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ABSTRACT: In polymerase chain reaction (PCR)-based DNA sequencing studies, there is the possibility that mutations at the binding sites of pri-
mers result in no primer binding and therefore no amplification. In this article, we call such mutations PCR dropouts and present a coalescent-
based theory of the distribution of segregating PCR dropout mutations within a species. We show that dropout mutations typically occur along
branch sections that are at or near the base of a coalescent tree, if at all. Given that a dropout mutation occurs along a branch section near the
base of a tree, there is a good chance that it causes the alleles of a large fraction of a species to go unamplified, which distorts the tree shape.
Expected coalescence times and distributions of pairwise sequence differences in the presence of PCR dropout mutations are derived under the
assumptions of both neutrality and background selection. These expectations differ from when PCR dropout mutations are absent and may form
the basis of inferential approaches to detect the presence of dropout mutations, as well as the development of unbiased estimators of statistics
associated with population-level genetic variation.
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Introduction
DNA sequencing is either primer based, whereby a specific

genetic locus is amplified by polymerase chain reaction (PCR)

and sequenced1 or by shotgun sequencing, whereby genomes

are randomly broken into small segments and sequenced

directly with no amplification.2,3 In primer-based sequencing,

2 primers that together flank a locus are used. Primers are

typically about 18 to 24 nucleotides in length and bind to

DNA. Each primer initiates replication on separate

strands, with complementary effects such that after several

rounds of replication and strand separation a specific locus is

amplified.4

Substitutions at the binding sites of primers can lower the

probability a primer binds and initiates replication. Not all sub-

stitutions at the binding site of a primer are equal. For exam-

ple, substitutions within the last 3 to 4 nucleotides of the 3#
end can significantly reduce PCR replication.5,6 Primer cover-

age corresponds to the proportion of species or taxa in the

sample that are, or are expected to be, amplified and sequenced

for a primer or set of primers.7 Studies of primer coverage that

compare primers to DNA sequence databases indicate that

coverage for a specific primer varies depending on taxon, rang-

ing from 0% to nearly 100%,7,8 where the taxon level is at the

domain or phylum. For example, in the bacterial phylum,

Nitrospirae coverage is about 97% for the commonly used 16S

rRNA primer 519F if a single mismatch is allowed within the

last 4 nucleotides of a primer binding site, but only about 32%

if a single mismatch is not allowed.7 For the bacterial phylum

Lentisphaerae and the commonly used 16S rRNA primer

338F, coverage is 97% if a single mismatch is allowed within

the last 4 nucleotides of a primer binding site, but 0% if a sin-

gle mismatch is not allowed.7 High coverage may occur at the

phylum level for a specific primer, but is typically lower at the

domain level due to broader sequence diversity.

A lack of primer coverage is straightforward to detect in

studies where it is sought to sequence DNA from a single indi-

vidual because amplification and sequencing will fail, which is

directly detectable. In contrast, it is becoming increasingly

common to pool, amplify, and sequence DNA from multiple

individuals across one or more species. For example, in primer-

based metagenomic and eDNA studies, a sample is taken from

the environment that contains individuals and/or DNA from

potentially thousands of species or OTUs (operational taxo-

nomic units) and multiple individuals per species or OTU. In

this approach, PCR amplification and sequencing is often

non-targeted and used to discover or detect the species, OTUs

or higher taxonomic groups present, as well as targeted and

used to detect a specific species, OTU or taxonomic group. In

non-targeted applications, there is the possibility that a taxo-

nomic group or subset of individuals within a taxonomic group

go undiscovered or undetected because of a mismatch between

primers and binding sites. Furthermore, even with targeted

sequencing, there is the possibility of low primer coverage.7,8

As context, many datasets deposited in the European

Bioinformatics Institute metagenomics database (https://

www.ebi.ac.uk/metagenomics/)9 involve primer/amplicon-

based and non-targeted sequencing from nature. Although

there has been progress in developing reference databases for

primer/amplicon-based metagenomic studies to match

sequences to species or higher taxonomic groups in a targeted
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manner,10 there is still a need for assessing whether a taxo-

nomic group goes partially or fully unsequenced in non-

targeted sequencing studies, as well as assess the degree of cov-

erage of targeted taxa.

A challenge for primer-based metagenomic studies is asses-

sing coverage for a sample from nature. A rarefaction curve

may be used to assess coverage by plotting the number of taxa

delineated versus the number of sequences recorded.11 If this

curve is asymptotic, then nearly all taxa have been delineated.

Nevertheless, this only applies to taxa that are amplified by the

primer or primer set. Even if primer coverage was less than

100%, an asymptotic rarefaction curve can occur with more

sequences because eventually all amplified species can eventu-

ally be sequenced and delineated to a taxon or as coming from

an unknown taxon. Generally, it would be helpful for a meta-

genomic study to have available approaches to assess primer

coverage for their specific sample from nature. In this article,

we present theory to help the development of approaches to

assess coverage.

In particular, we use coalescent theory to derive expectations

for the pattern of nucleotide variation within a species when a

mutation or a set of mutations at primer site(s) block the chain

of events during a primer-based sequencing study, such that a

set of sequences are not recorded as being present. This muta-

tion or a set of mutations could either completely block a pri-

mer from binding to its binding site or reduce binding, such

that amplification is so low that the locus is not sequenced for

a set of individuals descendent from the mutation or a set of

mutations. We call such mutations ‘‘PCR dropouts.’’

A PCR dropout mutation or a set of PCR dropout muta-

tions may occur ancestrally to all individuals within a species

or later (forward in time), such that only a subset of individuals

from a species have one or more of the dropouts. Dropout

mutations that occur ancestrally to all individuals and are suffi-

cient to block amplification of all individuals within the species

are not the focus of this study. Instead, we focus on dropouts

that are segregating within a population, such that these drop-

outs occur later (forward in time) than the most recent com-

mon ancestor (MRCA) to the species. Using coalescent

theory,12,13 we show that segregating dropout mutations give

rise to distinct patterns of DNA sequence variation. This pat-

tern may be used to assess whether a species (or OTU) is

prone to PCR dropouts and therefore reduced coverage.

Furthermore, if several species (or OTUs) within a taxon have

a signal of dropouts, this may indicate a larger problem of cov-

erage for the entire taxon.

Although this article focuses on dropouts within a species,

similar principles apply at higher levels of biological organiza-

tion. We choose to first focus on within-species variation

because DNA sequence evolution is well characterized by the

coalescent process and this process is universal among species

and taxa. In contrast, at higher levels, there is no standard the-

oretical framework of DNA sequence evolution, although

Hey’s14 approach may be promising in the context PCR drop-

outs and metagenomics (see section ‘‘Discussion’’).

Expectations for DNA sequence variation at the population

level and in the presence of segregating dropout mutations will

also be of potential use in other contexts besides assessing pri-

mer coverage. For example, there has been the development of

estimators of nucleotide diversity that account for the higher

rate of sequencing errors associated with next-generation

sequencing technology.15,16 Yet, methods are not available that

account for segregating PCR dropouts. Furthermore, methods

have been developed to use population-level variation to infer

the phylogenetic structure of ecological communities using

metagenomic data.17 Accordingly, it would be helpful to con-

sider the effect of PCR dropouts on population-level variation

and whether they may affect inferences of phylogenetic

structure.

The organization of this article is as follows: First, we pres-

ent theory assessing the probability that dropout mutations

occur along branch sections that are deep in the coalescent tree

of a species or along branch section that occur more recently,

as well as whether we expect a species to segregate a single

dropout mutation or multiple dropout mutations. Generally,

we find that dropout mutations typically occur along branch

sections that are deep in the coalescent tree of a species.

Furthermore, given rates of mutation at primer sites, a single

dropout mutation typically segregates in a sample. Focusing on

dropouts that completely block amplification, we then derive

expectations for the distribution of coalescence times and pair-

wise differences of sequenced alleles at a locus. This analysis

indicates that the distribution of coalescence times and pair-

wise differences is affected by the presence of a dropout and

may therefore give rise to a detectable signal of a dropout. The

theory accounts for the process of background selection,18,19

which is occurring at loci used in primer-based metagenomic

studies, such as 16S/18S RNA.1

Theory
It is assumed that a sample is taken from an environment, be

it water, soil, feces, etc, and DNA is purified from the sample

and subject to PCR and sequencing. Although it may be that

within a sample there are individuals across the tree of life,

only a single genetic locus is amplified by PCR. For simplicity,

we assume that the PCR primers target bacteria and archaea

such that species are haploid and effective population sizes are

potentially large. Although this article focuses on haploid

microbes, the theory applies directly to diploid microbes with a

change in timescale (see below). For a given species in the

sample, there is a sample size of n. This sample size is not

known. In the theory presented, we nevertheless assume a

sample size of n and then develop expectations for how many

individuals within the sample are expected to be unamplified

given a sample of size n. The theory demonstrates that n is a
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nuisance parameter and detectable effects of dropout muta-

tions can be inferred without the knowledge of n.

For PCR sequencing of a species or OTU to occur, DNA

primers need to amplify the DNA of a species or OTU to a

sufficient level that allows for sequencing. Here we define m to

be the rate of mutation that leads to a PCR dropout. For sim-

plicity, we assume that a mutation either causes a dropout or

does not, ie, the effects of mutations are discrete. An alterna-

tive model is quantitative, such that a mutation may decrease

amplification by a certain fraction that is between, but not

equal to, 0 and 1. We assume that the nucleotide sites that

affect PCR amplification do not affect the fitness of an organ-

ism and consequently evolve neutrally. Amplified loci in meta-

genomic and environmental DNA studies are typically under

purifying selection, such that we expect the amplified PCR

locus to be affected by background selection.18 Initially, we

assume neutrality and no background selection, but later con-

sider the consequences of background selection. Furthermore,

when developing expectations for polymorphism at an ampli-

fied locus, we focus on synonymous sites and/or assume neu-

trality and no background selection, but later consider the

consequences of background selection.

Neutrality and no background selection at the amplified locus

A natural theoretical framework to model dropouts assuming

neutrality is Kingman’s12 coalescent (see also Tajima13). In the

Kingman coalescent, the genealogical history of a sample of

size n is divided into n� 1 sections in which coalescent events

define the sections, whereby descending from the top to the

bottom of the coalescent tree, the first section consists of n

lineages, the second n� 1 lineages, etc, with the last section

consisting of 2 lineages. Following Fu,20 we call the section of

the tree consisting of k branches ‘‘level k’’ (Figure 1). Mutations

causing a dropout can occur along branches within each of

these sections. A dropout mutation along a branch section is

‘‘unique’’ if no other dropout mutation occurs along its corre-

sponding ancestral lineage from the point of mutation back to

the MRCA of the sample (see Figure 2, section ‘‘Probability Yk

of the Xk dropouts at level k are unique along their correspond-

ing lines of descent’’). Unique dropout mutations are of interest

because all of the descendent lineages of the dropout will not

be amplified by PCR, including lineages that have incurred

subsequent dropout mutations (hence why we focus on unique

dropouts). Next, we derive expectations for the distribution of

the number of dropouts when there are k lineages remaining

from a sample of size n. We then derive the conditional distri-

bution of the number of dropouts that are unique at level k

given a certain number of dropout mutations. For the set of

unique dropouts, we derive the distribution of the number of

lineages descendent from each dropout. With information

about the number of descendant lineages, we then derive the

conditional distribution of pairwise differences in the sample.

This distribution is conditioned on the number of unique

dropouts and numbers of descendent lineages from these drop-

outs, noting that by determining what individuals are not

amplified by PCR we can then focus attention on the proper-

ties of individuals that are amplified by PCR.

Probability of Xk branches with dropouts at level k, p(xk). Define

Tk to be a random variable giving the length of branch sections

at level k in the coalescent tree. In continuous time, the

distribution of Tk (f (Tk = tk)) is approximately exponential12

such that

Figure 1. The use of the term ‘‘level.’’ A level corresponds to the number
of branch sections in the coalescent tree. Branch sections are not drawn to
scale. Lower levels in the tree have longer branch sections according to
coalescent theory.12

Figure 2. The use of the term ‘‘unique.’’ In the coalescent tree, 2 branch
sections at level 4 have a dropout mutation, such that X4 = 2 and 1 branch
section at level 2 has a dropout mutation, such that X2 = 1. Although there
are 2 dropout mutations at level k = 4, only 1 is unique (Y4 = 1), such that
there are no other dropout mutations along its line of descent to the most
recent common ancestor (MRCA) of the sample. At level k = 2, there is 1
unique dropout (Y2 = 1) because no other dropout mutation occurs along its
line of descent to the MRCA.
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where to simplify notation we let f (Tk = tk)= f (tk). The

approximation is in the diffusion limit as the effective size of a

population (Ne) tends to infinity. In the Wright-Fisher model,

1 unit of time equals Ne generations and in the Moran model 1

unit of time equals Ne=2 generations.12 For simplicity, we use

1 effective population size in our analysis, keeping in mind that

the effective size of a Moran population is one half that of a

Wright-Fisher population. Furthermore, note that for diploid

microbes the baseline timescale is 2Ne generations.

The expected number of dropout mutations per branch sec-

tion at level k is mE(Tk), where the mutation rate (m) is mea-

sured per generation and Tk is measured on a generation

timescale. The distribution of the number of mutations along

a branch section is Poisson distributed and the probability of

at least 1 dropout along a branch section at level k (Pk) is

Pk = 1� e�mE(Tk)

noting that e�mE(Tk) is the probability of no dropout mutations.

Define Xk to be a random variable for the number of branch

sections at level k with at least 1 dropout, then the probability

Xk = xk (p(Xk = xk)) is

p(xk)=

ð‘
0

k

xk

� �
Pxk

k (1� Pk)
k�xk f (tk)dtk

=

2
k

2

� �
k

xk

� �
G

k(u+ k�1)
u

� xk

� �
G(xk + 1)

uG
k(k�1)

u
+ k+ 1

� �
ð1Þ

where u= 2Nem, G( � ) is the gamma function, and, to

simplify notation, we let p(Xk = xk)= p(xk). A straightforward

calculation from p(xk) is the probability Xk . 0 (p(Xk . 0)),

which is

p(Xk . 0)=
u

k� 1+ u
ð2Þ

and corresponds to the probability of at least 1 mutation prior

to a coalescent event at level k (cf. Wakeley21).

Probability Yk of the Xk dropouts at level k are unique along their

corresponding lines of descent. Define Yk to be a random vari-

able for the number of lineages at level k that have a dropout

mutation at level k and no prior dropout mutations from level

k to the MRCA of the sample, such that Yk is the number of

unique dropout mutations at level k and Yk ł Xk. Figure 2

illustrates the notation, whereby at level k= 4 in the tree,

there are 2 dropout mutations (X4 = 2), but a second dropout

mutation occurs along the line of descent to the MRCA for

one of the dropouts, such that Y4 = 1; at level k= 2, X2 = 1

and Y2 = 1.

To calculate the distribution for Yk, we note that moving

down the coalescent tree from level k to the MRCA of the

sample, we can define a set of numbers fx0k, ig for i from 1 to

Xk which consists of the number of lineages with i descendants

that have a unique dropout mutation at level k. Combining the

set fx0k, ig with the number k0, which is the number of lineages

out of the k lineages remaining in the sample, forms a state

space fx0k, 1, x0k, 2, . . . , x0k,Xk
, k0g that characterizes the genealo-

gical and dropout mutation process from level k to the MRCA

of the sample. At the MRCA, k0= 1 and either all of the x0k, i

equal zero, such that there are no unique dropout mutations at

level k, or one and only one of the x0k, i equals 1, such that if

x0k, i = 1 and k0= 1 then Yk = i.

Backward in time, 2 events can occur that are relevant to

determining the distribution of Yk. One event is a coalescence

and the other event is a dropout mutation along a descendent

lineage. If a coalescent event occurs, it could be between the

2 lineages with a dropout mutation, between a lineage with

a dropout mutation and without a dropout mutation or

between 2 lineages without a dropout mutation. For example,

2 lineages within the set with i descendants may coalesce

resulting in the transition f. . . , x0k, i, . . . , x0k, i + i, . . . , k0g !
f. . . , x0k, i � 2, . . . , x0k, i + i + 1, . . . , k0 � 1g and this occurs at

rate
x0k, i

2

� �
on an appropriate timescale. Or, 2 lineages, one

with i descendants and the other with j descendants, may coa-

lesce resulting in the transition

f. . . , x0k, i, . . . , x0k, j , . . . x0k, i + j , . . . , k0g !
f. . . , x0k, i � 1, . . . , x0k, j � 1, . . . , x0k, i + j + 1, . . . , k0 � 1g

for j . i at rate
x0k, i + x0k, j

2

� �
� x0k, i

2

� �
� x0k, j

2

� �
. A

coalescent event could occur between lineages that are

not descendants of dropout mutations or between a lineage

with a descendent dropout mutation and one without a

descendent dropout, such that fx0k, 1, x0k, 2, . . . , x0k,Xk
, k0g !

fx0k, 1, x0k, 2, . . . , x0k,Xk
, k0 � 1g at rate

k0 �
P

i x0k, i

2

� �
+P

i x0k, i(k
0 �
P

j x0k, j). Last, if a dropout mutation occurs

along a descendent lineage below level k, then a dropout muta-

tion at level k is no longer unique. For each element x0k, i in

fx0k, 1, x0k, 2, . . . , x0k,Xk
, k0g, this event occurs at rate ux0k, i=2.

Generally, for k . 2, the following transitions are possible

and their corresponding rate of transition, where for efficiency

we only show elements in the state space set that change
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Transition Rate
fx0k, i, x0k, i + i, k0g ! fx0k, i � 2, x0k, i + i + 1, k0 � 1g x0k, i

2

� �

fx0k, i, x0k, j , x0k, i + j , k0g ! fx0k, i � 1, x0k, j � 1, x0k, i + j + 1, k0 � 1g x0k, i + x0k, j

2

� �
� x0k, i

2

� �
� x0k, j

2

� �

fk0g ! fk0 � 1g
k0 �

P
i

x0k, i

2

 !
+
P

i

x0k, i k0 �
P

j

x0k, j

 !

fx0k, i, k0g ! fx0k, i � 1, k0 � 1g ux0k, i=2 k0\ k
0 k0= k

�
ð3Þ

For the set fx0k, 1, x0k, 2, . . . , x0k,Xk
, k0g, there will be a corre-

sponding state space X k from level k to the MRCA. Define

X (t) to be a random variable for the state of the system at time

t into the past starting at some point in level k. X (t) is a finite-

state and continuous-time Markov process with multiple

absorbing states when k0= 1. We can define an X kj j3 X kj j
matrix A to be the corresponding finite-state and continuous-

time Markovian transition rate matrix, where X kj j is the size

of the set X k. If the current state of the system is i, then the

probability of being in state j at time t generations into the

past (Pij(t)) satisfies the differential equation

dP(t)

dt
=AP(t) ð4Þ

where P(t) is the full X kj j3 X kj j matrix consisting of elements

Pij(t) and A is defined by the transition rates in equation (3).

The solution to the differential equation is

P(t)=
X‘

n= 0

Antn

n!
ð5Þ

For our purposes, we are interested in the probability at time

t that the system is in a state in which k0= 1 starting from the

initial state fXk, 0, . . . , 0, kg and furthermore whether one of

the x0k, i equals 1. Label the initial state fXk, 0, . . . , 0, kg as [

and states in which x0k, i = 1 with an integer j corresponding to

the number of descendent lineages with a unique dropout

mutation at level k. For example, for k= 4 and Xk = 2, the

possibilities are f0, 0, 1g ) j = 0, f1, 0, 1g ) j = 1, and

f0, 1, 1g ) j = 2.

Define p(Yk = jjXk, t) to be the probability Yk = j at time t

given Xk, then

p(Yk = jjXk, t)=P[j(t) ð6Þ

Furthermore, in the limit as t ! ‘, then

p(Yk = jjXk)= lim
t!‘

P[j(t) ð7Þ

As A has a finite dimension and satisfies properties

of instantaneous transition rates, the limit is finite and

defined.21

For the case Xk = 1, it is straightforward to directly write

down p(Yk = 1jXk = 1) for k . 2, which is

p(Yk = 1jXk = 1)=
Yk�1

i = 2

i

2

� �
i

2

� �
+ u

2

=
uG(k� 1)G(k)G(a�)G(a+)

G(a�+ k� 1)G(a+ + k� 1)

ð8Þ

where a�=(1=2)� (1=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4u
p

and a+ =(1=2)+

(1=2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4u
p

, as well as recognizing that for the dropout to

be unique no subsequent dropout mutations can occur along

its lineage back to the MRCA of the sample.

Probability of the set of fi1, i2 . . . , iYk
g descendants given Yk

unique dropouts at level k. Define fi1, i2, . . . , iYk
g to be a set

consisting of Yk elements, in which an element is an integer

greater than 0 equaling the number of descendants of one of

the Yk lineages, respectively, and noting that for Yk = 1 the set

is fi1g. Enumeration of fi1, i2, . . . , iYk
g is a direct application

of the Pólya urn scheme and nicely applied in a similar popula-

tion genetic context by Fu.19 For a sample of size n and level k

in a coalescent tree, there are

n� 1
k� 1

� �

ways the n individuals can be assigned to k ancestors. Of the k

ancestors, we are interested in the number of descendants of

each of the Yk unique dropout mutations. The number of ways

of drawing a set fi1, i2, . . . , iYk
g from n individuals under the

constraint that k� Yk � 1 . 0 at level k is

n�
PYk

j = 1 ij � 1
k� Yk � 1

� �

such that the probability of the set fi1, i2, . . . , iYk
g given Yk

(p(fi1, i2, . . . , iYk
gjYk)) is

p(fi1, i2, . . . , iYk
gjYk)=

n�
PYk

j = 1 ij � 1
k� Yk � 1

� �
n� 1
k� 1

� � ð9Þ

Probability of the set of fi1, i2, . . . , iYk
g descendants of unique

dropouts at level k. From the law of conditional probability,

Griswold 5
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the probability of the set of fi1, i2, . . . , iYk
g descendants of

unique dropouts at level k (pk(fi1, i2, . . . , iYk
g) is

pk(fi1, i2, . . . , iYk
g)

=
X

Xk

X
Yk

p(fi1, i2, . . . , iYk
gjYk)p(YkjXk)p(Xk)

ð10Þ

For sufficiently small u, it is most likely that at a level there

is a single dropout, given a dropout occurs, and we can focus

our attention on the case

pk(fi1g)= p(fikgjYk = 1)p(Yk = 1jXk = 1)p(Xk = 1)

=
uG(k� 1)G(k)G(a�)G(a+)

G(a�+ k� 1)G(a+ + k� 1)

n� i1 � 1

k� 1� 1

� �
n� 1

k� 1

� � k2(k� 1)G k(u+ k�1)
u

� �
uG k+ 1+ k(k�1)

u

� �
ð11Þ

For the purposes of metagenomics or eDNA studies, we

may be interested in the probability i1 ø d for level k

(pk(i1 . d )), which is the probability of the loss of d or more

individuals in the sample due to a unique dropout at level k,

and is calculated as

pk(i1 ø d )=
Xn�k�1

i1 = d

pk(fi1g)

=
uG(k)G(a�)G(a+) G(n�d + 1)

G(n�d�k+ 2)� G(k� 1)
� �

(k� 1)
n� 1

k� 1

� �
G(a�+ k� 1)G(a+ + k� 1)

k2(k� 1)G k(u+ k�1)
u

� �
uG k+ 1+ k(k�1)

u

� �
ð12Þ

Distribution of pairwise differences with dropouts. The presence

of dropouts may affect the distribution of pairwise differences

for a given species. For sufficiently small u, unique dropouts

tend to occur along branch sections near the MRCA of a sam-

ple (see section ‘‘Analysis and Results’’). We therefore focus on

the derivation of expectations for the distribution of pairwise

difference when Y2 = 1 and Y3 = 1, noting that, for unique

dropouts at higher levels, the calculation of pairwise differences

follows similar principles.

Single unique dropout at level 2 (Y2 = 1). A dropout gener-

ates a subtree of n� i1 sequenced individuals from a sample of

n individuals in total. A subtree has levels just like the coalescent

tree for an entire sample. To calculate the distribution of pair-

wise differences between 2 random and sequenced individuals

involves determining (1) whether the 2 sequenced individuals

coalesce at level j in the subtree, (2) whether the entire sample is

at level k given the subtree is at level j, and (3) the time to coa-

lesce given the level in the entire sample.

For a subtree of size n� i1, the probability that 2 randomly

chosen individuals at the tips of a subtree coalesce at level j

(pn�i1
(j)) for j ø 1 is

pn�i1
(j)=

1

j + 1

2

� � Yn�i1

‘= j + 2

1� 1

‘

2

� �
0
BBB@

1
CCCA

=
2(n� i1 + 1)

(n� i1 � 1)(j + 1)(j + 2)

ð13Þ

Wiuf and Donnelly22 derived the probability that, given a

subtree first enters level j, the entire sample is at level k

(f(kjj, n, n� i1)), such that

f(kjj, n, n� i1)=

n� k� 1
n� i1 � 1

� �
k

j + 1

� �
n

n� i1 � 1

� �

and where here j . 0 and k . j.

Given k, the distribution of coalescence times fk(t) is

fk(t)=
Xn

i = k+ 1

(� 1)k+ 1�i(2i � 1)G(i + k)G(n)G(n+ 1)

i(i � 1)G(i � k)G(k)G(k+ 1)G(n� i + 1)G(n+ i)

i

2

� �
e
�

i

2

� �
t

and can be calculated directed from the sum of exponentially

distributed random variables.21,24 Note further that i is indexed

initially with k+ 1 because the transition in f(kjj, n, n� i1)

was from k+ 1! k. If Z is a random variable for the number

of pairwise differences between the 2 sequences, then its distri-

bution pk(Z = z)= pk(z) is

pk(z)=

ð‘
0

2ze�2nt(2nt)z

z!
fk(t)dt

assuming that mutations are Poisson distributed along branch

sections and the rate of mutation causing pairwise differences is

n. Over the distributions for j and k, the probability of z pair-

wise differences (p(z)) is

p(z)=
Pi1

j = 1

Pn
k= 2

pk(z)f(kjj, n, n� i1)pn�i1
(j) ð14Þ

Single unique dropout at level 3 (Y3=1). Here we assume

that the dropout mutation occurred such that the 2 clades of

sequenced individuals coalesce when k= 2 for the entire sam-

ple (Figure 3). We label these 2 clades A and B, such that the

number of sequenced individuals in clade A is a and the
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number in clade B is b. Two lineages of sequenced individuals

can both occur in clade A with probability

(a=(a + b))((a � 1)=(a + b� 1)), both in clade B with prob-

ability (b=(a + b))((b� 1)=(a + b� 1)), or 1 in clade A and 1

in clade B 2(ab=(a + b)(a + b� 1)).

Let p(zjA) be the probability of z pairwise differences given

that 2 sequences are in clade A. As we are finding the marginal

probability of z conditioned on a single clade, the result from

Wiuf and Donnelly22 given above applies, such that

p(zjA)=
Pa

j = 1

Pn
k= 3

pk(z)f(kjj, n, a)pa(j) ð15Þ

which differs from p(z) because for clade A the minimum value

of k for which j = 1 is k= 3, noting that a is substituted for

n� i1. For clade B, the 2 lineages can coalesce up to k= 3

also such that p(zjB) is equal to p(zjA), except for b substituted

for a.

When one sequenced individual is in clade A and the other

in clade B (A=B), the time to coalesce is distributed as f2(t),

such that

p(zjA=B)= p2(z) ð16Þ

and together p(z) for Y3 = 1 is

p(z)=
a

a + b

a � 1

a + b� 1
p(zjA)+ b

a + b

b� 1

a + b� 1

p(zjB)+ 2
ab

(a + b)(a + b� 1)
p(zjA=B)

ð17Þ

The effect of dropouts on coalescence times of sequenced

individuals. The previous section demonstrated that dropouts

affect the distribution of pairwise differences relative to when

there are no dropouts. The difference in the distribution of

pairwise difference comes about because of differences in coa-

lescence times, which in turn reflects the j ! k mapping in

the f(kjj, n, :) function. Here we further explore the effect of

the j ! k mapping on coalescence times to see if there is addi-

tional information that may be used to detect dropouts.

Single unique dropout at level 2 (Y2 = 1). For Y2 = 1, there

is a subtree of n� i1 sequenced individuals that can be divided

into j levels in a similar manner as for the entire sample n that

is divided into k levels. The mapping j ! k

(j 2 f1, 2, . . . , n� i1g, k 2 f1, 2, . . . , ng) is itself a Markov

process from j = n� i1 to j = 1, with the probability of a

j ! k mapping depending on the k level in the previous map-

ping. We leave the study of this Markov process for later and

here investigate the unconditional expectation for the j ! k

mapping, which is defined as the expected value of k at level j

in the subtree (Ej(k)) or

Ej(k)=
X
k . 1

kf(kjj, n, n� i1) ð18Þ

The expected time between the jth and (j + 1)th levels in

the subtree (E(tj + 1)) is

E(tj + 1)=
Xm

‘=Ej (k)+ 1

Ne

‘

2

� �
m=Ej + 1(k)+ 1

m= n

j + 1 \ n

j + 1= n

� ð19Þ

where Ej(k) is the largest integer less than or equal to Ej(k). In

contrast, the expected time between the jth and (j + 1)th levels

without drops is

Ne

j + 1
2

� �

from the standard coalescent.

Single unique dropout at level 3 (Y3 = 1). As before, we

assume that the sequenced individuals are in subclades A and

B, as in Figure 3. The numbers of sequenced individuals in

subclades A and B are a and b, respectively. We could use a

similar approach as in section ‘‘Distribution of pairwise differ-

ences with dropouts’’ and condition on each subclade. This

conditioning is justified when considering 2 sequenced lineages

because either the 2 sequenced lineages occur within the same

subclade with j ! k mapping according to f(kjj, n, n� i1), or

in separate subclades and by definition coalesce at k= 2. In

contrast, when seeking to derive expectations for the properties

of coalescence times for the full set of n� i1 sequenced indi-

viduals, we need to account for the joint set of coalescence

times in both subtrees. The Wiuf and Donnelly23 theory does

not include this case.

A simple argument indicates that the coalescence times are

expected to be distorted with a dropout mutation versus no

dropouts. For example, consider a period in the history of the

Figure 3. A coalescent tree when Y3 = 1. Triangles indicate clades of
individuals in the sample. Clades A and B are sequenced, whereas the
gray clade descends from a dropout mutation.

Griswold 7
j j



sample in which there are a lineages in clade A and b lineages

in clade B, and correspondingly n� a � b unsequenced

lineages. In the absence of recognizing that a dropout muta-

tion has generated a structured coalescent process, the observed

sample size is a + b, as opposed to n. Accordingly, the

expected coalescence rate, given the observed sample, is

a + b
2

� �
on a timescale of Ne generations. Yet, the dropout

mutation causes the coalescence process to be structured, such

that the actual coalescence rate among sequenced individuals is

a
2

� �
+

b
2

� �
ð20Þ

for k ø 3 in the coalescent tree. Together, the coalescence rate

is reduced by a factor of

a
2

� �
+

b
2

� �
a + b

2

� � =
a(a � 1)+ b(b� 1)

(a + b)(a + b� 1)
ð21Þ

compared with what is expected for an observed sample size of

a + b.

Neutrality at the primer sites and background selection at the
amplified locus

If deleterious mutations occur at rate U and have multiplicative

effects on fitness, each with effect s, then the expected fre-

quency of individuals with j deleterious mutations (fj ) is

Poisson distributed with mean U=(2s).25 For a sample of size

n, the expected number of sampled individuals in the jth

mutational class is nfj , where the jth mutational class has j

deleterious mutations. Following the structured coalescent

modeling framework of Nordborg,26 the class structure of

deleterious mutations can be represented abstractly as a set

fn0, n1, . . . , nmax(j:nj . 0)g, where nj is the number of individu-

als in the jth class and max(j : nj . 0) is the maximum value

of j for which nj . 0. Assuming no back mutation and a

continuous-time model, transitions corresponding to deleter-

ious mutations, such that nj ! nj � 1 and nj�1 ! nj�1 + 1,

occur at rate U and transitions corresponding to coalescent

events, such that nj ! nj � 1, occur at rate (Nefj )
�1. For Ne

sufficiently large U . . (Nefj )
�1, mutational transitions occur

on a fast timescale, whereas coalescent transitions occur on a

slow timescale, such that the sample is expected to

quickly transition to the 0-class. Once in the 0-class, the sam-

ple behaves in a neutral manner with coalescence rate

(Nef0)
�1. Accordingly, background selection is expected to

shorten coalescence times proportionally along a genealogical

tree.18

In principle, we could just scale time as (Nef0)
�1 and mea-

sure dropout properties leading to an expectation for pairwise

differences, but this would be somewhat inaccurate because it

would miss coalescent events that occur during the transition

from the initial sample to the 0-class. Although these events

are rare, they lead to a lack of differences between sequences,

allowing for average pairwise difference to be less than S=a1,

where S is the number of segregating sites and

a1 =
Pn�1

k= 1
1
k.

27

For a genotype in the jth class, the expected time to reach

the 0th class is j=U units of time. During this time, lineages

starting in the jth class may coalesce with other lineages, such

that the probability that ‘ of the nj sequences in the jth muta-

tional class coalesce at or before reaching the 0-class (p(‘jnj))

is approximately

p(‘jnj)=
Y‘
i = 1

nj � (i � 1)
2

� �
nj � (i � 1)

2

� �
+

Nefj U

j

ð22Þ

where p(‘jnj) is an approximation because it assumes that only

sequences starting within the same mutational class can coa-

lesce. This assumption is relaxed later when the distribution of

pairwise differences is derived. Allowing for sequences starting

within different mutational classes to coalesce during the fast

period from the initial sample to the 0-class could be modeled

as a nested Markovian process. Nevertheless, p(‘jnj) is an accu-

rate approximation given that coalescent events are rare relative

to mutation. The expected number of sequences that coalesce

during the period of collapse to the 0th mutational class (nc) is

nc =
X

j

X
‘

‘p(‘jnj)p(nj) ð23Þ

where p(nj) is the probability of the jth mutational class. With

nc , n0 = n� nc .

Once we have n0, we can use the theory for the neutral case

to derive expectations for the number of descendants of drop-

outs (p(fi1, i2, . . . , iYk
gjYk), pk(fi1, i2, . . . , iYk

g), etc), as well

as the distribution of pairwise differences. Expectations for the

probability of a dropout along a branch section are a function

of Nef0 with background selection compared with Ne without

background selection.

Conditional distribution of pairwise differences with dropouts.

Single unique dropout at level 2 (Y2 = 1). With background

selection, the corresponding expressions for pn�ik
(j),

f(kjj, n, n� i1), and fk(t) are the same, except for the replace-

ment of n with n0. We need to consider that a pair of

sequences coalesce during the fast process in which

sequences collapse to the 0th mutational class. For a sample of

size n, the probability that 2 random sequences are in deleter-

ious mutation classes j1 and j2 is f 2
j1

for j1 = j2 and 2fj1 fj2 for

j1 6¼ j2.

For 2 sequences in the same class (j), the average time to

reach the 0th class is j=(U ) units of time and the probability

that they coalesce before reaching the 0-class is

8 Evolutionary Bioinformatics
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(Nfj )
�1

(Nfj )
�1 +U=j

ð24Þ

For 2 sequences in different classes (j1 and j2), the probabil-

ity that they come together in the ‘th mutational class is

(U=2)j1�‘+ j2�‘

Pj2�1

i = 0

(U=2)j1 + j2�2i

ð25Þ

and once in the ‘th class they can coalesce, such that the overall

probability they coalesce is

Xj2�1

‘= 0

(U=2)j1�‘+ j2�‘

Pj2�1

i = 0

(U=2)j1 + j2�2i

(Nf‘)
�1

(Nf‘)
�1 +U=‘

ð26Þ

Together, the probability of no pairwise difference (z= 0)

due to a coalescent event during the fast process of collapse to

the 0th mutational class pn!n0
(z= 0) is

pn!n0
(z= 0)=

X
j

f 2
j

(Nfj )
�1

(Nfj )
�1 +U=j

+
X

j2 . j1

2fj1 fj2

Xj2�1

‘= 0

(U=2)j1�‘+ j2�‘

Pj2�1

‘= 0

(U=2)j1 + j2�2i

(Nf‘)
�1

(Nf‘)
�1 +U=‘

ð27Þ

After entering the 0-class, pairwise differences are expected

to behave as p(z) with n being replaced by n0 and Ne by Nef0
such that p(z) becomes p0(z), and with background selection

the distribution of pairwise differences (pb(z)) is

pb(z)=
pn!n0

(z= 0)+ (1� pn!n0
(z= 0))p0(0),

(1� pn!n0
(z= 0))p0(z),

z= 0
z . 0

�
ð28Þ

Single unique dropout at level 3 (Y3 = 1). Following similar

logic as for Y2 = 1 and assuming the topology in Figure 3, with

background selection p(xjA) becomes

pb(zjA)=
pn!n0

(z= 0)+ (1� pn!n0
(z= 0))p0(0jA),

(1� pn!n0
(z= 0))p0(zjA),

z= 0
z . 0

�
ð29Þ

where again p0(zjA) is p(zjA) with n substituted for n0 and Ne

for Nef0. Likewise, p(zjB) becomes

pb(zjB)=
pn!n0

(z= 0)+ (1� pn!n0
(z= 0))p0(0jB),

(1� pn!n0
(z= 0))p0(zjB),

z= 0
z . 0

�
ð30Þ

and p(zjA=B) becomes

pb(zjA=B)= p0(zjA=B) ð31Þ

noting that the 2 sequences cannot coalesce during the fast

time period when sampled in clades A and B.

The effect of dropouts on coalescence times of sequenced

individuals. Once the sample reaches the 0th class mutation-

ally, we expect the effects of dropouts on coalescence times to

be the same as the neutral case, except for Ne being replaced

by Nef0. In the neutral case, a signal of the effect of dropouts

on coalesce times comes about by taking the ratio of adjacent

coalescence times, which is independent of Ne. We therefore

expect a similar effect of dropouts on adjacent coalescence

times when Ne is replaced by Nef0 in the presence of back-

ground selection.

Analysis and Results

Expected values for u

In the context of dropout mutations, u is not expected to be

large. As presented in the introduction, primer sites are typically

around 20 nucleotides, with the highest probability that a muta-

tion leads to a dropout occurring within 3 to 4 nucleotides of

the 3# end.7 Accordingly, regarding mutations with a high prob-

ability of directly leading to a dropout, the mutation rate is near

that of the baseline rate for a single nucleotide and at most about

10 times the baseline rate per nucleotide site. Estimates of per-

site mutation rates in bacteria are typically 10�10 to 10�9.28

Nevertheless, a species or OTU may be predisposed to a drop-

out mutation due to prior mutational history within primer sites,

leading to a higher dropout rate of mutation. u is also a function

of Ne. Less is known about Ne for microbes. Smith29 estimated

an effective size of 4 3 108 or less in Neisseria meningitis, based

on electrophoretic data and noting that this is many orders of

magnitude less than our understanding of census population

size. By comparison in the eukaryotic microbial species

Saccharomyces paradoxus, an estimate of its effective population

size is of the order 106.29 Focusing on effective population sizes

in the range of 105 to 109 and mutation rates in the range of

10�10 to 10�8 to capture uncertainty leads to u in the range of

approximately 2 3 10�5 to 20. In the following section, we

focus the analysis on u values in the middle of this range,

namely, of the order 10�2 to 10�1.

Under neutrality
Probability of Xk branches with dropouts at level k, p(xk). Figure

4A plots p(xk) and indicates that the probability of a lineage

with 1 dropout along branch sections that are at lower levels in

the coalescent tree is not too uncommon in the context of

studies involving thousands of species or OTUs and assuming

2 values of u (0:1, 0:01). Two lineages with dropouts are rarer,

but still appreciable at lower levels of the coalescent tree, pro-

vided that u is large enough. Three or more lineages with

dropout mutations are fairly rare in the context of studies

involving thousands of species or OTUs. Although higher
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levels in a coalescent tree have more branch sections, these sec-

tions are short in length, such that the total probability of a

dropout mutation along levels 500 to 1000 for a sample of size

n= 1000 is less than that for level k= 2 by itself and levels 4

through 50 together (Figure 4B). The u values of the order

10�2 to 10�1 lead to the p(Xk . 0) values between 0.010 and

0.091 at level k= 2, 0.005 and 0.047 at level k= 3, and 0.003

and 0.032 at level k= 4. In total, for k ø 500, p(Xk . 0) equals

0.007 and 0.070 for u= 0:01 and u= 0:1, respectively.

Probability Yk of the Xk dropouts at level k are unique

along their corresponding lines of descent, p(Yk = jjXk, t)

and p(Yk = jjXk). Expressions for p(Yk = jjXk, t) and

p(Yk = jjXk) (see section ‘‘Probability Yk of the Xk dropouts at

level k are unique along their corresponding lines of descent’’)

work for any Xk, but given a low dropout mutation rate it is

likely that only 1 dropout occurs at level k, if at all. Multiplying

p(Yk = 1jXk = 1) by p(Xk = 1) gives the joint probability of

Yk = 1 and Xk = 1 in the limit as t ! ‘. Figure 5 indicates

that lower levels of a coalescent tree are expected to have a

unique dropout mutation with the highest probability, and that

for k ø 500 the probability that at least 1 level has a unique

mutation is still less than level k= 2.

Although single dropouts occur with the highest probabil-

ity, to illustrate the utility of p(Yk = jjXk, t) and p(Yk = jjXk),

we consider the case when a dropout occurs at level k= 4 and

assume 2 dropouts at that level (Xk = 2). For this case, the

state space corresponding to fx0k, 1, x0k, 2, . . . x0k,Xk
, k0g (see sec-

tion ‘‘Probability Yk of the Xk dropouts at level k are unique

along their corresponding lines of descent’’) is the set

ff2, 0, 4g, f2, 0, 3g, f1, 0, 3g, f0, 1, 3g, f2, 0, 2g, f1, 0, 2g,
f0, 1, 2g, f0, 0, 2g, f0, 1, 1g, f1, 0, 1g, f0, 0, 1gg. The cor-

responding A matrix is

A =

�6 5 0 1 0 0 0 0 0 0 0

0 �(3+ u) 0 0 2 u 1 0 0 0 0

0 0 �(3+ u
2 ) 0 0 3 0 u

2 0 0 0

0 0 0 �(3+ u
2 ) 0 0 3 u

2 0 0 0

0 0 0 0 �(1+ u) 0 0 0 1 u 0

0 0 0 0 0 �(1+ u
2 ) 0 0 0 1

u

2

0 0 0 0 0 0 �(1+ u
2 ) 0 1 0

u

2

0 0 0 0 0 0 0 �1 0 0 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and whereas p(Yk = jjXk, t) is a somewhat complicated function

of u and t, p(Yk = jjXk) is more easily written down, such that

p(Y4 = 2jX4 = 2)=
108+ 99u+ 16u2

3(1+ u)(2+ u)(3+ u)(6+ u)

p(Y4 = 1jX4 = 2)=
5u(3+ 2u)

3(1+ u)(2+ u)(3+ u)

p(Y4 = 0jX4 = 2)=
u(27+ 23u+ 3u2)

3(2+ u)(3+ u)(6+ u)2

and, numerically, for u= 0:1

p(Y4 = 2jX4 = 2)= 0:901

p(Y4 = 1jX4 = 2)= 0:074

p(Y4 = 0jY4 = 2)= 0:025

indicating that there is a high probability given 2 dropout

mutations at level k= 4 that they are both unique.

Probability of d or more descendent lineages of a unique dropout

mutation at level k, pk(i1 ø d ). There is a fairly good chance of

a unique dropout at level 2 and that it leads to the loss of at

least 100 individuals (;8%; Figure 6) for u= 0:1 and

n= 1000. There is a smaller, but appreciable, chance under

the same conditions at level 4 (;2%). Figure 6 assumes a sin-

gle dropout mutation at a given level. To illustrate calculations

for the case of 2 dropout mutations at level k= 4

10 Evolutionary Bioinformatics
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p4(fi1g)= p(fi1gjY4 = 1)p(Y4 = 1jX4 = 2)p(X4 = 2)=
30u3(3+ 2u)(n� i1 � 2)(n� i1 � 1)

(n� 3)(n� 2)(n� 1)(1+ u)(2+ u)(3+ u)2(4+ u)(6+ u)

p4(fi1, i2g)= p(fi1, i2gjY4 = 2)p(Y4 = 2jX4 = 2)p(X4 = 2)=
12u2(108+ 99u+ 16u2)(n� i1 � i2 � 1)

(n� 3)(n� 2)(n� 1)(1+ u)(2+ u)(3+ u)2(4+ u)(6+ u)2

p4(i1 ø d )=
10u3(3+ 2u)(n� 4� d )(6+ n+ n2 � 2nd + d (d � 1))

(n� 3)(n� 2)(n� 1)(1+ u)(2+ u)(3+ u)2(4+ u)(6+ u)

p4(i1 + i2 ø d )=
6u2(108+ 99u+ 16u2)(n� 4� d )(n+ 3� d )

(n� 3)(n� 2)(n� 1)(1+ u)(2+ u)(3+ u)2(4+ u)(6+ u)2

As Y4 = 2 is more likely than Y4 = 1 when X4 = 2, the

probability of d or more dropout individuals is greater for

Y4 = 2 versus Y4 = 1 (Figure 7). For u= 0:1, it is rare

(;0:004%) to simultaneously have 2 unique dropout muta-

tions at level 4 and the loss of at least 100 individuals in a sam-

ple of size 1000. Here, the rarity primarily comes about from

the rarity of the occurrence of 2 dropout mutations at level 4

(cf. Figure 4A).

Distribution of pairwise differences with dropouts and ratio of coa-

lescent times between adjacent nodes. The distribution of pair-

wise differences is distorted when there is a single dropout at

level 2 (Figure 8A). When the number of sequenced individu-

als is small relative to the entire sample, the distribution of

pairwise difference is shifted toward smaller values because

sequenced individuals must coalesce before the dropout, which

shortens coalesce times. For a moderate to large number of

sequenced individuals relative to the entire sample, the distri-

bution can have a mode, unlike the case without dropouts.

With a dropout leading to 2 clades of sequenced individu-

als, such that Y3 = 1 (ie, Figure 3), the distribution of pairwise

differences is distorted further relative to the Y2 = 1 case, such

that coalescences restricted to be within A or B result in rela-

tively few pairwise differences and coalescences restricted to be

between clades A and B result in relatively large pairwise differ-

ences (Figure 8B).

The ratio of coalescent times between adjacent nodes indi-

cates that it is lower at levels near the base of the tree in the

presence of a dropout (Figure 9).

With background selection
Expected values for u. Background selection is expected to

decrease the effective value of u by a factor of f0, which is the

expected proportion of sequences free of deleterious mutation

as a result of background selection.17 Furthermore,

Charlesworth et al18 showed that the average pairwise

Figure 4. (A) The probability of the number of lineages with a dropout
mutation (p(xk)) at different levels in a coalescent tree. Points in the plot are
represented by numbers in which the number corresponds to the k level in
the coalescent tree of a sample. Black numbers correspond to u = 0:1 and
gray numbers to u = 0:01. (B) The sum of p(xk) across levels for u = 0:1.
Points in the plot indicate the levels that are summed. For example,
500! 1000 sums p(xk) for k = 500 to k = 1000.

Figure 5. The combined probability of 1 dropout mutation at level k and it
being unique (p(Yk = 1jXk = 1)p(Xk = 1)). For levels greater than or equal to
500, the point is the sum of at least 1 dropout at each level up to k = 1000
and it being unique u = 0:02.
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difference is accurately approximated by a neutral model with

u multiplied by a factor of f0, where f0 is of the order 10�2 to

10�1 for strong and moderate background selection.

Properties of samples with dropout mutations and background

selection. Let us first revisit p(xk) in the context of background

selection for a species with effective population size 108. With

background selection, such that U = 0:1 and s = 0:02 (follow-

ing Charlesworth et al18), f0 = 0:08 and Nef0 = 8 3 106. For

mutation rates in the range of 10�10 to 10�8, the correspond-

ing values of u (0:001 ł u ł 0:1) encompass the range of val-

ues explored in Figure 4, which were u= 0:01 and u= 0:1.

As an additional point of comparison, for a smaller value of u

(u= 0:001), p(X2 = 1)= 0:001, which indicates that segre-

gating dropouts would be rare for metagenomic studies with

about 1000 species under these conditions. Nevertheless, for

smaller values of U and/or s, p(X2 = 1) is expected to increase.

Next, consider n0 for n= 1000, Ne = 108, U = 0:1, and

s = 0:02. The expected number of sequences that coalesce is

nc = 0:12 prior to collapse of the sample to the 0th mutational

class, such that we expect n0 ’ n. As a point of comparison

when Ne is smaller (Ne = 106), and n, U, and s remain the

same, the number of sequences that coalesce is nc = 36.

Overall, this suggests that n0 ’ n with background selection

and large effective population sizes.

Figure 6. The probability of a dropout out at level k leading to the loss of d
or more individuals in a sample (pk(i1 ø d)) assuming u = 0:1 and n = 1000.
The bottom curve corresponds to k = 128.

Figure 7. The probability of 2 dropout mutations at level k = 4 leading to the
loss of d or more individuals in a sample assuming u = 0:1 and n = 1000.

Figure 8. The distribution of pairwise differences with (A) 1 dropout at
level 2 leading to a single clade of sequenced individuals and (B) 1 dropout
mutation at level 3, leading to 2 clades of sequenced individuals with the
topology shown in Figure 3. The gray curve shows the distribution in the
absence of dropouts. The parameters are 2Nen = 100 and n = 10 for both
plots. The number of sequenced individuals is shown in the plots. Note that
the shape of the distribution is qualitatively independent of sample size,
such that we expect a similar pattern for n . 10 and the corresponding
increases in a and b.

Figure 9. The ratio of coalescence times between adjacent nodes in the
absence of a dropout mutation (gray) and in the presence of a dropout at
level k = 2 (black). The parameters are n = 200 and n� i1 = 50. Note that the
ratios are independent of Ne.
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The analysis involving n0 suggests that, for large Ne relative

to 1=U , the probability of no pairwise difference due to a coa-

lescent event during the fast process of collapse to the 0th

mutational class (pn!n0
(z= 0)) is small because coalescence

events are rare relative to the mutational collapse process to the

0th class. Numerically, for the conditions U = 0:1 and

s = 0:02 and for a large sample size, pn!n0
(z= 0)= 5 3 10�6

for Ne = 108 and pn!n0
(z= 0)= 0:003 for Ne = 105.

As for large Ne, pn!n0
(z= 0)’ 0, we expect only a small

difference between the distribution of pairwise difference with

background selection (pb(z)) versus without background selec-

tion (p(z)), as well as between pb(zjA), pb(zjB), and pb(zjA=B)

and p(zjA), p(zjB), and p(zjA=B), respectively. Therefore,

Figure 8 presents an accurate approximation of the distribution

of pairwise differences under background selection for

2Nef0n= 100.

Discussion
Bacterial and other microbial species are associated with popu-

lations of large effective size. This in combination with meta-

genomic and/or eDNA studies of microbial communities that

include thousands of species or OTUs9 brings about the possi-

bility that one or more of the sampled species or OTUs may be

segregating mutations that cause dropouts at PCR primer sites.

This article quantified the probability of a segregating dropout

mutation at a primer site, as well as the effects of dropouts on

the distribution of pairwise differences and coalescence times

within a species or OTU.

The analysis indicates that segregating PCR dropout muta-

tions are reasonably common provided that the effective popu-

lation size of a species is large and/or the dropout mutation

rate is reasonably high. Furthermore, if dropout mutations

occur, they are expected to occur along basal branch sections

in the coalescent tree of a sample. That dropouts are expected

to occur along the basal branch section brings about the possi-

bility that a large fraction of sampled individuals go unse-

quenced due to a dropout mutation within a species. This

fraction of individuals that go unsequenced leaves behind a

signal in the pattern of pairwise differences, as well as the coa-

lescence times among sequenced individuals. In particular,

there is a greater tendency for the distribution of pairwise dif-

ferences to have a non-zero mode in its distribution, with a

mode being particularly pronounced when a dropout mutation

gives rise to 2 subclades of sequenced individuals as depicted

in Figure 3. Furthermore, a dropout mutation is expected to

distort coalescence times near the base of a coalescent tree,

such that coalescence times are more equal in value relative to

when dropouts are absent. The distortion of coalescence times

is independent of n (the true sample size) in the context of

equation (21). In other contexts, such as pairwise differences,

the effect of dropouts is qualitatively the same across n. Here,

inference approaches could integrate across possible values of n

to assess whether a distribution is consistent with the presence

of one or more dropout mutations.

When a dropout mutation gives rise to 2 clades of

sequenced individuals as in Figure 3, the coalescent process for

these 2 clades is structured such that individuals between

clades cannot coalesce until after the dropout mutation (back-

wards in time). Qualitatively, the distribution of pairwise dif-

ferences is similar to that when there is population structure,25

in which the distribution is a combination of small pairwise

differences between individuals within the same clade and

large pairwise differences between individuals in different

clades. When a single dropout mutation occurs at level 2 in a

coalescent tree, its effect on the distribution of pairwise differ-

ences is less pronounced than a level 3 dropout mutation that

gives rise to 2 clades, such that there is a tendency for the dis-

tribution to have a non-zero mode.

A future direction for research is to develop statistical tech-

niques to assess whether a metagenomic or eDNA sample has

segregating dropout mutations. Assessing whether a dropout

mutation occurs in a single species will be challenging because

the pattern that is generated is similar to population structure26

or changes in population size.31 Furthermore, the coalescence

process in a panmictic population of constant size gives rise to

a highly diverse set of distributions of pairwise differences and

coalesce times for a given sample size. It may be more promis-

ing to first develop methods that seek to assess whether there

is a signal of dropouts at the population level across a clade of

species or OTUs in a metagenomic study. A consistent signal

of dropouts within a clade may lead to greater confidence in

the presence of dropouts. A clade of species or OTUs may be

predisposed to dropout mutations due to prior substitutions at

the primer sites in the ancestor to the clade. We think that the

EMBL Metagenomics database9 provides an ideal resource to

begin to assess the potential occurrence of PCR dropout muta-

tions. The database consists of thousands of studies and often

within a study there are multiple samples from a site, each of

which is sequenced using an amplicon approach. Having mul-

tiple samples from a site would allow for the assessment of

whether a signature of PCR dropouts, perhaps across species

or OTUs within a clade, is replicated across samples. If it is,

then this would be evidence against the random occurrence of

a pattern that is similar to predictions made in this study.

A consistent signal across samples could nevertheless be due

to population structure or changes in population size, instead

of PCR dropouts. Although qualitatively there are similarities

in patterns of DNA sequence variation, quantitatively there are

likely differences that can distinguish PCR dropouts from the

population structure and changes in population size. For exam-

ple, polymorphisms within clades of a coalescent tree are

expected to be at different frequencies geographically because

of partial isolation, drift, and the history of mutation. In con-

trast at a single geographic site and with no population struc-

ture at a larger spatial scale, we would expect more equal
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frequencies of polymorphisms, on average, across clades of a

coalescent tree in the presence of PCR dropouts. Population

growth may be distinguished from PCR dropouts in that

recent growth is expected to increase the number of rare poly-

morphisms in a population, in contrast to PCR dropouts.

Overall, the detection of PCR dropouts will likely be quantita-

tive and involve the development of a model-based inference

method with the processes of PCR dropout mutations, popula-

tion structure, and changes in population size co-occurring.

Assessment of the occurrence of PCR dropouts would then be

probabilistic, whereby the likelihood or posterior probability of

occurrence of a set of PCR dropouts would be weighed in

combination with parameters that model population structure

and demography.

The detection of the presence of dropout mutations may be

useful in metagenomic studies that seek to not only identify

taxon-level diversity, but also the abundances of taxa in a com-

munity.32 If a taxon has a signature of dropout mutations, then

its abundance estimate may be lower than its true value.

Regarding existing methods that use next-generation

sequencing approaches to the estimate nucleotide diversity14,15

and phylogenetic structure,17 our results indicate that PCR

dropouts are a factor of consideration. In the case of nucleotide

diversity, dropouts give rise to patterns of DNA sequence var-

iation similar to population structure or changes in population

size (see above) and therefore are expected to affect estimates

of nucleotide diversity. The process of PCR dropout mutations

could be added to coalescent-based estimators of population-

level statistics, particularly in the context of the use of next-

generation sequencing and environmental samples. Likewise,

when inferring the phylogenetic structure of environmental

samples that use primer-based sequencing, the addition of the

process of mutation at primer sites may be warranted, as these

mutations may lead to DNA sequence patterns that suggest

demographic processes such as population structure and

growth. Similar to the previous discussion of detecting PCR

dropouts, the incorporation of dropouts to estimators of statis-

tics and phylogenetic structure will likely involve adding the

dropout process to model-based approaches, which would then

affect the likelihood or posterior distributions of focal statistics

or histories.

This article focused on properties of segregating dropout

mutations within a species. The development of more powerful

methods to detect dropouts will likely involve combining

within-species and between-species approaches. In the context

of between-species approaches, a promising theoretical frame-

work is Hey’s14 model of cladogenesis and its potential general-

ization. In this article, we showed that dropout mutations

affect the shape of coalescent trees and it is likely that they also

affect the shape of phylogenetic trees. Properties of tree shape

at the phylogenetic level under different diversification pro-

cesses has been a topic of ongoing research, with detectable dif-

ferences in diversification processes arising from differences in

internode lengths in a phylogenetic tree.33 Differences in inter-

node lengths phylogenetically are analogous to the effect of

dropouts on the ratio of coalescence times. A strong signal for

the presence of dropouts would be a clade with a distorted tree

shape at the species level combined with distorted coalescence

times within species within the clade. Of course, this type of

inference requires segregating dropouts within species and

polymorphism for dropouts at the clade level, whereas a more

common pattern may be that an entire clade is not amplified

by PCR due to ancestral dropout mutations. Furthermore, it is

important to note that expectations about where dropout

mutations occur genealogically at the population or species

level using the coalescent may not hold at higher taxonomic

levels due to differences in the expected distribution of relative

internode lengths in a phylogenetic versus coalescent model.

Regarding sequencing methods, a solution to the occurrence

of PCR dropout mutations is to use complementary non-

overlapping primer sets that both amplify the same genetic

locus.34 Using this approach, a locus in a species’ DNA will be

amplified even if there are dropout mutations at a primer bind-

ing site. Nevertheless, this approach is not always used and

there exist a large number of datasets that did not use comple-

mentary non-overlapping primer sets (see Mitchell et al).9 For

these studies, approaches to assess coverage would be useful.

This article is a starting point to derive expectations for the

effects of PCR efficiencies on the inference of taxon diversity

and within-taxon genetic diversity in other contexts. For

example, a common approach to biodiversity assessment is

DNA metabarcoding.35 DNA metabarcoding is often applied

to organisms with smaller effective population sizes than pro-

karyotes, such that the population-level rate of mutation at pri-

mer sites is lower. Accordingly, PCR dropout mutations are

expected to be less common in these types of studies, but other

factors such as differential PCR inhibition or amplification

bias may result in the dropout of individual sequences.36

Generally, accounting for PCR efficiency may be important in

studies that seek to infer population-level genetic diversity

from metabarcode data.37

Coalescent theory has been applied in metagenomic studies

previously. For example, O’Brien et al17 derived a coalescent-

based approach to infer the phylogenetic relationships of spe-

cies from a metagenomic sample, and Bittner et al38 and

Liberles et al39 provide a broad overview for integrating coales-

cent approaches into metagenomic studies. Furthermore,

Johnson and Slatkin40 presented a coalescent-based approach

to detect recombination in a metagenomic sample. Our article

suggests that coalescent theory may allow for the detection of

PCR primer dropouts in metagenomic studies.

Conclusions
Primer coverage in microbial metagenomic and eDNA studies

is a key uncertainty. In this article, we derived coalescent-based

expectations for the pattern of DNA sequence variation within

14 Evolutionary Bioinformatics
j j



a species in the presence of segregating PCR dropout muta-

tions, where a dropout mutation completely blocks PCR

amplification. Dropout mutations can alter coalescence times

and the distribution of pairwise differences, which may form

the basis of statistical techniques to detect or account for

reduced primer coverage.
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