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Abstract. 3,-tubulin is a minor tubulin that is local- 
ized to the microtubule organizing center of many 
fungi and higher eucaryotic cells (Oakley, B. R., C. E. 
Oakley, Y. Yoon, and M. C. Jung. 1990. Cell. 61: 
1289-1301; Steams, T., L. Evans, and M. Kirschner. 
1991. Cell. 65:825-836; Zheng, Y., M. K. Jung, 
and B. R. Oakley. 1991. Cell. 65:817-823). Here we 
show that ~/-tubulin is a component of a previously 
isolated complex of Drosophila proteins that contains 
at least two centrosomal microtubule-associated pro- 
teins called DMAP190 and DMAP60. Like DMAP190 
and DMAP60, the "y-tubulin in extracts of early Dro- 
sophila embryos binds to microtubules, although this 

binding may be indirect. Unlike DMAP190 and 
DMAP60, however, only 10-50% of the "y-tubulin in 
the extract is able to bind to microtubules. We show 
that 3,-tubulin binds to a microtubule column as part of 
a complex, and a substantial fraction of this 3,-tubulin 
is tightly associated with DMAP60. As neither or- nor 
/3-tubulin bind to microtubule columns, the 3,-tubulin 
cannot be binding to such columns in the form of an 
or:3, or/3:'), heterodimer. These observations suggest 
that 3,-tubulin, DMAP60, and DMAP190 are compo- 
nents of a centrosomal complex that can interact with 
microtubules. 

T 
HE centrosome is the main microtubule organizing 
center (MTOC) ~ in animal cells (for reviews see 
Brinkley, 1985; Karsenti and Maro, 1986; Mazia, 

1987; Cande, 1990; Huang, 1990; Johnson and Rosenbaum, 
1992; Karsenti, 1992). In the 100 yr since the centrosome 
was first described, it has become apparent that this organdie 
plays a crucial role in many aspects of cellular organization 
(Wilson, 1928; McIntosh, 1983; Kreis, 1990; Schliwa, 1992) 
as well as in development (Wilson, 1928; Bornens et al., 
1987; Raft and Glover, 1989). Despite its central impor- 
tance, the centrosome has remained enigmatic: it is unclear 
how it nucleates microtubules, how it replicates, or how its 
functions are regulated during the cell cycle. 

To understand how the centrosome functions, we will need 
to identify the proteins that constitute it. A number of such 
proteins have already been identified (for example, Kuriyama 
and Borisy, 1985; Klotz et ai., 1986; Baron and Salisbury, 
1988; Huang et al., 1988b; Whitfield et al., 1988; Kellogg 
et al., 1989; Rout and Kilmartin, 1990), and cDNAs encod- 
ing several of them have been cloned and sequenced (Huang 
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et al., 1988a; Kuriyama et al., 1990; Ohta et al., 1990; 
Joswig et al., 1991). Moreover, antibodies raised against cer- 
tain centrosomal proteins have been shown to inhibit aspects 
of centrosomal function when injected into cells (Moudjou 
et al., 1992; Joshi et al., 1992), and genetic studies in yeasts 
have identified genes whose products are involved in the 
function of the spindle pole body, the centrosome equivalent 
in yeasts (Byers, 1981; Baum et al., 1986, 1988; Rose and 
Fink, 1987; Uzawa et al., 1990; Winey et al., 1991; Vallen 
et al., 1992). It is still unclear, however, how any of these 
proteins function in the centrosome. 

The recent discovery of-/-tubulin could be a breakthrough 
in the attempt to understand how centrosomes nucleate mi- 
crotubules (Oakley et al., 1990; Oakley, 1992; Cande and 
Stearns, 1991). ~/-tubulin was first identified as a suppressor 
of a 13-tubulin mutation in the fungus Aspergillus nidulans 
(Oakley and Oakley, 1989): when the gene encoding the sup- 
pressor was sequenced it was found to encode a new member 
of the tubulin superfamily and was named -y-tubulin. Unex- 
pectedly, antibodies raised against the protein did not stain 
microtubules, but instead stained the spindle pole body 
(Oakley et al., 1990). "g-tubulin has since been found in a 
wide variety of animal and plant ceils (Steams et al., 1991; 
Zheng et al., 1991; Horio et al., 1991; Cande and Steams, 
1991), and in all cases it has been found to be located exclu- 
sively in MTOCs. These findings led Oakley and his col- 
leagues to suggest that ~-tubulin may act as a highly con- 
served site of microtubule nucleation in all MTOCs (Oakley 
et al., 1990; Oakley, 1992). Several observations support 
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this suggestion: (a) Inactivation of the 7-tubulin gene in 
Aspergillus produces a lethal phenotype that is consistent 
with a failure in microtubule function (Oaldey et al., 1990). 
(b) "y-tubulin has been localized ultrastructurally to the 
pericentriolar material (PCM), the site of microtubule nucle- 
ation in the centrosome (Stearns et al., 1991). (c) An injec- 
tion of anti-7-tubulin antibodies into cultured cells inhibits 
the nucleation of new microtubules from the centrosome but 
does not interfere with microtubules that are already formed 
(Joshi et al., 1992). A crucial prediction of this hypothesis, 
which has so far not been demonstrated, is that 7-tubulin can 
interact with microtubules composed of (x:/~ tubulin hetero- 
dimers. 

We have previously identified a complex of Drosophila 
proteins that contains a number of centrosomal microtubule- 
associated proteins (MAPs) (Kellogg and Alberts, 1992). 
This complex was originally isolated by passing Drosophila 
embryo extracts over an affinity column of antibodies raised 
against DMAP190 - a 190-kD centrosomal MAP whose 
cDNA has been cloned (Kellogg and Alberts, 1992; Whit- 
field et al., 1988, where DMAP190 is called the BX63 anti- 
gen). The affinity column quantitatively depleted DMAPI90 
from the extract, and, in addition, specifically retained a 
number of other proteins. The DMAP190 antibodies did not 
recognize any of these other proteins in Western blotting ex- 
periments, suggesting that they are retained on the antibody 
column via an interaction (either direct or indirec0 with the 
DMAP190 protein. One of these proteins, called DMAP60, 
also binds to a microtubule affinity column and is localized 
to the centrosome, strongly suggesting that DMAP190 and 
DMAP60 form a complex in vivo (Kellogg and Alberts, 
1992). We now show that 3,-tubulin is a component of this 
complex, and like DMAP190 and DMAP60, 7-tubulin in 
Drosophila embryo extracts binds to microtubules, although 
the binding of these proteins to microtubules could be indi- 
rect. These observations suggest that these three proteins are 
components of a complex involved in the interaction of the 
centrosome with microtubules. 

Materials and Methods 

Preparation and Purification of 
Anti-Drosophila-7-Tubulin Antibodies 
Oligonucleotides were synthesized to allow full length Drosophila-7-tubulin 
to be amplified by PCR using standard procedures (Sarnbrook et al., 
1989) from an appropriate plasmid (kindly supplied by Trish Wilson, Yixian 
Zheng, and Berl Oakley). The oligonucleotides contained EcoR1 sites that 
allowed the final PCR product to be ligated, in frame, into the vectors 
pGEXI (Amrad Corp., Ltd., Australia) or pMALc (New England Biolabs 
Inc., Beverly, MA). DH5c~ cells were transformed with the 3,-tubulin- 
pMALc construct. Maltose-binding protein (MBP)-7-tubulin fusion pro- 
tein was expressed in these cells according to the manufacturers instruc- 
tions. The induced cells were isolated by centrifugation, resuspended in 
sample buffer (Laemmli, 1970), and boiled for 5 min. This whole cell ex- 
tract was fractionated by preparative SDS-PAGE (Laenunli, 1970), and the 
full-length fusion protein was excised from the gel and used to inject two 
rabbits (injection and serum production was carried out by the Berkeley An- 
tibody Co., Richmond, CA). 

Cells transformed with the pGEXl--y-tubulin construct expressed a 
glutathione-S-transferase (GST)-'y-tubniin fusion protein which was pu- 
rified and used to affinity purify the antibodies produced from the rabbits 
described above. Because this fusion protein was otherwise highly insolu- 
ble, modifications were made to standard procedures (Smith and Johnson, 
1988). Cells were grown in 6 liters ofLB (Sambrook et al., 1989) at 37°C 

until they reached an A600 of '~,0.5. They were cooled to 20°C, induced 
with 100/zM IPTG, and grown for an additional 3-4 h at room temperature. 
The cells were harvested by centrifugation and lysed by a freeze/thaw cycle 
followed by resuspension in 4 vol of PBS (140 mM Na2HPO4, 1.8 mM 
KH2PO4, pH 7.2, 138 mM NaCI, 2.7 mM KCI) plus 1 mM Na3EDTA 
and 1 mM Na3EGTA. After sonication, the bacterial extract was spun at 
100,000 g for 1 h to remove particulate matter and the fusion protein was 
purified by passing the extract over a glutathione-agarose column (Sigma 
Chem. Co., St. Louis, MO), followed by ehtion of the fusion protein in 
50 mM Tris-C1 (pH 8.0), 5 mM glutathione. We routinely obtained 2-3 mg 
of soluble fusion protein in this way. The protein was dialyzed into 50 mM 
Hepes, pH 7.6, 25 mM KCI, and coupled to Afligel-10 (Bio-Rad Labs., 
Cambridge, MA) at 2 rag/nil as per manufacturers instructions. The rabbit 
antibodies were purified on this column using standard procedures (Harlow 
and Lane, 1988). 

Microtubule-AJ~inity Chromatography 
The procedures for constructing microtubule columns, for making embryo 
extracts, for loading extracts over the microtubule column, and washing the 
column were described previously (Kellogg et al., 1989). In the experi- 
ments reported here, a sample of the proteins flowing through the column 
was taken as soon as the concentration of protein in the flow-through 
reached that of the protein in the extract. For this reason, we refer to the 
flow-through from a column as the ~initial ~ flow-through. After loading 
all of the extract, the column was washed with 10 vol of CX buffer (50 raM 
Hepes, pH 7.6, 1 mM MgC12, 1 mM Na3EGTA, 10% glycerol, 1 mM 
DTT, 1/~M each of leupeptin, pepstatin A, and aprntinin) plus 50 mM KCI, 
and the proteins retained on the microtubule column were eluted in a single 
step in CX buffer containing 1 mM ATP and 0.5 M KCI. TCA was added 
to the eluate to a final concentration of 10%, and this was left on ice for 
20 min, and then centrifuged in a microfuge for 10 min. Pellets were 
resuspended in sample buffer, neutralized with the vapors from a cotton 
swab dipped in NIGOH, boiled for 5 rain, and separated by SDS-PAGE 
followed by Western blotting. 

Microtubule Spin-Down Experiments 
0-3-h embryos were homogenized with 1 vol of C buffer (50 mM Hepes, 
pH 7.6, 1 mM MgCI2, 1 mM Na3EGTA), plus 10/~M each of leupeptin, 
pepstatin A, and aprotinin. The extract was centrifuged at 100,000 rpm for 
1 h at 4oc in a TL100 rotor (Beckman Instrs. Inc., Fullerton, CA), and the 
supernatant was then taken through a second round of centrifugation at 
100,000 rpm for 15 min. To polymerize the microtubules in the extract, 
GTP was added to 1 mM and taxol to 10 ~M. The extract was warmed to 
25°C for 5 min and allowed to sit at 4°C for an additional 15 min. 100 #1 
of the extract was loaded on top of a 150-/,1 cushion of C buffer plus 50% 
glycerol and centrifuged for 10 min at 100D00 rpm in a TLI00 rotor. 50 
/~1 of the supernatant was added to 50/~1 of 2x  sample buffer. The entire 
pellet was resuspended in 60/zl of C buffer, and 20 #l of 4× sample buffer 
was added. The samples were boiled and separated by SDS-PAGE before 
Western blotting. In control experiments no GTP or taxol was added to the 
extract, and the extract was not warmed to 25°C. In experiments where ex- 
tra tubulin was added to the extract, 100 or 200/~g (5 or 10% by volume) 
of cycled bovine or Drosophila tubulin was added to 120/~1 of extract before 
the addition of GTP and taxol. This is '~2 and 4 × the amount of the endoge- 
nous tubulin present in this amount of extract (confirmed by the size of the 
microtubule pellet and by looking at the tubulin band in samples of the ex- 
tracts before and after addition of the tubulin on Coomassie blue stained 
gels). To shear microtubules, the extract was pipetted vigorously for 30 s 
after GTP and taxol had been added to the extract, and the microtubules 
had been allowed to polymerize at 25°C for 5 rain. The microtubules were 
then incubated for an additional 15 min at 4°C. The effectiveness of the 
shearing at reducing the viscosity of the extract was confirmed by low-shear 
viscometry. 

Sucrose Gradient Sedimentation 
The proteins eluted from a microtubule column were concentrated to ,~1 
mg/mi in a centricon microconcentrator (Amicon, Beverly, MA), and fro- 
zen in liquid nitrogen in 120 #1 aliquots. Sucrose gradients (5-25 % sucrose 
in CX buffer plus 0.5 M KCI) were equilibrated at 4°C for 1 h. The MAP 
samples were thawed and clarified for 15 rain at 100,000 rpm in a TL100 
rotor, and 100/~l was loaded per gradient. The gradients (2 ml) were spun 
for 15 h at 55,000 rpm in a TLS-55 rotor in the same centrifuge. After cen- 
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trifugation, 14 140-#1 fractions were collected from the top of the gradient, 
"IV_A-precipitated, and analyzed by Western blotting as described above. 
The concentrated high speed extract that was sedimented on a sucrose gra- 
dient was made in the same way as the normal high speed extract except 
that the embryos were diluted only 1:1 (wt/vol) in C buffer instead of the 
usual 1:10. Glycerol was added to 10% and KCI to 0.5 M before loading 
on the gradient to mimic the conditions in the MAP fractions. 

Preparation of Antibody Columns and 
Antibody-A~inity Chromatography 
The procedures for constructing the DMAPI90 antibody column, for mak- 
ing the embryo extract, for loading the extract over the column, for washing 
the column, and for ehiting the proteins bound to the column were described 
previously (Kellogg and Alberts, 1992). DMAP60 antibody columns were 
constructed and treated in exactly the same way. In the experiments where 
isolated MAPs were run over a DMAP60 antibody column, 200 #1 of con- 
centrated MAPs (at ,,ol mg/ml-see  above) were loaded onto a 0.5-ml anti- 
body column (at 2-3 nag of antibody per mi) that had been preequilibrated 
with CX buffer plus 0.5 M KCI. The MAPs were allowed to sit on the 
colunm for 5 min, and the column was then washed with 200 #1 of CX buffer 
plus 0.5 M KCI. The MAPs flowing through the column were processed 
for Western blotting as described above. 

Western Blotting 
Proteins were transferred to nitrocellulose membranes using standard 
procodures (Towbin et al., 1979). Blots were incubated with TTBS (20 mM 
Tris-HCl, pH 7.5, 0.15 M NaCI, 50 mM KCI, 0.05% Tween-20) containing 
3% dehydrated milk and 10% glycerol for 20 min, and then incubated in 
this buffer with the appropriate antibodies for 2 h at room temperature. The 
blots were washed three times in TTBS for 15 rain, and then incubated with 
a 1:10,000 dilution of the appropriate peroxidase-conjngated secondary anti- 
body (Amersham Intl., Buckinghamshire, U.K.) for I h, followed by three 
15-min washes in TTBS. The antibody was detected using an enhanced che- 
miluminescence detection system (Amersham Intl., U.K.). As this method 
of detection is highly nonlinear, multiple exposures of all Western blots 
were obtained, and in many experiments control Western blots of known 
amounts of proteins were performed to allow accurate quantitation of the 
relative amounts of signal. Hence the relative amounts of the proteins in the 
different experimental fractions quoted in the text may appear at odds with 
what is shown in some of the figures. 

Antibodies 
The following antibodies were used in Western blotting experiments: 
affinity-purified rabbit polyclonal antibodies against 3,-tubulin, DMAP190, 
and DMAP60 at 1-2 #g/rrd; DMla  (anti-a-tubulin-ICN Biomedicals, 
Inc., Costa Mesa, CA) and DM1/~ (anti-~-tubulin-ICN Biomedicals Inc.) 
at 1:500 and 1:2,000 dilutions, respectively. The titer of the anti-9,-tubulin, 
-DMI~, and -DMI~ antibodies was tested by incubating known concentra- 
tions of the antibodies with Western blots of serial dilutions of either 
purified Drosophila tuhulin (to compare the tlters of the DMlc~ and DM1 
or full-length GST-a-tubulin and full-length GST-3,-tubulin (to compare the 
titers of the DMIc~ and the anti-7-tubulin antibodies). We found that the titer 
of the DM1B and anti-~/-tubulin antibodies were approximately the same, 
while the titer of the DMI~ antibody was ,~ fivefold lower. 

Colchicine Treatment, Fixation, and 
Immunofluorescence Staining of Embryos 
Embryos were collected, dechorionated, fixed, and stained according to 
Kellogg et al. (1988). The -f-tubulin, DMAP190, and DMAP60 affinity- 
purified antibodies were used at 1-2 #g/ml. A mouse anti-histone mAb 
(Chemicon Intl., Inc., Temecula, CA) was used at a 1:500 dilution to allow 
the DNA to be visualized. Appropriate rhodamine- or fluorescein-coupled 
secondary antibodies were used at 1:500 dilutions. 

To depolymerize microtubules, embryos were dechorionated in bleach, 
washed in water plus 0.05% Triton X-100, and then placed in heptane for 
30 s. An equal volume of Graces Drosophila medium containing 0.5 mg/mi 
colchicine (Sigma Chem. Co.) was added, and the embryos were allowed 
to sit at the aqueous/heptane interface for 20-30 rain with gentle agitation. 
The aqueous phase was then removed, an equal volume of 37% formalde- 
hyde was added, and the embryos were allowed to sit at the interface for 
an additional 4 min with gentle agitation. The formaldehyde was then re- 

moved and the embryos were devitellinized by vigorous shal~ng with an 
equal volume of methanol, as described in Kellogg et al. (1988). 

Results 

7-Tubulin Is Part of a Complex that Contains 
DMAP190 and DMAPtO 
We previously cloned a cDNA encoding a 190-kD cen- 
trosomal MAP called DMAP190 (Kellogg and Alberts, 
1992). We constructed immuno-affinity columns with low- 
affinity antibodies raised and purified against a bacterially 
expressed DMAP190 fusion protein. These columns were 
used to purify a number of proteins that bind to the columns 
through their association (either direct or indirect) with 
DMAP190 (Kellogg and Alberts, 1992). In these experi- 
ments, a high speed extract from 0-3-h old Drosophila em- 
bryos (containing no nuclei or assembled centrosomes) is 
passed over the anti-DMAP190 antibody column. After ex- 
tensive washing, any proteins retained on the column via an 
association with DMAP190 are eluted with 1 M KC1. The 
DMAP190 is then eluted with 1.5 M MgC12. This proce- 
dure yields highly purified DMAP190 in the 1.5 M MgCI~ 
elution, and 8-10 major proteins in the 1 M KC1 elution (Kel- 
logg and Alberts, 1992; Fig. 1 A). None of these proteins are 
retained on control columns constructed with purified IgG 
from nonimmunized rabbits (Kellogg and Alberts, 1992). 
Antibodies raised against one of these proteins recognized a 
60-kD protein, now called DMAP60, which is also a cen- 
trosomal MAP (Kellogg and Alberts, 1992), strongly sug- 
gesting that DMAP190 and DMAP60 are associated in vivo. 

Because ~/-tubulin is a centrosomal protein that is pos- 
tulated to interact with microtubules (Oakley, 1992), we 
wished to determine whether it was a component of the com- 
plex of proteins retained on an anti-DMAP190 antibody 
column. We therefore made antibodies against a bacterially 
produced fusion between MBP and full-length Drosophila 
~,-tubulin (see Materials and Methods) and purified them by 
affinity chromatography. On Western blots, these antibodies 
recognized Drosophila ~,-tubulin, but not Drosophila (or bo- 
vine) a- or/3-tubulin (see below), and in indirect immunoflu- 
orescence assays on whole-mount embryo preparations they 
stained only the centrosome (Fig. 2). 

These antibodies were used to probe Western blots of the 
protein fractions shown in Fig. 1 A. We found that ~-tubulin 
was greatly enriched in the fraction of proteins that bound 
to the anti-DMAP190 antibody column (Fig. 1 B), although 
there was not always a detectable band (by Coomassie blue 
staining) at the expected molecular weight for ~-tubulin, 
suggesting that 3,-tubulin may be a relatively minor compo- 
nent of the complex. The ~/-tubulin that bound to the column, 
however, bound very tightly: only 30-50% of it eluted with 
1 M KCI, while the rest eluted with the DMAP190 in 1.5 M 
MgCI~. In contrast, 80-90% of the DMAP60 eluted with 
1 M KC1, and only 10-20% eluted with the DMAP190. 
Neither o~- nor O-tubulin bound significantly to the anti- 
DMAP190 antibody column (Fig. 1 B), and neither ,y-tubu- 
lin nor DMAP60 bound significantly to an identical control 
column of IgG prepared from a nonimmunized rabbit (not 
shown). 

Although the anti-DMAP190 antibodies showed no detect- 
able cross-reactivity with 3,-tubulin in Western blotting ex- 
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Figure 2. Immunohistochemical staining of 3,-tubulin, DMAP190, and DMAP60 in the early Drosophila embryo. The figure shows the 
typical distribution of 3,-tubulin, DMAP190, and DMAP60 at interphase (INT), metaphase (MET), and anaphase (ANA) visualized with 
a searming confocal microscope in embryos at nuclear cycle 10 or 11. All three proteins are localized mainly to the centrosome during 
these early cycles. Anti-DMAP60 antibodies, and to a lesser extent anti-DMAP190 antibodies, however, also show a weak spindle-like 
staining during mitosis, and, while all of the antibodies stained the centrosome most strongly at mitosis, this was most marked for the 
anti-DMAPl90 and anti-DMAP60 antibodies. In addition, after nuclear cycle 12, both anti-DMAP190 and anti-DMAP60 antibodies 
strongly stained interphase nuclei as well as centrosomes (not shown, see Whitfield et al., 1988), while anti-~/-tubulin antibodies continued 
to stain only the centrosome. Bar, 5 tzm. 

periments (not shown), we wished to exclude the possibility 
that the binding of 3,-tubulin to the anti-DMAP190 antibody 
column was due to a cross-reactivity of  these antibodies with 
native -y-tubulin. We therefore passed embryo extracts over 
an antibody column constructed from ant i-DMAP60 anti- 
bodies. Like the anti-DMAP190 antibody columns (Kellogg 

and Alberts, 1992), these columns quantitatively depleted 
both DMAP60 and DMAP190 from the extract initially 
flowing through the column (not shown; see Materials and 
Methods for the definition of initial flow-through). 3,-tubulin 
bound to the DMAP60 antibody columns even more tightly 
than it did to the anti-DMAP190 antibody columns: only 

Figure 1. The binding of 3,-tubulin to an anti-DMAPl90 antibody column. (A) Coomassie blue stained gel of an anti-DMAPl90 antibody 
column experiment. (Lane 1) crude embryo extract; (lane 2) the same extract after centrifugation at 100,000 g for 1 h, as loaded onto 
the antibody column; (lane 3) the proteins that initially flowed through the column; (lane 4) the proteins eluted in 1 M KCI; and (lane 
5) the proteins eluted in 1.5 M MgCI2. (B) Western blots of the protein gel shown in A probed with antibodies against DMAP190, 
DMAP60, 3,-tubulin, c~-tubulin, and/~-tubulin. 10-20/~g of protein was loaded per lane with approximately equal amounts of protein in 
each lane. 
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10-20% of the ~/-tubulin was eluted with 1 M KC1; the re- 
maining 80-90% was eluted in the 1.5 M MgCI2 fraction 
(Fig. 3). a- and/3-mbulin did not bind significantly to anti- 
DMAP60 antibody columns (not shown). Thus, antibodies 
raised against either DMAPI90  or DMAP60 can be used to 

Figure 3. The binding ofv-tubulin to an anti-DMAP60 antibody col- 
umn. A Western blot of the proteins retained on an anti-DMAP60 
antibody column was probed with anti-'t-tubulin antibodies. (Lane 
1 ) crude embryo extract; (lane 2) the same extract after centrifu- 
gation for 1 h, as loaded onto the antibody column; (lane 3) the 
proteins that initially flowed through the column; (lane 4) the pro- 
reins eluted in 1 M KC1; and (lane 5) the proteins eluted in 1.5 M 
MgCI:. 10-20/zg of protein was loaded per lane with approxi- 
mately equal amounts of protein in each lane. 

Figure 4. The binding of 3,-m- 
bulin to a column of polymer- 
ized micrombules. (A) Coo- 
massie blue stained gel of a 
MAP purification experiment. 
(Lane 1) crude Drosophila 
embryo extract; (lane 2) the 
same extract after centrifuga- 
tion at 100,000 g for 1 h, as 
loaded onto the microtubule 
column; (lane 3) the proteins 
that initially flowed through 
the microtubule column; and 
(lane 4) the proteins eluted 
from the microtubule column 
in 1 mM ATP plus 0.5 M KCI. 
(B) Western blots of the pro- 
tein fractions shown in A, 
probed with anti-y-, ct-, or 
fl-tubulin antibodies. 10-20 
/~g of protein was loaded per 
lane with approximately equal 
amounts of protein in each 
lane. 

The Journal of Cell Biology, Volume 121, 1993 828 



purify a complex of proteins that contains DMAP190, 
DMAP60, and 3'-tubulin, as well as a number of unidentified 
proteins. 

~/-Tubulin in Embryo Extracts Binds to Microtubules 

To test whether 3,-mbulin in embryo extracts could bind to 
microtubules, clarified extracts of 0-3-h old embryos (con- 
taining no nuclei or assembled centrosomes) were passed 
over a column of taxol-stabilized microtubules, as described 
previously (Kellogg et al., 1989). After extensive wash- 
ing, the proteins retained on the microtubule column were 
eluted in a single step with 1 mM ATP and 0.5 M KC1. An 
SDS-polyacrylamide gel analysis of the proteins obtained is 
shown in Fig. 4 A. We probed Western blots of the protein 
fractions shown in Fig. 4 A with anti-3"-tubulin antibodies 
and found that 3'-tubulin was greatly enriched in the MAP 
fraction (Fig. 4 B). In contrast, ~ and/~-tubulin did not bind 
significantly to the microtubule column (Fig. 4 B); this re- 
sult was expected because the extract was passed over the 
column under conditions that inhibit microtubule polymer- 
ization (Kellogg et al., 1989). 

We compared the titers of the antibodies we used to detect 
o~-, ~-, and 3'- tubulin by quantitating their binding to known 

amounts of purified Drosophila tubulin, or known amounts 
of bacterially expressed, full-length GST-Drosophila oe-tubu- 
lin or GST-Drosophila 3'-tubulin (see Materials and 
Methods). From these measurements, we estimate that there 
is at least 10-30 times more 3,-tubulin than either c~- or 
/3-tubulin in the MAP fraction. Thus, 3'-tubulin could not 
have eluted from the microtubule column as part of an oe:3, 
or/3:3" heterodimer. Neither or-, ~-, nor 3,-tubulin bound 
significantly to control columns of either matrix alone or ma- 
trix coupled to BSA (not shown). 

To confirm that the 3'-tubulin in embryo extracts could bind 
to microtubules, we performed more conventional microtu- 
bule spin-down experiments. We used taxol to polymerize 
the endogenous mbulin in a concentrated embryo extract and 
then pelleted the microtubules and associated proteins through 
a sucrose cushion. In the absence of taxol, no microtubules 
were formed and virtually all of the DMAP190, DMAP60, 
and 3'-tubulin in the extract remained in the extract superna- 
tant (Fig. 5 A). When taxol was added to the extract to 
promote the formation of microtubules, •70090% of the 
DMAP190 and >95% of the DMAP60 pelleted with the mi- 
crotubules (Fig. 5 B), even though >95 % of the total protein 
remained in the supernatant. Interestingly, only 10050% 
(variable between experiments) of the 3'-tubulin in the extract 

Figure 5. The behavior of ~,-mbulin, DMAP60, and DMAP190 in microtubule spin-down experiments. S, supernatant; P, Pellet. (A) No 
taxol control; (B) taxol was added to polymerize the endogenous microtubules; (C) purified tubulin was added to 4x the level present 
in the endogenous extract before the addition of taxol; and (D) the endogenous micrombules were sheared to create more micrombule 
ends before pelleting the micmmbules. In these Western blots, 1/10 of the total protein left in the supernatant and 1/3 of the protein in 
the pellet was loaded per lane, but because >95% of the total protein remained in the supernatant, there is ,~10-20x more total protein 
in the supernatant lane than in the pellet lane. Note that the 3~-mbulin signal in the pellet lane is shifted down slightly because of the large 
amount of tubulin in the pellet that runs just above the ~/-mbulin. 
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pelleted with the microtubules (Fig. 5 B). To test whether 
the reason that most of the -t-tubulin in the extract failed to 
bind to the microtubules was because the sites for binding 
3,-tubulin were saturated, we added an excess of purified 
tubulin to the extract before adding taxol. Even when the 
equivalent of at least four times the total amount of endoge- 
nous tubulin was added, no increase in the amount of-/-tubu- 
lin that pelleted with the microtubules was seen (Fig. 5 C). 
Vigorous pipetting of the extract (to shear the microtubules 
to create more microtubule ends) also had no effect on the 
amount of "V-tubulin that pelleted with the microtubules 
(Fig. 5 D). 

To determine if microtubule columns also removed only 
a fraction of the ,y-tubulin from embryo extracts, we com- 
pared the amounts of y-tubulin in the load and flow-through 
from these columns. As was the case in the microtubule 
spin-down experiments, microtubule columns removed only 
'x,10-50% (variable between experiments) of the -/-tubulin 

initially loaded (not shown), whereas it quantitatively de- 
pleted the DMAP190 and DMAP60 (Kellogg and Alberts, 
1992). Thus, in two different assays, only 10-50% of the 
7-tubulin in the extract bound to microtubules. 

9/- Tabulin Binds to Microtubules as Part of a Complex 

We wished to know whether -y-tubulin bound to microtu- 
bules as a monomer or as part of a complex with DMAP190, 
DMAP60, and/or other proteins. Unfortunately, it was not 
possible to assay the state of these proteins while they re- 
mained bound to microtubules. We therefore tested whether 
these proteins behaved as monomers after elution from a 
microtubule column by subjecting the MAPs to velocity 
sedimentation through sucrose gradients. As the proteins 
were eluted from the microtubule column in 0.5 M KC1, we 
used this concentration of salt in the sedimentation experi- 
ments; therefore, only salt-stable interactions would be de- 

Figure 6. Sedimentation behavior of 3,-tubulin, DMAP60, and DMAPI90 on sucrose gradients. After elution from a rnicrotubule column, 
MAPs were separated on a sucrose gradient run in 0.5 M KCI. The resulting fractions were analyzed by SDS-PAGE and transferred to 
nitrocellulose. The nitrocellulose sheet was cut in half, separating the proteins of 100 kD and higher molecular weight from those of lower 
molecular weight. The higher molecular weight half was probed with anti-DMAP190 antibodies (A), while the other half was probed with 
a mixture of anti-3,-tubulin and anti-DMAP60 antibodies (B). y-tubulin and DMAP60 both sediment at "o8 S, whereas DMAPI90 sedi- 
ments at '°6.5 S. This gel was run to maximize the resolution between the y-tubulin and DMAP60 proteins so they could both be probed 
on the same Western blot, and the DMAP60 triplet (Kellogg and Alberts, 1992) has resolved into a doublet on this blot. (C) A concentrated 
embryo extract was subjected to sedimentation through a sucrose gradient under the same conditions as the MAP proteins. The DMAP60 
is in the form of a higher molecular weight complex, while a fraction of the qc-tubulin now behaves as a smaller protein. Arrows at the 
top of the gel indicate the positions of the roughly spherical marker proteins that were sedimented on an identical gradient and run in 
parallel to the gradients shown in the figure. The markers were ovalbumin (43 kD; 3.5 s), BSA (68 kD; 4.3 s), alcohol dchydrogenase 
(150 kD, 7.6 s), and catalase (230 kD, II.3 s). 
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tected in this experiment. As shown in Fig. 6 B, the 3,-tubulin 
that eluted from a microtubule column ran as a peak 
sedimenting at ,08 s, the size expected of a roughly spherical 
150-200-kD protein (3t-tubulin has a molecular mass of 52 
kD). The DMAP60 that eluted from the microtubule column 
migrated in a similar manner, sedimenting at ,08 s (Fig. 6 
B), whereas DMAP190 ran as a smaller protein with a peak 
at ,06.5 s (Fig. 6 A). Thus, both 3,-tubulin and DMAP60 
eluted from a microtubule column as components of salt- 
stable complexes. From the predicted amino acid sequence 
of DMAP190 (Whitfield, W., personal communication), its 
sedimentation rate was about that expected for a DMAP190 
monomer. It seems, therefore, that if DMAP190 is binding 
to microtubules in association with DMAP60 and/or q~-tubu- 
lin, this complex is not stable under the conditions used in 
this experiment. 

To test whether all of the "y-tubulin and DMAP60 in the 
extract could be in the form of these salt-stable complexes, 
we ran concentrated embryo extracts on sucrose gradients. 
We used concentrated extracts so that the behavior of the 
• y-tubulin, which is a very minor component, could be fol- 
lowed, and these experiments were performed in 0.5 M KCI 
to mimic the conditions under which the MAPs were assayed. 
We found that most of the DMAP60 in the extract migrated 
at ,08 s (Fig. 6 C), which was similar to its migration when 
the MAP fraction was analyzed. In contrast, while some of 
the ,y-tubulin migrated with a peak at 8 s, a significant por- 
tion ran at a lower molecular weight (Fig. 6 B), suggesting 
that not all of the 3,-tubulin in the extract can be in the form 
of a salt-stable complex. 

Because the ~/-tubulin- and DMAP60-containing com- 
plexes that eluted from a microtubule column were similar 
in size, we tested whether these proteins were a part of the 
same complex. We passed isolated MAPs, in 0.5 M KC1, 
over a column of anti-DMAP60 antibodies, and then assayed 
the proteins initially flowing through the column to see if the 
3,-tubulin was depleted along with the DMAP60. In three ex- 
periments, we found that >95% of the DMAP60 and 
40-70% of the q~-tubulin were depleted from the initial flow- 
through when compared to the flow-through from a control 
column constructed from preimmune IgG (Fig. 7), strongly 
suggesting that a substantial proportion of the 3,-tubulin in 
the MAP fraction is associated with DMAP60. In contrast, 
under these high salt conditions, the DMAPI90 was not 
depleted, as expected from the sucrose gradient experi- 
ments. 

~[-Tubulin, DMAP190, and DMAP6O Are  AII Integral 
Components  o f  the Centrosome 

Because ,),-tubulin, DMAP190, and DMAP60 are all cen- 
trosomal MAPs, we tested whether any of these proteins re- 
quired intact microtubules to maintain their localization at 
the centrosome. We treated embryos with the microtubule 
depolymerizing drug colchicine for 20-30 min before fixa- 
tion and then stained them with antibodies against each of 
these proteins. Although such treatment depolymerized vir- 

Figure 7. An anti-DMAP60 antibody column depletes DMAP60 
and partially depletes 3,-tubulin from isolated MAPs. Isolated 
MAPs, in 0.5 M KC1, were passed over either an anti-DMAP60 

antibody column or a nonimmune IgG column. The proteins that 
flowed through these columns were subjected to SDS-PAGE, 
bloRed, and probedwith antibodies against DMAP60, 3,-tubulin, 
and DMAP190. 
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Figure 8. Immunohistochemical staining of ~,-mbulin, DMAP190, and DMAP60 in colchicine-treated Drosophila embryos. The figure 
shows a field of nuclei at the cortex of embryos at nuclear cycle 11 or 12 that were treated for 30 rain with colchicine before fixation and 
antibody staining. The embryos were also stained with an anti-histone antibody to visualize the chromatin (right-hand panels). Note the 
characteristic disorganized "metaphase arrest" configuration of the chromosomes, and the very bright staining of the centrosomes with 
anti~T-mbulin, anti-DMAP190, and anti-DMAP60 antibodies. Bar, l0 ~m. 
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tually all of the microtubules in the embryo (not shown), it 
had little effect on the staining of centrosomes by these anti- 
bodies (Fig. 8). Thus, although these centrosomal proteins 
can associate with microtubules, they behave as "integral" 
components of the centrosome whose presence in the centro- 
some does not require intact microtubules. 

Discussion 

In an attempt to gain a better understanding of how the cen- 
trosome organizes microtubules, we have used immuno- 
affinity chromatography to isolate a complex of Drosophila 
centrosomal proteins that can interact with microtubules. 
We have previously shown that antibodies raised against 
DMAP190, a centrosomal MAE can be used to purify a 
complex of proteins that contains a number of other cen- 
trosomal MAPs including DMAP60 (Kellogg and Alberts, 
1992), and a novel 85-kD protein (Raft, J. W., and B. M. AI- 
berts, manuscript in preparation). In this report we show that 
~-tubulin, a highly conserved component of probably all 
centrosomes, is also a component of this complex and that, 
like DMAP190 and DMAP60, y-tubulin in Drosophila em- 
bryo extracts can bind to microtubules, although it is not 
clear whether any of these proteins bind to microtubules 
directly (see below). The finding that these centrosomal pro- 
teins associate with one another and with microtubules in 
vitro, strongly suggests that they are components of a cen- 
trosomal microtubule-binding complex. 

We have used two approaches to demonstrate that -y-tubu- 
lin, DMAP60, and DMAP190 in embryo extracts can inter- 
act with microtubules. First, we passed embryo extracts over 
columns of taxol-stabilized microtubules and showed that 
these proteins bind to the column; this had been shown previ- 
ously for DMAP60 and DMAP190 (Kellogg and Alberts, 
1992). Second, we polymerized the endogenous tubulin in 
an embryo extract and showed that these proteins copellet 
with microtubules. We previously demonstrated that the vast 
majority of proteins that bind to a microtubule column are 
associated with microtubule structures in vivo and that the 
proteins that copellet with microtubules in vitro are a very 
similar set to those that bind to a microtubule column (Kel- 
logg et al., 1989). These findings, together with our observa- 
tion that "y-tubulin, DMAP190, and DMAP60 all colocalize 
to the centrosome in vivo, suggest that the association of 
these proteins with microtubules in vitro is likely to reflect 
their function in cells. 

An intriguing finding in the present study is that in both 
the microtubule column and microtubule spin-down experi- 
ments, only 10-50% of the "y-tubulin in the extract binds to 
microtubules. These results are unlikely to be due to the 
presence of a limited number of y-tubulin binding sites on 
the microtubules since adding an excess of tubulin to the ex- 
tracts before polymerizing the tubulin into microtubules, or 
shearing the microtubules to create more free microtubule 
ends, does not increase the proportion of 3,-tubulin that binds 
to microtubules. Moreover, in microtubule column experi- 
ments we find that 3,-tubulin is not depleted from the extract 
flowing through the column in an initial burst, but is instead 
continuously partially depleted from the extract (unpub- 
lished observations-determined by collecting the flow- 
through from the column in small fractions and assaying the 
extent of 3,-tubulin depletion in each fraction). It seems, 

therefore, that a substantial fraction of the "y-tubulin in Dro- 
sophila embryo extracts is in a form that cannot bind to 
microtubules in vitro. There are at least two possible expla- 
nations for this result: (a) 3,-tubulin in the extract may have 
an intrinsically low-affinity for microtubules, and it is only 
when it becomes associated with other proteins that it can 
bind to microtubules; (b) 3,-tubulin in the extract is as- 
sociated with other proteins that prevent it from interacting 
with microtubules with high affinity. Our finding that ~,-tubu- 
lin elutes from a microtubule column as part of a complex 
with another centrosomal MAP (see below), and that not all 
of the "y-tubulin in the extract can be in the form of this com- 
plex, is consistent with the first possibility, but cannot ex- 
clude the second. 

It is possible that the inability of all of the y-tubulin to bind 
to microtubules reflects a special requirement of the early 
Drosophila embryo, in which enough "r-tubulin may have to 
be stored to make the large numbers of centrosomes needed 
during the first 2-3 h of development (Foe and Alberts, 
1983). In this case, it could be important to prevent any 
stored y-tubulin from binding to microtubules with high 
affinity until it has become incorporated into a functioning 
centrosome. The existence of a large maternal store probably 
explains why we are able to obtain "r-tubulin in a soluble 
form from extracts. 

Although we have shown that 3,-tubulin is part of a com- 
plex that contains DMAP190 and DMAP60, and that these 
three proteins associate with microtubules in vitro, we did 
not know whether these proteins were in a complex together 
while they were bound to microtubules. Unfortunately, it 
was not possible to directly analyze these proteins while they 
were bound to microtubules. We therefore analyzed the 
sedimentation behavior of these proteins after they were 
eluted from a microtubule column in high salt. We found that 
the 3,-tubulin and DMAP60 behaved very similarly, both 
sedimenting at •8 s, whereas DMAP190 sediments as a 
smaller protein, with a peak at ~6.5 s. Thus, both 3,-tubulin 
and DMAP60 elute from a microtubule column as compo- 
nents of salt-stable complexes, while, under these condi- 
tions, the majority of the DMAP190 cannot be a component 
of these complexes. 

To test if'r-tubulin and DMAP60 were components of the 
same complex, we passed the eluted MAPs, in 0.5 M KCI, 
over an anti-DMAP60 antibody column. The column de- 
pletes >95 % of the DMAP60 and 40--70% of the 'r-tubulin 
compared to control columns, strongly suggesting that at 
least fractions of the 3,-tubulin and DMAP60 are in the same 
complex. It is puzzling, however, that not all of the 3,-tubulin 
in the MAP fraction binds to the anti-DMAP60 antibody 
column because virtually all of the 3,-tubulin in the MAP 
fraction appears to be in a complex that comigrates with the 
DMAP60 on sucrose gradients. We suspect, therefore, that 
after elution from a microtubule column, these two proteins 
may exist in a variety of complexes, all of which extensively 
comigrate in sucrose gradients. This is supported by our ob- 
servation that the sedimentation behavior of the 3,-tubulin 
and DMAP60 eluted from a microtubule column is very 
similar, but not identical (unpublished observations). 

Although 3,-tubulin binds to microtubules as part of a com- 
plex, neither o~- nor l~-tubulin bind to microtubule columns, 
excluding the possibility that -r-tubulin binds to the columns 
as an c~:3' or 8:3' heterodimer. While it is possible that 

Raft et al. Drosophila "y-Tubulin Complex 833 



3,-tubulin forms 3,:~/homodimers, its migration on sucrose 
gradients suggests that the complex is too big to be a 
homodimer alone (whereas -y-tubulin migrates at 8 s, o~:/3 
homodimers migrate at 6 s), and, as discussed above, at least 
a fraction of the ~,-tubulin binding to a microtubule column 
is associated with DMAP60. 

Although we have shown that 3,-tubulin, DMAP190, and 
DMAP60 in embryo extracts can bind to microtubules, it is 
still uncertain whether any of these proteins can bind directly 
to microtubules, and, if they do, whether they bind exclu- 
sively to the ends of microtubules. Our observation that vir- 
tually all of the DMAP60 in an extract binds to microtubules 
suggests that DMAP60 must either bind directly to microtu- 
bules, or all of the DMAP60 in the extract is associated with 
proteins that bind to microtubules. It has recently been found 
that bacterially produced DMAP60 can cosediment with 
polymerized microtubules in vitro, suggesting that DMAP60 
can bind directly to microtubules (Schneider, K., per- 
sonal communication). Although 3,-tubulin, DMAP60, and 
DMAP190 all associate with microtubules at some level, 
preventing microtubule polymerization does not affect their 
localization in centrosomes. Thus, these proteins appear to 
be integral components of the centrosome. 

There are two important limitations to the approaches 
we have used to analyze how 3t-tubulin, DMAP60, and 
DMAP190 are associated with one another and with 
microtubules in the cell. First, all of our studies are con- 
ducted with the soluble forms of these proteins, which may 
behave differently than they would in the environment of a 
functional centrosome. Second, we have only analyzed the 
behavior of these proteins either before loading on a column 
or after elution from a column in high salt. It is probable that 
these proteins assemble with yet other proteins into much 
larger complexes while they are bound to microtubules. This 
is certainly the case for proteins bound to an anti-DMAP190 
antibody column, which retains at least 8-10 major proteins 
through their direct or indirect association with DMAPI90 
(Kellogg and Aiberts, 1992). Thus, T-tubulin and DMAP60 
might bind to microtubules in a complex with DMAP190, 
but this larger complex is disrupted after the proteins are 
eluted from the column in high salt, and then diluted on a 
sucrose gradient. To understand how these proteins function 
in the centrosome, one will need to determine which of them 
bind directly to microtubules, to discover exactly how they 
interact with one another, and to identify the other compo- 
nents that interact with these proteins in the centrosome. 
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