
far more efficient than previously reported Ru/TBHP or
Ru/NMO systems.
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