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Abstract

Background: We recently reported significantly greater weight gain in non-diabetic healthy subjects with a 1st degree
family history (FH+) of type 2 diabetes mellitus (T2DM) than in a matched control group without such history (FH2) during
voluntary overfeeding, implying co-inheritance of susceptibilities to T2DM and obesity. We have estimated the extent and
mode of inheritance of susceptibility to increased adiposity in FH+.

Methods: Normoglycaemic participants were categorised either FH+ ($1 1st degree relative with T2DM, 50F/30M, age
45614 (SD) yr) or FH2 (71F/51M, age 43614 yr). Log-transformed anthropometric measurements (height, hip and waist
circumferences) and lean, bone and fat mass (Dual Energy X-ray Absorptiometry) data were analysed by rotated Factor
Analysis. The age- and gender-adjusted distributions of indices of adiposity in FH+ were assessed by fits to a bimodal model
and by relative risk ratios (RR, FH+/FH2) and interpreted in a purely genetic model of FH effects.

Results: The two orthogonal factors extracted, interpretable as Frame and Adiposity accounted for 80% of the variance in
the input data. FH+ was associated with significantly higher Adiposity scores (p,0.01) without affecting Frame scores.
Adiposity scores in FH+ conformed to a bimodal normal distribution, consistent with dominant expression of major
susceptibility genes with 59% (95% CI 40%, 74%) of individuals under the higher mode. Calculated risk allele frequencies
were 0.09 (0.02, 0.23) in FH2, 0.36 (0.22, 0.48) in FH+ and 0.62 (0.36, 0.88) in unobserved T2DM-affected family members.

Conclusions: The segregation of Adiposity in T2DM-affected families is consistent with dominant expression of rare risk
variants with major effects, which are expressed in over half of FH+ and which can account for most T2DM-associated
obesity in our population. The calculated risk allele frequency in FH2 suggests that rare genetic variants could also account
for a substantial fraction of the prevalent obesity in this society.
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Introduction

Type 2 diabetes mellitus (T2DM) is a growing worldwide public

and individual health burden, linked to a similar increase in

overweight and obesity [1], which is present in 80–90% of T2DM

[2]. Increased adiposity and T2DM are both under strong genetic

influences but the precise links, genetic and otherwise, between the

two conditions are not clarified [3]. The known common single

nucleotide variants (SNVs) account for small fractions of the total

genetic susceptibilities to increased adiposity (,5%) and T2DM

(,10%) [4]. The much-sought cause(s) of the missing heritability

in genome-wide association studies (GWAS) is unclear but possible

contributors include small effect sizes, copy number variants

(CNVs), rare variants, gene-gene and gene-environment interac-

tions and poor definitions of phenotypes in GWAS [5].

Reports of higher BMI in individuals with a family history of

T2DM [6,7] imply that susceptibilities to increased adiposity and

to T2DM are co-transmitted in families. Recently, we showed that

healthy non-diabetic subjects with a family history of T2DM

gained significantly more weight than a matched control group

without a family history during a month-long voluntary overfeed-

ing protocol [8]. We then aimed to test, in a similar healthy but

larger group, if family history of T2DM has an effect on accurately
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measured body composition consistent with co-transmission of the

two traits.

The known genetic components of both T2DM and increased

adiposity are highly heterogeneous [9] and are often characterised

as polygenic in nature, where individual genetic susceptibility to

the disorder is a result of the combined actions of multiple

susceptibility variants at different loci [10]. Under those conditions

transmission of susceptibility will not follow simple Mendelian

patterns. Association studies are not powered to detect the

predicted interactions between multiple loci. Recent evidence

indicates that most of the variation in the human genome is rare

and therefore below detection threshold for association studies

[11–14]. This raises the strong possibility that many complex

disorders have a heterogenetic basis in which individual genetic

susceptibility is strongly determined by a single rare variant which

would often differ between unrelated individuals [15]. While both

heterogenetic and polygenetic mechanisms could explain the

minor fraction of overall genetic susceptibility currently detected

by genomic studies [4], they differ in prediction regarding

segregation analyses. Importantly, in contrast to polygenetic causal

variants, a single locus heterogenetic model predicts Mendelian

segregation of susceptibility within families [5].

Genetically complex disorders like increased adiposity and

T2DM may also be phenotypically complex but usually the choice

of phenotypic markers for expensive large scale genetic studies is

based on logistic considerations alone. Simplistic clinical manage-

ment phenotypes do not adequately represent the genetic

underpinnings of these disorders and hence contribute to the

apparent complexity of the current picture [5,16]. The concept of

increased adiposity appears intuitively simple, but in humans is not

easy to define or measure accurately. Most genetic studies of

adiposity use the surrogate BMI, despite its well-recognised

limitations as a measurement of true adiposity [16–18], because

potentially more informative measures have been impractical for

large samples. Similar limitations also apply to common anthro-

pometric indices involving waist and hip circumferences. More

direct measures of body fat content have been used in some studies

(e.g. Pecioska et al. [19]), but it is not clear a priori how to express

these measures as a biologically meaningful index of increased

adiposity. The common clinical usage of percent body fat cut-offs

is arbitrary [20] and analysing continuous measures like percent

body fat or fat mass indices implies assumptions about how

adiposity affects or is affected by disease processes. The use of

either BMI or percent body fat as covariates can lead to erroneous

conclusions in a genetic context [21].

A less arbitrary approach is the use of factor analysis, a statistical

technique that extracts a small number of latent (unmeasured)

factors that account for the correlations between multiple related

variables. Our data, consisting of direct measures of fat, lean and

bone masses as well as anthropometric measures (height, waist and

hip circumferences) are well suited to factor analysis. We have

extracted from our data a factor interpretable as Adiposity and

analysed its relationship to family history of T2DM in a model

which allows discrimination between polygenetic and heteroge-

netic modes of inheritance.

Methods

Ethics Statement
The studies were approved by the Human Research and Ethics

Committee of St Vincent’s Hospital, Sydney. All participants

provided written informed consent.

Recruitment, Selection and Matching
Participants (n = 202) were recruited, by advertisements in

newspapers and around the St. Vincent’s Hospital Sydney

campus, into studies conducted over the period 1994–2010 at

the Garvan Institute [8,22–25]. Participants with one or more first

degree relatives diagnosed with T2DM were categorised FH+.

Within studies, FH+ and FH2 participants were matched for

gender, age and BMI. In the combined sample, gender- and age-

matching were preserved with borderline matching of BMI

(Table 1). Subjects were excluded if weight had changed

substantially in the preceding 3 to 6 months, if they exercised

more than 60 min per week, if they were taking medications

known to affect insulin sensitivity or if they had a personal history

of T2DM. Our data set consists of de-identified data from all

participants for whom complete birth date, gender, body

composition, anthropometry and FH data were available as of

29/10/2010.

Measurements
Anthropometry. Weight and height were measured in light

clothing with footwear removed. Body mass index (BMI) was

calculated as weight divided by height squared (kg/m2). With the

subject standing, waist circumference at the level of the umbilicus

and hip circumference at the level of the greater trochanter were

measured to the nearest 0.5 cm using a flexible tape.

Body composition. Fat mass, lean mass and bone mass were

assessed by Dual Energy X-ray Absorptiometry (DXA; Lunar

DPX-Lunar Radiation V1.3y-1.35y, Madison, WI, USA).

Data Analysis
Model. The model of family history that we use is based on

the classic ADCE model for twin data, where total trait variance is

partitioned into either additive or dominant genetic (A or D) and

Table 1. Effects of family history of T2DM (FH+/2) on
anthropometric and body composition variables.

Groupa FH effectb

Variable FH+ FH2 Unadjusted Adjustedc

Gender (F/M) 50/30 71/51 0.54 –

Age (y) 45614 43614 0.34 –

Height (m) 1.6960.10 1.7060.10 0.72 0.81

Waist (cm) 89613 85615 0.06 0.01

Hip (cm) 10369 101611 0.05 0.06

Body weight (kg) 76615 74617 0.25 0.12

Lean mass (kg) 47611 47611 0.61 0.99

Bone mass (kg) 2.860.5 2.860.5 0.47 0.11

Fat mass (kg) 27610 24612 0.04 0.05

BMI (kg/m2) 26.764.5 25.565.3 0.06 0.06

Normal/O’weight
/Obesed (%)

38/40/23 55/30/15 0.05 –

Body fat (%) 35.369.6 31.5610.5 0.01 0.01

Frame (SD units) 20.0761.00 0.0561.01 0.41 0.57

Adiposity (SD units) 0.2560.88 20.1661.09 0.01 0.01

aMean 6 SD except for Gender (N) and BMI category (%).
bp from ANOVA except for Gender and BMI category (Chi square).
cAdjusted for Gender and Age tertile.
dBMI ,25 (Normal), 25–29.9 (Overweight), $30 (Obese) kg/m2.
doi:10.1371/journal.pone.0070435.t001
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persistent shared (C) and individual (E) environmental components

[26]. E includes all error variance. Gene-environment interactions

are clearly important for the expression of increased adiposity but

are difficult to quantify and their presence degrades the ability of

genetic analyses to isolate both gene and environmental effects.

The increase in prevalence of overweight and obesity over the last

half century is too large and too rapid to be due to changes in the

gene pool and must somehow reflect the effect of deleterious

environmental influences [1]. However, current data suggest that

the prevalence of obesity is plateauing in some highly developed

countries, including Australia [27,28], consistent with the notion

that the full expression of genetic susceptibility is being

approached in the worst affected populations. Under such

circumstances, gene-environment interactions have permitted

increasing expression of underlying genetic susceptibility and the

interactions will collapse towards pure gene effects [29], simpli-

fying the analysis of genetic data. We therefore assume that the

effects of gene-environment interactions are saturated in our data

and that the effects of FH can be represented as the sum of the A

or D and C components.

Because of the close association between T2DM and increased

adiposity, a family history of T2DM represents the sum of genetic

and persistent shared environmental influences on T2DM risk and

on risk of increased adiposity. Although the effects of any persistent

shared environmental influences have been difficult to quantify,

the relevant literature consistently demonstrates that those

influences are negligible on traits related to body composition or

T2DM: ie studies of Body Fat% [30] and BMI [31–33] in twins,

BMI [34] and T2DM [35] in adoptees and in appetite-related

traits in children [36]. Hence, in the current context, the effects of

family history can be interpreted as predominantly genetic. The

total trait variance is therefore modelled as A or D + E, and

heritability (h2) is obtained from:

h2~1{e2

where e2 is the proportion of error variance in the models

incorporating FH effects.

Under these assumptions, a heterogenetic model of inheritance

predicts segregation of traits in families [5] and we therefore

analysed and compared the distributions of traits in the FH+ and

FH2 groups.

Statistical methods. All analyses were performed using R

2.12.1 [37].

Effects of Age (as tertiles) and Gender were assessed by two-way

ANOVA. No significant interactions between age and gender

were detected in any models (p.0.35). BMI was analysed after

Log-transformation to correct markedly skewed residuals.

Two orthogonal (uncorrelated) factors were extracted from the

log-transformed anthropometric (height, waist and hip circumfer-

ences) and body composition (lean, bone and fat masses) data

using the factanal function in R with varimax rotation. This

procedure produces the most parsimonious orthogonal factors.

The input variables were log-transformed to accommodate the

geometric relationships between measurements in one linear

dimension (height and circumferences) and those in 3 dimensions

(masses, which are related to volumes) [21]. Predicted individual

scores (SD units) on the factors were calculated using Bartlett’s

method in factanal.

Effects of a family history of T2DM (FH+, FH2) were assessed

initially by three-way ANOVA (Gender + Age tertile + FH). No

significant two-way interactions were detected in any models

(p.0.13). Further analyses of FH effects were conducted on

variables adjusted for the effects of gender and age (coded and

presented as residuals from Gender + Age tertile models). Effects

of FH were also assessed by comparing distributions of Gender-

and Age-adjusted variables between FH+ and FH2 groups:

variables were binned by deciles of the full sample and relative

risks (RR, FH+/FH2) of occurrence in each decile were

calculated as pi(FH+)/pi(FH2) where pi = ni/N, ni = individuals

in the ith decile and N = individuals per group; 95% confidence

intervals were obtained from the standard error of log(RR)

assuming normality.

Gender- and Age-adjusted variables were fitted to bimodal

normal distributions using the optim function in R. Data were

binned by deciles of the full sample and bin densities were fitted to

the model:

y~ 1{að Þ� 1ffiffiffiffiffiffiffi
2�p
p �s

� �
�e

{
x{m1

2�s

� �2

z

a�
1ffiffiffiffiffiffiffi
2�p
p �s

� �
�e

{
x{ m1zd2ð Þ

2�s

� �2

where: y = predicted density of the bimodal model at the mid-

point of each decile of x, x = empirical density at the mid-point of

each decile, m1 = mean of the lower mode, d2 = positive

difference between the means of the two modes, s = standard

deviation, a = fraction of the total density accounted for by the

upper mode.

a was constrained to the interval 0–1, as was d2 to $0, using the

L-BFGS-B method in optim. Heritability (h2) was calculated

as 1-s2.

An estimate of the fraction of FH2 individuals in the upper

mode was obtained from the relationship

aFH{~
aFHz

RR8

where a FH2 and aFH+ are respectively the fractions of the FH2

and FH+ groups under the upper mode, and RR8 is the relative

risk ratio (FH+/FH2) in the 8th decile of the full distribution.

Risk variant frequencies in FH2 and FH+ groups, were

calculated from the phenotypic proportions (aFH2 and aFH+)

under a dominant bi-allelic model of inheritance assuming Hardy-

Weinberg equilibrium [38]. In this model, genotype frequencies

(AA, Aa, aa) are related to allele frequencies (p, q) through the

relationships AA = p2, Aa = 2pq, aa = q2, where a and q represent

the high Adiposity risk alleles, and a= 2pq +q2. It follows that:

q~1{
ffiffiffiffiffiffiffiffiffiffi
1{a
p

Risk variant and genotype frequencies in the unobserved

T2DM-affected family members were calculated assuming that

the FH2 group represents the pool of spouses in the parental

generation i.e.

qT2DM~2�qFHz{qFH{

95% confidence intervals for parameter estimates and derived

frequencies were obtained by bootstrap re-sampling (NFH2 = 122+
NFH+ = 80, 1000 draws).

Adiposity Segregates in Type 2 Diabetes Families
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Results

Participants with (FH+) and without (FH2) a family history of

T2DM were well matched for age and gender (Table 1). After

adjustment for the age and gender effects illustrated in Table 2, the

FH+ group had significantly higher percentage body fat (Body

Fat%), fat mass and waist circumference, with borderline higher

hip circumference and continuous and categorical BMI (Table 1).

The two factors extracted from the anthropometric and body

composition data (Frame and Adiposity) accounted for 80% and 95%

of the standardised variance and covariance respectively in the

input variables and provide a readily interpretable summary of the

data. The loading pattern of the input variables on the two factors

(Fig. 1) suggests Frame and Adiposity as appropriate names for the

factors. Frame displays the expected large effect of gender, but no

effect of age (Table 2). Adiposity was not affected by gender in this

sample but increased significantly with age (Table 2). After

adjustment for age and gender Frame was not affected by FH but

Adiposity was significantly higher in FH+ (Table 1). Adiposity

correlated strongly and equally well with Body Fat % (r = 0.91)

and log-transformed BMI (r = 0.93) (all adjusted for age and

gender).

The distributions of the measures of adiposity (Adiposity, Body

Fat%, log-transformed BMI) and Frame in FH+ and FH2 groups

are compared in Fig 2. Compared to FH2, FH+ distributions for

the adiposity measures show a localised excess density around the

8th decile, consistent with bimodality, which was most apparent in

Adiposity; Frame was distributed similarly in the two groups. The

relative risks of occupancy of the deciles (Fig 2 I–L) illustrate this

pattern, with localised enrichments of FH+ in the 8th decile of

Adiposity (RR 3.6 95%CI 1.4, 8.9) and Body Fat %, (3.6 1.4, 8.9), a

similar tendency in log-transformed BMI (2.3 1.0, 5.4) and no

significant enrichment in any decile of Frame. Fits to a bimodal

distribution identified a 2nd mode only in the Adiposity data from

FH+ (Fig 2A, Fig 3), with the distance between modes of 0.93

(95%CI 0.07, 1.45) SD units and an estimated 59% (95%CI 40%,

74%) of individuals under the upper mode (a, Fig 3). Heritability

of age- and gender-adjusted Adiposity calculated from the standard

deviation was 91% (31%, 96%); when expressed in terms of

unadjusted Adiposity by including the contributions of age and

gender (R2 = 0.12) the estimate was 80% (27%, 84%).

The bimodal distribution of Adiposity in FH+ is consistent with

dominant expression of susceptibility variants in a bi-allelic system.

Table 3 shows the estimated phenotypic proportions (a) and risk

allele frequencies (q) in FH2, FH+ and the unobserved T2DM-

affected family members, assuming dominance and Hardy-

Weinberg equilibrium. The analysis predicts that approximately

85% of the T2DM individuals carry a dominantly-expressed

genetic risk of increased adiposity.

Table 2. Anthropometry, body composition, Frame and Adiposity factor scores by gender and age tertile. Mean 6 SD.

Gender Female Male

Age Tertile 1 2 3 1 2 3 ANOVA effects (p)a

n 41 44 36 25 26 30 Gender Age

Age (y) 27.565.0 43.964.8 60.065.4 29.562.9 42.764.6 61.365.1 0.30 –

Height (m) 1.6660.07 1.6360.06 1.6160.06 1.7960.06 1.7960.08 1.7660.07 ,0.0001 0.0007

Waist (cm) 75610 81612 88614 85610 96610 100614 ,0.0001 ,0.0001

Hip (cm) 9869 102613 105611 9968 10266 10469 0.88 0.001

Body weight
(kg)

66.3612.4 67.8614.0 71.6614.2 79.0613.2 85.7613.9 86.3618.5 ,0.0001 0.11

Lean mass (kg) 39.963.8 39.264.6 39.864.2 58.866.7 57.567.3 58.467.9 ,0.0001 0.90

Bone mass (kg) 2.760.3 2.560.3 2.460.3 3.360.5 3.260.4 3.160.5 ,0.0001 0.004

Fat mass (kg) 24.2610.3 26.3611.3 30.0611.8 17.768.7 25.868.8 26.1612.6 0.02 0.02

BMI (kg/m2)b 24.364.3 25.665.6 28.165.6 24.863.4 26.8641. 28.165.8 0.35 0.001

Body fat (%) 34.968.2 37.269.8 40.368.6 21.367.7 29.266.4 28.468.4 ,0.0001 0.006

Frame (SD units) 20.6460.40 20.7660.50 20.7560.44 1.2060.51 0.9860.54 1.0460.56 ,0.0001 0.32

Adiposity (SD units) 20.2460.89 0.0561.14 0.4560.97 20.7161.01 0.1660.74 0.1861.05 0.14 0.003

aNo significant Gender*Age interactions (all p.0.35).
bAnalysed after log-transformation.
doi:10.1371/journal.pone.0070435.t002

Figure 1. Loading pattern of log-transformed body size and
composition variables on the ‘Frame’ and ‘Adiposity’ factors. The
loadings are the correlation coefficients between the input variables
and the extracted factors.
doi:10.1371/journal.pone.0070435.g001
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Discussion

Summary
In our sample approximately half of the individuals with a 1st

degree family history of T2DM (FH+) manifest a susceptibility to

increased adiposity. This is consistent with the greater weight gain

of FH+ drawn from the same population during voluntary over-

feeding [8], and with previous reports of association between FH+
and increased BMI [6,7]. We conclude that this genetic

susceptibility to increased adiposity is mediated at least in part

by behavioural responses to food-related signals, consistent with

the likely effects of the known obesity-related genetic variants [9].

The distribution of Adiposity in FH+ is not consistent with the

predictions of a polygenic model but conforms to a heterogenetic

model of dominant expression of rare susceptibility variants with

large effects. The predicted 86% of unobserved T2DM individuals

carrying these variants is close to the estimated 80–90%

prevalence of overweight/obesity in T2DM [2]. We hypothesise

that most or all of the overweight/obesity in T2DM is due to a

dominantly expressed genetic susceptibility to increased adiposity.

The same mechanism could account for a substantial fraction of

endemic obesity.

Figure 2. Distributions of gender- and age-adjusted body composition variables. A–D: FH+; E–H: FH2; I–L: relative risks of occurrence
(with 95%CI) in each decile of the distributions of body composition variables (FH+/FH2) The dotted line in panel A represents the fit to a bimodal
normal distribution.
doi:10.1371/journal.pone.0070435.g002
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Segregation and mode of inheritance of increased
Adiposity

Many previous studies have detected evidence of segregation

and/or multimodality of adiposity-related traits but the inferred

modes of inheritance have varied. Early studies (reviewed in Price

et al [39]) found evidence of recessive expression of higher

adiposity, while more recent studies have tended to favour

dominant or additive models of expression. As argued by Price

et al [39], part of this variation may be may be due secular trends

in gene-environment interactions which have the effect of

simulating recessive inheritance in multi-generational studies.

The use of extreme obesity phenotypes would also tend to favour

a recessive pattern if the true mode is additive and the

heterozygous phenotype is either obscured by definition [40] or

is indistinguishable in the data [41,42]. Finally, very large sample

sizes are required to reliably detect dominance effects and some

recessive findings are likely to be due to lack of power to detect

other modes of inheritance [43]. In summary, published studies

are not inconsistent with our interpretation of dominant or

additive expression of genetic susceptibility to increased adiposity

and some reports provide explicit support for it [39,44–47].

The bimodal distribution of Adiposity in FH+ is consistent with

segregation in families of obesity susceptibility variants with major

effects, in contrast to the predictions of a polygenic model in which

variants at many loci have cumulative small effects on the

phenotype. Previous studies of the transmission of obesity-related

phenotypes have also generally not favoured the polygenic model.

The inability of common SNVs to account for more than a small

fraction of the heritability of increased adiposity in GWAS implies

that the variants responsible for segregation must have escaped

detection and are therefore either rare, or are not closely linked to

the common SNVs targeted in GWAS, or both. While GWAS

have not targeted copy number variations (CNVs), a recent study

of linkage-disequilibrium between common SNVs and common

CNVs has concluded that ‘‘..for complex traits, the heritability

void left by genome-wide association studies will not be accounted

for by common CNVs.’’ [14]. Our analysis is insensitive to the

nature of the inherited variations but we can conclude that they

must be rare to have escaped detection in large scale studies, and

must have large effects to account for the separation between

modes of Adiposity (0.93 SD). It may be that a large number of

dominantly-expressed risk variants with large effects will be easier

to work with than the polygenic alternative, especially if the effects

are clustered within a limited number of pathways [48], such as

those involved in the regulation of feeding behavior [9].

Phenotypes
The Adiposity factor showed a clearer pattern of responses to the

explanatory variables in this analysis than did the alternative

measures of body fatness. Although Adiposity correlated strongly

and equally well with Body Fat % and log-transformed BMI it can

be expected to provide more clarity for two reasons. First, factor

extraction eliminates uncorrelated components of the input

variables, which can result in a reduction in error variance and

hence in more statistical power. Second, no assumptions were

made about the structure of the factor, except for the log-

transformation of the inputs to accommodate the dimensional

relationships between them [21], and Adiposity may therefore

reflect more accurately the biology of fat stores. The clear loading

pattern of y-variables on the two factors which leads naturally to

their interpretation as Frame and Adiposity, and the isolation of

segregation behavior to Adiposity give support to the biological

validity of the factors.

In a comparable study Tayo et al [46] analysed a collection of 7

raw obesity-related phenotypes including BMI, BSA, fat mass and

%fat, extracting two factors, both of which showed evidence of

segregation in families with dominant or additive expression. As

the structures of the factors could not be interpreted biologically,

the authors concluded that they represent different genetic variants

with pleiotropic effects on obesity-related traits. More likely

however their factor structures are a product of the inappropriate

choice of phenotypes for the analysis, resulting in a correlation

structure which violates key requirements for the extraction of

reliable and interpretable factors. For example BMI and BSA are

both calculated from height and weight, and fat mass and fat%

both contain the same primary measurement; inclusion of both

members of each pair could cause severe multi-collinearity, as

found in our data if analysed in that way (not shown). In addition

all of Tayo et al ’s obesity-related variables are either surrogates or

arbitrary constructs unlikely to relate directly to underlying

biology, and fat mass contains a component related to body size

for which there is no clear marker amongst the variables. We can

reproduce the results of Tayo et al [46] as they relate to dominant

or additive expression of segregating obesity susceptibilities but,

through a more rigorous approach to phenotype construction, we

provide a simpler, biologically plausible explanation. Adiposity

appears to capture more accurately the biology of fat stores and to

Figure 3. Quantile boxplots representing the median, inter-
quartile range and 95% confidence limits of the parameters of
the bimodal distribution model obtained from the Adiposity
data in FH+ by bootstrap re-sampling. m1 = mean of the lower
mode; d2 = difference between the means of the 2 modes; s =
common standard deviation; a = the fraction of individuals in the
higher distribution. The open circles are the estimates from the original
data.
doi:10.1371/journal.pone.0070435.g003

Table 3. Phenotypic proportions (a) and estimated risk allele
frequencies (q) in FH2, FH+ and unobserved T2DM-affected
family members under a dominant model of inheritance of
Adiposity.

FH2 FH+ T2DMa

ab 0.16 (0.04, 0.41) 0.59 (0.40, 0.74) 0.85 (0.60,0.98)

qc 0.09 (0.02, 0.23) 0.36 (0.22, 0.48) 0.62 (0.36, 0.88)

Presented as median (95% CI).
acalculated from q FH2 and qFH+ assuming that the FH2 group represents the
pool of spouses in the parental generation.
bFraction of individuals under the higher Adiposity mode.
ccalculated assuming a dominant bi-allelic model of inheritance in Hardy-
Weinberg equilibrium.
doi:10.1371/journal.pone.0070435.t003
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be more genetically informative than the other traits analysed

here. It is likely that in genetic studies the increased cost of more

accurate phenotyping compared to cheaper surrogate measures

would be more than compensated for by the decreased sample size

required and by the increased clarity of the results.

Relationship to overweight/obesity
The estimated proportion of FH2 with the high Adiposity

phenotype (16%), and by implication carrying the risk alleles, is

equivalent to the proportion of obese (BMI$30) individuals in the

group (15%). While we did not find explicit statistical support for

the presence of multiple modes within our FH2 data, previous

studies of BMI in much larger samples have detected multiple

modes (2 or 3) in different populations, with proportions in the

higher modes well within our confidence interval [49,50]; both

studies supported an interpretation of environmentally determined

expression of genetic susceptibilities due to major gene effects at

the population level. Our result in FH2 is also consistent with this

interpretation, and together with the segregation of the high

Adiposity phenotype in FH+ suggests that rare dominantly-

expressed risk variants may account for a large fraction of the

highly prevalent obesity in non-diabetic as well as diabetic

humans.

Relationship to T2DM
The predicted 85% of unobserved T2DM individuals carrying

these variants is close to the estimated 80–90% prevalence of

overweight/obesity in T2DM [2]. We conclude that most if not all

of the overweight/obesity in T2DM is due to a dominantly

expressed genetic susceptibility to increased adiposity. The

understanding that subjects who will develop T2DM carry a

strong genetic predisposition to increased weight gain as part of

the inheritance [8] could do much to alleviate the blame and guilt

currently associated with the weight gain in such people and

sharpen the focus on early preventative and therapeutic interven-

tions. The pathological impact of such obesity is underlined by its

strong association with T2DM and its major metabolic compli-

cations.

The relationship between the Adiposity variants and the T2DM

susceptibility variants also present in FH+ is unclear, in part

because the mode of inheritance of T2DM susceptibility is unclear.

The results of GWAS imply that with few exceptions (eg FTO

[51]) T2DM susceptibility is inherited independently of obesity

susceptibility and under those conditions, and assuming a

heterogenetic model of T2DM genetics, approximately 30%

(0.5960.5) of our population of FH+ would be at high risk of

developing T2DM in their current environment. However as the

currently identified SNPs from GWAs represent only a small

fraction of the total heritability of both T2DM and obesity they

may be unrepresentative and some unknown fraction of shared

inheritance (ie pleiotropy) may be involved. In support, a linkage

study, which unlike GWAS could detect rare susceptibility

variants, found suggestive evidence of pleiotropic inheritance in

6 of 12 loci identified [52]. With full pleiotropy approximately

60% (59%) of the FH+ would be at high risk of developing T2DM.

We therefore estimate that FH+ confers between 30% and 60%

risk of developing T2DM in this population and environment.

Concordance rates of T2DM in DZ twins, who share the same

fraction of genes as do 1st degree relatives, range from 3% to 71%

[32,53–57], but interpretation is complicated by marked variation

in age at disease onset and study ascertainment of disease, and by

possible effects of twin status on T2DM risk [57].

Clinical and public health implications
In a society where the current belief is that voluntary

‘‘overeating’’ leads to weight gain in the majority of people who

develop T2DM, the understanding that excess weight is a genetic

disorder linked with the T2DM would lift a burden of guilt from

the patient and allow earlier targeted therapy. If, as we suggest,

similar mechanisms are responsible for a large part of endemic

obesity this ought to inform clinical and public health interven-

tions.

Assumptions & limitations
This is a moderate sized and probably ethnically diverse sample

recruited primarily to detect any underlying abnormalities in

healthy T2DM relatives and therefore it may not adequately

represent the population from which it was drawn, or other

populations. Obese subjects (BMI$30 kg/m2) are under-repre-

sented in the FH2 group (15%) compared to the population of the

state of New South Wales (28% [58]), which could reflect the

characteristics of the sub-population sampled from and/or the

selection criteria used in the studies which provided our data. The

moderate sample size is reflected in the wide confidence intervals

around some estimates. Replication of the findings in larger

samples and with appropriate sampling strategies is indicated.

The interpretation of family history as a purely genetic effect

depends on the assumption that persistent effects of shared family

environment are negligible in this context. If this assumption is

false it would lead to an overestimation of genetic effects in the

data. However many well-powered studies have found negligible

(if any) effects of shared environment on traits related to body

composition or T2DM (see Methods). While we cannot exclude a

small contamination of genetic effects with those due to shared

environment, published direct evidence demonstrates a predom-

inantly genetic influence of family history in this context.

We also assume that obesogenic environmental influences are

saturating in our and similar populations, exposing genetic

susceptibilities and permitting an analysis which ignores gene-

environment interactions. Violation of this assumption would lead

to an underestimation of genetic susceptibility. The apparent

plateauing of BMI trends in children in developed countries has

two plausible, non-exclusive explanations [27]: the intervention

hypothesis, which assigns some of the trend to public health

campaigns and interventions, and the saturation equilibrium

hypothesis which we assume. While some component due to

intervention cannot be excluded, it is unlikely to be a major

contributor given the minimal effects so far of recent public health

interventions directed at obesity [59]. Moreover, the increase in

genetic variance across levels of adiposity seen in a large sample of

twins is consistent with greater expression of obesity-susceptibility

genes in more obesogenic environments [29].

Within the genetic model of FH, accepting the segregation of

Adiposity and its implications for susceptibility variant frequencies,

we find little missing genetic effect. Hence we conclude that our

analysis supports the saturation equilibrium hypothesis as an

explanation for plateauing BMI trends in this and other developed

countries [27].

The calculation of risk allele and genotype frequencies in the

unobserved T2DM-affected family members is based on three

additional assumptions: 1) that the FH2 group represents the

spouse population, 2) that there is random mating in relation to

obesity susceptibility between T2DM and spouses and 3) that

relative risk ratios reflect accurately the relative proportion of

individuals under the higher Adiposity mode in FH+ and FH2. The

calculations are not in fact very sensitive to plausible violations of

the 1st assumption; e.g. if we replace our estimate of a FH2 (0.16)

Adiposity Segregates in Type 2 Diabetes Families

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e70435



with the proportion of obese subjects in the New South Wales state

population (0.28) assuming a proportionate change in allele

frequency, the estimate of aT2DM is only marginally reduced

(from 0.86 to 0.80). The 2nd assumption is supported by very low

published estimates (,2% of variance) of the contribution of

assortative mating to transmission of obesity susceptibility [43,60].

The 3rd assumption implies that Adiposity in FH- has the same

distributional characteristics as in FH+, which is supported by the

large-scale studies previously cited [49,50].

Conclusion

Our analysis supports the hypothesis that genetic susceptibility

to increased adiposity in T2DM, and perhaps more generally, is

predominantly the result of a large number of rare genetic variants

with large effects. Although our conclusions are dependent on

assumptions, the most important assumptions are well supported

by the literature. Clearly these findings must next be replicated in

different groups, but meanwhile they strongly suggest a need for a

change in approach to gene discovery in T2DM and obesity, to

one which places more emphasis on accurate phenotyping and

family studies, aims to pool the effects of closely-related rare

variants in analyses, and which places more weight on the

biological plausibility of proposed links to disease processes [61].

The potential reward is that results may then offer a rational basis

for targeting therapy in a manner not yet possible.
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