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Abstract

Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO) and
endothelium-derived hyperpolarizing factors (EDHF). Previously it has been demonstrated that in short-term obesity the
NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated,
respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the
hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The
study was performed in 5 groups of rats: (1) control, (2) treated with exogenous leptin for 1 week to induce
hyperleptinemia, (3) obese, fed highly-palatable diet for 4 weeks, (4) obese treated with pegylated superactive rat leptin
receptor antagonist (PEG-SRLA) for 1 week, (5) fed standard chow and treated with PEG-SRLA. Acute effect of leptin on
isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted
vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-
dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects
were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of
cystathionine c-lyase, propargylglycine, or a hydrogen sulfide (H2S) scavenger, bismuth (III) subsalicylate. The results
indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for
by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least
partially, by H2S.
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Introduction

Increased adiposity and obesity are the leading causes of arterial

hypertension and atherosclerosis, the most prevalent cardiovascu-

lar diseases associated with endothelial dysfunction [1,2]. Several

studies in the last couple of decades have clearly shown that

abnormal production of adipose tissue hormones (adipokines)

plays an important role in obesity-associated abnormalities of

vascular function (reviewed in [3–5]). Leptin, the first and most

highly characterized adipokine, not only inhibits food intake and

stimulates energy expenditure but also affects many other

physiological processes including reproduction, inflammatory

and immune reaction, bone metabolism and vascular homeostasis

[6–9]. However, the precise effect of leptin on vascular tone is

controversial. Acutely administered leptin has been shown to

induce endothelium-dependent and endothelium-independent

vasorelaxation [10,11], but at higher concentrations and acting

over a long time it also impairs vasodilation induced by other

agonists such as acetylcholine [12,13]. In general, under normal

physiological conditions leptin has no acute effect on blood

pressure because it activates both pressor (sympathetic nervous

system, SNS) and depressor (vasodilation and natriuresis) mech-

anisms in the balanced manner. In contrast, conditions associated

with chronic hyperleptinemia such as obesity, type 2 diabetes,

chronic kidney disease, preeclampsia and obstructive sleep apnea

are characterized by endothelial dysfunction and/or hypertension

[14–16]. However, it is unclear if the enhancement of detrimental

effects of leptin such as SNS and oxidative stress or reduced leptin-

induced vasorelaxation due to leptin resistance is more important

in the pathogenesis of vascular dysfunction.

We have previously demonstrated that chronic hyperleptinemia

either induced in lean rats by exogenous administration of the

hormone or ‘‘endogenous’’ hyperleptinemia associated with

obesity induced by highly palatable diet impairs the acute vascular

NO-mimetic effect of leptin [17,18]. Nevertheless, in the early

stage of obesity when insulin sensitivity is not impaired, this is
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compensated by the up-regulation of endothelium-derived hyper-

polarizing factor (EDHF)-mediated vasorelaxation [18]. In later

phase of obesity when insulin sensitivity is compromised, both

NO- and EDHF-mimetic effects of leptin are impaired leading to

unopposed stimulation of SNS and blood pressure elevation [18].

These conclusions were based primarily on blood pressure

measurement after systemic administration of leptin and respective

inhibitors, and/or measurement of NO metabolites and cGMP in

the aortic wall. In addition, the mechanisms of leptin-induced

EDHF were not clarified. With the above observations in mind, in

the present study we examined the involvement of NO and EDHF

components in leptin-induced vasorelaxation by directly measur-

ing vascular tone ex vivo. Because NO is progressively replaced by

EDHF while moving from large conduit to small resistance arteries

[19], we used mesenteric artery rings since they are expected to

exhibit both these mechanisms. In addition, we investigated

whether the impairment of acute NO-mimetic effect of leptin in

obesity was accounted for by chronic hyperleptinemia. For this

purpose, we developed mono-pegylated super active rat leptin

antagonist (D23L/L39A/D40A/F41A mutant) and treated a

subgroup of obese and normally-fed rats to switch-off the

endogenous leptin signaling. Finally, we examined the mechanism

of NO-independent leptin-induced vasorelaxation and demon-

strated that leptin-induced EDHF is mediated by endogenous

hydrogen sulfide (H2S).

Materials and Methods

Preparation and Characterization of Non-pegylated and
Mono-pegylated High Affinity (Super Active) Rat Leptin
Antagonist (SRLA and PEG-SRLA)

The template used for super mutant construction was RLA

mutant (L39A/D40A/F41A) [20] in the prokaryotic expression

vector pMon [21]. The expression vector was modified with the

Stratagene QuikChange mutagenesis kit according to the manu-

facturer’s instructions using 2 complementary primers: the sense

primer 59-CAATTGTCACCAGGATTAATCTGATTTCACA-

CACGCAG-39 (the mutated bases are in bold and VspI restriction

site is underlined), and the antisense primer 59-CTG-

CGTGTGTGAAATCAGATTAATCCTGGTGACAATTG-39.

The procedure was identical to that described recently [22]. Two

colonies were sequenced and confirmed to contain the mutation

without any undesired misincorporation of nucleotides. Mon105

competent cells were then transformed with the mutated plasmid

and used for expression. The mutated protein (D23L/L39A/

D40A/F41A) with an extra Met-Ala (Met is cleaved by the

bacteria) at its N terminus was expressed in 2.5 liters of culture,

upon induction with nalidixic acid [21] and grown for an

additional 4 h. Inclusion bodies (IBs) were then prepared as

described previously [21] and frozen. Subsequently, IBs obtained

from 5 liters of bacterial culture were solubilized in 600 ml of

4.5 M urea and 40 mM Tris base containing 0.1 mM cysteine and

adjusted to pH 11.3 with NaOH. After 2 h of stirring at 4uC, three

volumes of 0.67 M arginine were added to a final concentration of

0.5 M, and stirring was continued for an additional 1.5 h. Then

the solution was dialyzed against 10 liters of 10 mM Tris-HCl,

pH 10, for 60 h, with six external solution exchanges and applied

at maximal flow rate (400–500 ml/h) onto DEAE-cellulose

column (DE-52, Whatman Co.) of 30-ml bead volume, pre-

equilibrated with 10 mM Tris base adjusted to pH 10. The

absorbed protein was eluted in a stepwise manner using increased

concentration of NaCl in the same buffer. The monomeric

fraction was eluted with 50 mM yielding 350–400 mg of pure

monomeric SRLA. The pooled fraction was dialyzed against

NaHCO3 to ensure a 4:1 protein-to-salt ratio, and lyophilized.

The pegylation was carried out as described before for superactive

ovine leptin antagonist [22] but the mono-pegylated SRLA (PEG-

SRLA) was eluted from the SP-Sepharose column with 75 mM

NaCl, dialyzed against NaHCO3 to ensure a 3:1 protein-to-salt

ratio, and lyophilized. The overall yield from 350 mg of PEG-

SRLA was 100 to 120 mg.

Purity check by SDS-PAGE and analytical gel filtration along

with testing the binding capacity and inhibitory activity of leptin-

induced proliferation in Baf/3 cells were carried out exactly as

described before [22]. BAF/3 cells stably transfected with chimeric

receptor composed of an extracellular and transmembrane

domain of the murine leptin receptor fused to the intracellular

domain of the human bc receptor, a common receptor subunit

present in several cytokine receptors.

Animals and Experimental Groups
The study was performed in adult male Wistar rats weighing

21364 g before the experiment. After acclimation, the animals

were divided into the following groups (n = 6 each, Table 1): (1)

control, fed standard rat chow (68% calories from carbohydrates,

20% protein and 12% fat) ad libitum for 4 weeks, (2) leptin-treated

group fed standard chow for 4 weeks in which hyperleptinemia

was induced by administration of exogenous leptin for the last 7

days, (3) group receiving high-calorie palatable diet for 4 weeks

(obese group), (4) group fed highly palatable diet for 4 weeks and

receiving PEG-SRLA during the last week, (5) group fed standard

chow for 4 weeks and receiving PEG-SRLA during the last week.

High-calorie diet consisted of standard chow combined 1:1 (wt/wt)

with a liquid diet containing equal amounts of sucrose, glucose,

whole milk powder and soybean powder suspended in tap water

[23]. The composition of this diet was similar to standard chow

(66% calories from carbohydrates, 20% from protein, and 14%

from fat). Animals in all groups were at the same age at the end of

experiment. The study protocol was reviewed and approved by the

Bioethical Committee of the Lublin Medical University.

Hyperleptinemia was induced by administration of recombinant

rat leptin. Leptin was injected at a dose of 0.25 mg/kg twice daily

between 7 and 8 AM and between 7 and 8 PM into the

subcutaneous adipose tissue in the interscapular region. PEG-

SRLA was administered for the last week of the 4-week

experiment in rats fed regular or high-calorie diet. PEG-SRLA

was injected every other day at 7 mg/kg ip. between 7.00 and

8.00 AM. Animals were anesthetized to perform vascular reactiv-

ity experiments 24 hours after the last PEG-SRLA dose or 6 hours

after the last leptin injection. All together four doses of PEG-SRLA

were administered to each rat. Food was withdrawn from the

cages 6 hours before sacrifice to induce the fasting state.

Table 1. Diets and treatments applied in different
experimental groups.

Experimental
group Diet (weeks 1–4) Treatment during the 4th week

Control Standard –

Leptin-treated Standard Leptin (0.25 mg/kg twice daily)

Obese High-calorie –

Obese+PEG-SRLA High-calorie PEG-SRLA (7 mg/kg every other day)

PEG-SRLA Standard PEG-SRLA (7 mg/kg every other day)

doi:10.1371/journal.pone.0086744.t001
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Measurement of Vascular Tone
Animals were anesthetized with thiopental (50 mg/kg ip.).

Abdominal cavity was opened and blood was collected from the

abdominal aorta for the measurement of leptin, insulin, glucose

and lipid profile. First and second-order mesenteric artery

branches (internal diameter 250–300 mm) were gently dissected,

placed in HEPES- buffered saline solution containing 142 mM

NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 2.5 mM CaCl2, 1.2 mM

KH2PO4, 5.5 mM glucose and 10 mM HEPES (pH 7.4) saturated

with 95%O2/5% CO2 gas mixture, cleaned of adherent connec-

tive and adipose tissue and cut into 2 mm segments. In some

experiments endothelium was removed from the vessel by

repeatedly passing stainless steel cannula of appropriate size

through the vessel lumen. Integrity of the vessel after denudation

was verified by measuring contractility induced by 60 mM KCl;

only vessels with contractility comparable to those of endothelium-

intact rings were used. Destruction of the endothelium was

confirmed by loss of the relaxation response to acetylcholine

(1 mM). Arterial segments were mounted into the multiwire

myograph system DMT 610 (Danish Myo Technology, Aarhus,

Denmark) and kept in HEPES-buffered saline solution bubbled

with 95%O2/5%CO2 (pH 7.4) at 37uC throughout the experi-

ment. Vessels were then stretched to 90% of diameter that would

be obtained if the artery was subjected to 100 mmHg internal

pressure, which produced maximal tension responses. Vessels were

initially exposed to 60 mM KCl to measure their maximal

contractility. After the 30-min washout period, concentration–

response curve to the a-adrenergic agonist phenylephrine was

constructed by its cumulative addition (1 nM–10 mM). Tension

was expressed as the percentage of tension obtained with 60 mM

KCl. After washout, segments were contracted to 75% of maximal

tension with appropriate concentration of phenylephrine and then

leptin was added at increasing concentrations (0.01–500 ng/ml).

Relaxation in response to leptin was expressed as a percentage of

sustained phenylephrine-induced contraction. If the effect of leptin

was examined in the presence of inhibitors of specific pathways,

respective inhibitors were administered 15 min before the first

dose of leptin. The effective concentrations causing 50% of

maximal response (EC50) and the maximal relaxations (Rmax) were

calculated for each ring by nonlinear regression, and mean 6 SD

values calculated for respective experimental groups are presented

in tables. Data presented on figures are relaxations induced by

individual leptin concentrations (mean 6 SD).

Cystathionine c-lyase (CSE) Activity in Mesenteric Arteries
CSE activity was measured by two methods: (i) using L-

cystathionine as the substrate, i.e. decomposition of L-cystathio-

nine to L-cysteine in the transsulfuration pathway of homocysteine

metabolism, (ii) using L-cysteine as the substrate, that is

desulfhydration of L-cysteine to H2S. CSE activity toward

cystathionine was measured by a method of Stipanuk et al. [24]

as recently described [25]. Vascular segments were homogenized

in 50 mM ice-cold potassium phosphate buffer (pH 7.4) and

centrifuged at 10 000 g for 20 min. Supernatant (50 ml) was added

to 1 ml reaction medium containing 100 mM potassium phos-

phate buffer (pH 7.4), 4 mM L-cystathionine, 0.125 mM pyridoxal

59-phosphate, 0.32 mM NADH and 1.5 U/ml lactate dehydro-

genase. Decrease in absorbance at 340 nm, reflecting consump-

tion of NADH during lactate dehydrogenase-catalyzed reduction

of 2-oxobutyrate (produced from cystathionine by CSE) to 2-

hydroxybutyrate, was recorded. Blank samples without cystathi-

onine were subtracted and CSE activity was calculated from the

linear portion of the graph and is expressed in nmol/min per mg

protein.

In addition, CSE activity toward L-cysteine (desulfhydration

reaction) was measured as the H2S formation [25]. Supernatant

(0.25 ml) was incubated for 90 min at 37uC in sealed tubes in the

presence of 2 mM L-cysteine and 2 mM pyridoxal 59-phosphate.

After the incubation, 0.125 ml of 20% trichloroacetic acid was

injected to the tubes to stop the reaction, followed by 0.125 ml of

15 mM zinc acetate and 0.5 ml of borate buffer (pH 10.0). The

tubes were incubated at 37uC for additional 60 min. Subsequently,

the reaction solution was mixed with 0.5 ml of 20 mM N,N-

dimethyl-p-phenylenediamine sulfate in sulfuric acid and 20 ml of

30 mM FeCl3. After 30 min, the sample was centrifuged at 5000

6 g for 3 min and the absorbance at 670 nm was measured. The

absorbance of blank sample, to which trichloroacetic acid was

added before incubation, was subtracted from the absorbance of a

test sample, and hydrogen sulfide concentration was calculated

against a calibration curve based on different concentrations

(3.12–250 mM) of NaHS. Results were expressed as pmol H2S

generated during 1 min per mg of protein (pmol/min/mg).

Other Assays
Plasma insulin and leptin concentrations were assayed by EIA

method using Rat Insulin EIA Kit (SPIbio, Massy, France) and

Leptin Enzyme Immunoassay Kit (Cayman Chemical), respec-

tively. Plasma triglycerides, total cholesterol, HDL-cholesterol and

glucose were measured by commercially available kits (Alpha

Diagnostics, Warsaw, Poland).

Reagents
Recombinant rat leptin was obtained from R&D Systems.

Chromium(III) mesoporphyrin IX was purchased from Frontier

Scientific (Logan, Utah, USA). GYY4137 was synthesised and

chemically characterized in house [26,27]. Other reagents were

obtained from Sigma-Aldrich.

Statistical Analysis
Data are presented as mean 6 SD from 6 rats/group. Between-

group comparisons were performed by two-tailed Student t-test or

ANOVA followed by Tukey post-hoc test for 2 and .2 groups,

respectively. When the same vascular preparation was examined

under two different conditions (for example with and without the

inhibitor), t-test for related variables was used. P,0.05 was

considered significant.

Results

Preparation and Characterization of SRLA and PEG-SRLA
Preliminary experiments aiming at expression of SRLA

conducted in four E. coli clones indicated strong expression in

most of them (not shown). The best expressing clone was picked

for large scale expression. The inclusion bodies prepared as

described before [28] contained highly purified unfolded SRLA

(Fig. 1A). After refolding and dialysis SRLA was purified by single-

step anion-exchange chromatography on DEAE column as

described in Methods. The fractions containing pure monomer

eluted with 50 mM NaCl from the DEAE –cellulose column were

pooled, dialyzed against NaHCO3, pH 8, at a 4:1 (w/w)

protein:salt ratio and lyophilized or filter-sterilized and stored at

4uC till pegylation. The purity and homogeneity of the purified

leptin antagonist were documented by two independent methods.

SDS-PAGE under reducing conditions yielded only one band of ,
16 kDa, under both reducing and nonreducing conditions

(Fig. 1B). Gel filtration at pH 8 under native conditions yielded

a single monomeric peak consisting of over 95% monomer,

corresponding to a molecular mass of , 15 to 16 kDa (Fig. 1D).

Leptin and Endothelial H2S
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Specific extinction coefficients at 280 nm for a 0.1% solution,

assuming an extra Ala at the N-terminus, were calculated

according to Pace et al. [29] yielding the value of 0.200.

Pegylation of the monomeric SRLA obtained from 5 l of

fermentation culture yielded mono-pegylated (90%) with small

(10%) double pegylated product. Its purity is shown in Figs. 1C

and 1E. The binding properties and the biological activity of the

purified SRLA and PEG-SRLA was tested by binding to human

leptin receptor binding domain and in Baf/3 bioassay (Figs. 1F

and 1G), showing high similarity to the activities showed

previously for similar mouse and ovine superactive leptin

antagonists [22,28]. The stability of SRLA and PEG-SRLA in

solution was tested at 4uC and 37uC, stored at both temperatures

as sterile 2 mg/ml solutions for at least 14 days at pH 8 without

undergoing any changes in their monomeric content and retaining

their activity in the Baf/3 bioassay.

Characteristics of Experimental Groups
Body weight (monitored weekly) increased progressively in all

groups of rats throughout the duration of the study. Since the end

of the first week, body weight of both groups fed the highly

palatable diet was significantly higher than of animals fed regular

diet (Fig. 2). Terminal body weight after 4 weeks of feeding was

higher in obese, obese+PEG-SRLA and PEG-SLRA-treated

groups than of control group by 19.8%, 24.4%,and 8.4%

respectively. Leptin treatment had no effect on terminal body

weight (Fig. 2).

The weight gain in the last week of the experiment was higher in

PEG-SRLA-treated than in control group (54.764.5 g vs.

32.563.4 g, p,0.001). The mean weight gain in PEG-SRLA-

treated obese rats was also higher than in vehicle-treated obese rats

(58.267.3 g vs. 43.063.9 g) but this difference was not statistically

significant due to the large variability in the PEG-SRLA treated

obese group. Weight gain of leptin-treated rats (12.067.0 g) was

significantly lower (p,0.001) than in the control group.

Plasma leptin concentration was significantly higher in leptin-

treated and obese rats than in control group (Table 2). Because

anti-leptin antibodies used in the ELISA assay cross-react with

leptin antagonist, leptin levels were not measured in PEG-SRLA-

treated groups. Plasma insulin, glucose and lipids did not differ

between the groups (Table 2).

Figure 1. Preparation and characteristics of superactive rat leptin antagonist. (A) Inclusion bodies from 2.5 L fermentation culture were
prepared and resuspended in 100 ml of DDW. Aliquots (corresponding to 0.8, 1.6, 3.2, 4.0, 8.0 and 12.0 ml per lane, from left to right) were separated
by 15% SDS-PAGE in presence of b-mercaptoethanol. The molecular mass markers from the bottom up (last lane on the right) are (in kDa): 10, 15, 20,
25, 37, 50, 75, 100, 150 and 250. (B) SDS-PAGE (15%) of purified SRLA run after lyophilization in the absence (lanes 1–2 from the left) or presence
(lanes 4–5 from the left) of b-mercaptoethanol (ME) at 2 concentrations: lanes 1 and 4–5 mg, lanes 2 and 5–10 mg. Lane 3– molecular weight markers
(see above). (C) SDS-PAGE (10%) of purified PEG-SRLA run after lyophilization in the absence (lanes 1–2 from the left) or presence (lanes 4–5 from the
left) of b-mercaptoethanol (ME) at 2 concentrations: lanes 1 and 4–5 mg, lanes 2 and 5–10 mg. Lane 3– molecular weight markers (see above); (D) Gel-
filtration analysis of the purified SRLA on analytical Superdex 75 column pre-equilibrated with TN buffer, pH 8. The main peak with retention time of
15.93 min corresponds to monomer and the preceding small shoulder to dimer. (E) Gel-filtration analysis of the purified PEG-SRLA on analytical
Superdex 200 column pre-equilibrated with TN buffer, pH 8. The main peak with retention time of 14.93 min corresponds to mono-pegylated PEG-
SRLA and the preceding small shoulder to double-pegylated PEG-SRLA. To estimate the molecular mass shown in (D) and (E) the columns were
calibrated with BSA (66 kDa), rat CNTF (22 kDa) and human leptin (16 kD); (F) Competitive non-radioactive receptor-binding assay of SRLA and PEG-
SRLA. Binding of biotinylated human leptin to immobilized human leptin binding domain (hLBD) consisting of the amino acids 428–635 of human
leptin receptor [51] was performed in the presence of the indicated protein SRLA or PEG-SRLA concentrations. The experiment was carried out in
triplicates and the results are presented as mean 6 SEM. As the variations in this assay was very small the error bars are not seen; (G) Biological
activity of SRLA and PEG-SRLA. The experiment was performed in BAF/3 cells stably transfected with the chimeric leptin receptor construct consisting
of the extra-cellular and transmembrane domain of the murine leptin receptor with the intracellular domain of the human bc receptor. Synchronized
cells were grown for 48 h in the presence of rat leptin (50 pg/well) and various concentrations of SRLA or PEG-SRLA. The number of cells was then
determined by the MTT method. In both bioassays the experiment was carried out in triplicates and the results are presented as mean 6 SEM.
Detailed description of the binding experiments and the bioassay is provided in our former paper [28].
doi:10.1371/journal.pone.0086744.g001
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Vascular Effect of Leptin and its Mechanism
No statistically significant difference in maximal contraction

induced by KCl was observed between groups. Phenylephrine (PE)

consistently constricted mesenteric artery rings to the similar

extent in all experimental groups (not shown). In the control

group, leptin induced concentration-dependent relaxation of PE-

preconstricted mesenteric artery rings with intact endothelium

(Fig. 3). The effect of leptin was attenuated by the NO synthase

inhibitor, L-NAME (100 mM), as well as by the inhibitors of small-

and intermediate-conductance calcium-activated potassium chan-

nels, apamin (5 mM) and TRAM-34 (1 mM), compounds well-

known to inhibit EDHF-dependent vasorelaxation [30]. The

combination of L-NAME and apamin/TRAM-34 almost com-

pletely abolished leptin-induced vasorelaxation (Fig. 3). In

contrast, the cyclooxygenase (COX) inhibitor, indomethacin

(10 mM) did not attenuate the effect of leptin (not shown). These

results suggest that leptin induced vasorelaxation in NO- and

EDHF-dependent but COX-independent manner. Leptin also

relaxed mesenteric artery rings with denuded endothelium but this

effect was much less potent (Rmax = 1163%, EC5O = 4466 ng/

ml). The endothelium-independent component was not further

examined in this study.

Vascular Effect of Leptin in Different Experimental
Groups

In the subsequent studies, we examined NO- and EDHF-

mediated components of leptin-induced endothelium-dependent

vasorelaxation as the effects persisting in the presence of apamin/

TRAM-34 plus indomethacin and L-NAME plus indomethacin,

respectively. In the absence of any inhibitors, leptin relaxed PE-

preconstricted mesenteric artery rings in all groups of rats to the

similar extent (Fig. 4A). NO-dependent vasodilatory effect of leptin

was significantly impaired in the leptin-treated and obese groups

but in the latter group was restored by PEG-SRLA treatment

(Fig. 4B). PEG-SRLA alone administered to animals fed the

regular chow had no effect on the NO-dependent vasodilatory

effect of leptin (Fig. 4B). Mathematical analysis revealed that

maximal NO-dependent dilatory effect of leptin was impaired in

the leptin-treated and obese groups whereas EC50 did not change

(Table 3). In contrast, the EDHF-dependent component of the

Figure 2. Body weight of rats in different experimental groups. *p,0.05, **p,0.01, ***p,0.001 vs. control group at the respective time
point (ANOVA and Tukey test).
doi:10.1371/journal.pone.0086744.g002

Table 2. Metabolic characteristics of animals in different experimental groups.

Group Leptin (ng/ml)
Insulin
(ng/ml) Glucose (mM)

Triglycerides
(mM)

Total cholesterol
(mM)

HDL-cholesterol
(mM)

Control 3.6260.23 2.3860.14 5.7560.50 0.9060.10 2.0660.14 1.4660.10

Leptin-treated 13.6060.89*** 2.2260.11 5.8460.53 0.8660.07 2.0060.09 1.436010

Obese 11.7760.64*** 2.5160.18 5.7060.55 0.9960.15 2.0260.11 1.4760.12

Obese PEG-SRLA-treated – 2.5160.32 6.2060.31 1.0460.17 2.0160.12 1.4560.09

PEG-SRLA-treated – 2.5560.14 5.5860.41 1.0060.18 2.0160.14 1.5560.13

***p,0.001 vs. control group (ANOVA and Tukey test).
doi:10.1371/journal.pone.0086744.t002
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vasodilatory effect of leptin was enhanced in the leptin-treated and

obese groups and, again, this was associated with the increase in

Rmax but not with any changes of EC50 (Fig. 4C, Table 3). PEG-

SRLA treatment decreased EDHF-mediated vasodilatory effect of

leptin in the obese group to the level observed in the control

group. However, PEG-SRLA alone administered to lean animals

had no effect. These results suggest that NO-dependent and

EDHF-dependent portions of leptin-induced vasorelaxation are

impaired and enhanced, respectively, by either chronic leptin

treatment or obesity, and in obese animals both these changes are

abolished by the leptin antagonist.

Mechanism of EDHF-mediated Vascular Effect of Leptin
in Rat Mesenteric Artery

EDHF has been demonstrated to be accounted for by various

mediators such as cytochrome P450-dependent (epoxyeicosatrie-

noic acids, EETs) or 15-lipoxygenase-dependent (11,12,15-trihy-

droxyeicosatrienoic acids – THETAs and 15-hydroxy-11,12-

epoxyeicosatrienoic acids – HEETAs) arachidonate derivatives,

H2O2, heme oxygenase-derived carbon monoxide (CO), or C-type

natriuretic peptide (CNP) [31]. To address the question if any of

these factors were involved in leptin-induced vasorelaxation, we

examined the EDHF-dependent effect of leptin in the presence of

respective inhibitors. However, cytochrome P450 inhibitor (SKF

525A, 10 mM), lipoxygenase inhibitor, nondihydroguaiateric acid

(NDGA, 20 mM), H2O2 scavenger (PEG-catalase, 250 U/ml),

heme oxygenase inhibitor (Cr(III) mesoporphyrin IX, 10 mM) and

protein kinase G inhibitor which blocks natriuretic peptide

signaling (KT5823, 1 mM) had no effect on leptin-induced

relaxation of PE-preconstricted mesenteric artery. In contrast,

the H2S scavenger, bismuth (III) subsalicylate (BSS, 10 mM) [32]

or CSE inhibitor, D,L-propargylglycine (PAG, 1 mM), almost

completely abolished the EDHF-dependent portion of leptin-

induced vasorelaxation (Fig. 5A). In contrast, neither BSS nor

PAG had any effect on NO-dependent portion of leptin-induced

vasorelaxation (not shown). Similarly, BSS or PAG abolished

EDHF-mediated portion of leptin-induced vasorelaxation in

leptin-treated, obese, obese PEG-SRLA-treated and lean PEG-

SRLA-treated rats, suggesting that the mechanism of leptin-

induced EDHF remains H2S-dependent in all groups (Fig. 5B).

Effect of H2S Donor, GYY4137, on Phenylephrine-
preconstricted Mesenteric Artery Rings

The synthetic H2S donor, GYY4137 [26,27], relaxed PE-

preconstricted mesenteric artery segments with intact endothelium

in a concentration-dependent manner (Fig. 6A). The effect of

GYY4137 was partially attenuated by apamin and TRAM-34 or

by the KATP channel antagonist, glibenclamide (10 mM), and

completely abolished by the mixture of these three K+ channel

inhibitors (Fig. 6A). Apamin and TRAM-34 markedly reduced

maximal relaxation and significantly increased EC50 (i.e. reduced

the sensitivity to vasodilating effect of GYY4137). Glibenclamide

decreased Rmax value and the mean EC50 but the latter effect was

not significant (Table 4). In sharp contrast, decomposed

GYY4137, dissolved 12 hours prior to use to exhaust H2S [27],

had no effect on mesenteric arteries (not shown).

GYY4137 also relaxed endothelium-denuded mesenteric artery

rings preconstricted with phenylephrine but to a lesser extent than

endothelium-intact segments (Fig. 6B, Table 4). The effect of

GYY4137 on endothelium-denuded arteries was not altered by

apamin and TRAM-34 but was completely abolished by

glibenclamide. GYY4137-induced relaxation measured in the

presence of apamin+TRAM-34 did not differ between segments

with intact and with removed endothelium. These results suggest

that when H2S is released slowly (e.g. from GYY4137), it relaxes

phenylephrine-preconstricted mesenteric arteries through the

mechanisms involving endothelial SKCa and IKCa channels and

smooth muscle cell KATP channels.

Figure 3. Leptin-induced relaxation of phenylephrine (PE)-preconstricted mesenteric artery rings of control rats with intact
endothelium in the absence of inhibitors and in the presence of NO synthase inhibitor, L-NAME, or inhibitors of small and
intermediate-conductance Ca2+-activated K+ channels, apamin (Ap) and TRAM-34 (TRAM), respectively, which together block
EDHF-dependent response.
doi:10.1371/journal.pone.0086744.g003
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CSE Activity
CSE activity toward L-cystathionine was similar in all groups of

animals (control: 2.9760.36 nmol/mg/min, leptin-treated:

2.6260.39 nmol/mg/min, obese: 2.5160.29 nmol/mg/min,

obese PEG-SRLA-treated: 3.1160.41 nmol/mg/min, lean PEG-

SRLA-treated: 3.2560.44 nmol/mg/min). In addition, CSE

activity toward L-cysteine (H2S formation from L-cysteine by

tissue homogenates) did not differ between groups (control:

89.269.7 pmol/mg/min, leptin-treated: 82.168.4 pmol/mg/

min, obese: 80.369.2 pmol/mg/min, obese SLRA-treated:

86.068.4 pmol/mg/min, lean SLRA-treated: 90.467.9 pmol/

mg/min). These results suggest that the ability of mesenteric

vessels to synthesize H2S was similar in all experimental groups.

Leptin-induced Vasorelaxation in the Presence of SQR
Inhibitor

H2S signaling in tissues is regulated not only by its synthesis but

also by mitochondrial oxidation. We hypothesized that enhanced

leptin induced EDHF/H2S-mediated vasorelaxation in leptin-

treated and obese groups could be accounted for by reduced H2S

oxidation. To address this issue, we examined leptin-induced

vasorelaxation in the presence of stigmatellin which inhibits

sulfide:quinone oxidoreductase (SQR) – the first enzyme of

mitochondrial H2S oxidation [33]. Stigmatellin alone (0.1–

10 mM) had no effect on PE-preconstricted mesenteric artery

segments (not shown). However, stigmatellin (3 mM) augmented

EDHF-dependent portion of leptin-induced vasorelaxation in

control, leptin-treated and obese rats (Fig. 7). Due to insufficient

amount of material from PEG-SRLA-treated rats, these experi-

ments were not performed in these groups Although the difference

was not large, leptin at all concentrations induced more marked

relaxation of mesenteric artery segments in the presence than in

the absence of stigmatellin. In addition, mathematical analysis

revealed that stigmatellin reduced EC50 in all groups of rats

(Table 5). Although stigmatellin also tended to increase maximal

relaxation induced by leptin, this effect was small and significant

only in vessels from leptin-treated animals. However, stigmatellin

did not eliminate the differences in leptin-induced relaxation

between groups. Maximal EDHF-dependent relaxing effect of

leptin remained higher in leptin-treated and obese compared to

the control group (Table 5). In contrast, stigmatellin had no effect

on NO-dependent portion of leptin-induced vasorelaxation (not

shown). These data suggest that although mitochondrial H2S

oxidation affects leptin-induced H2S signaling in the vascular wall,

it is not responsible for enhanced effect of leptin in leptin-treated

or obese rats.

GYY4137-induced Vasorelaxation in Leptin-treated and
Obese Rats

Finally, we examined if the sensitivity of blood vessels to H2S is

altered in leptin-treated and obese rats. We examined GYY4137-

induced relaxation of PE-preconstricted mesenteric artery rings

with intact endothelium in the presence of apamin and TRAM-

34 or glibenclamide, which reflect KATP channel-dependent and

SKCa/IKCa channel-dependent mechanisms, respectively. The

effect of GYY4137 on apamin+TRAM-34 treated segments was

similar in all groups (Fig. 8A). In contrast, the effect of H2S donor

on glibenclamide-treated arterial segments from leptin-treated or

obese rats was markedly enhanced in comparison to the control

group (Fig. 8B, Table 6).

Discussion

The in vitro activity of the both non-pegylated and pegylated

superactive rat leptin antagonists (D23L/L39A/D40A/F41A) was

similar to that of similar mutants of mouse, human [28] and ovine

[22] indicating that the similarity of the effect of the D23L

mutation in different species is likely related to the fact that the

sequence of amino acids 6–28 (VQDDTKTLIKTIVTRIN-

DISHTQ), making up the main part of the first a-helix, is

identical in human, mouse, rat, ovine, bovine and pig leptins.

Though the 3D structure of leptin:leptin receptor complex has not

Figure 4. Leptin-induced relaxation of PE-preconstricted
mesenteric artery rings in different experimental groups. Effect
of leptin was examined without inhibitors (A), in the presence of
apamin, TRAM-34 and indomethacin (Indo; NO-dependent vasorelax-
ation, B) or in the presence of NO synthase inhibitor, L-NAME, and
indomethacin (EDHF-dependent vasorelaxation, C).
doi:10.1371/journal.pone.0086744.g004
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yet been elucidated and an accurate structural interpretation of

our findings is impossible, we suggested that D23 which is located

at the C-terminal end of helix is part of the leptin binding site II

[34]. Its replacement by a non-negatively charged amino acid

probably abolishes some as yet unidentified repulsive effect and

therefore increases the interaction with leptin receptor.

The weight gain effect of PEG-SRLA during the one week

treatment of control rats was highly significant, similarly to the

effect seen in various mice strains [28,35] indicating similar

reactivity at least in rodents. The effect in obese rats was lesser

confirming our similar unpublished observations in mice fed high

fat diet (A. Gertler, unpublished data). Notably, in 4 out of 6 PEG-

SRLA-injected rats kept on high energy diet the weight gain was

similar to that in the PEG-SRLA-injected control rats indicating

individual variability in rats fed high fat diet.

The results of this study confirm our previous findings [17,18]

that: (1) chronic hyperleptinemia either induced in lean rats by

administration of exogenous leptin or resulting from diet-induced

obesity impairs acute NO-mediated vasodilating effect of leptin, (2)

EDHF-dependent effect of leptin is up-regulated under these

circumstances and compensates for NO deficiency. In addition, we

obtained several new results. Most importantly, superactive leptin

receptor antagonist restored leptin-induced NO signaling in obese

rats although it did not reduce but rather tended to further

increase body weight, which suggests that NO deficiency results

from hyperleptinemia rather than from changes of other

adipokines or metabolic abnormalities associated with obesity.

Previously, leptin antagonists have been demonstrated to be

beneficial in some mice models of disorders associated with

metabolic syndrome or hyperleptinemia such as non-alcoholic

fatty liver disease [36] or chronic kidney disease-induced lean body

mass loss (Gertler A et al, unpublished observation). The results

presented here suggest that leptin antagonists may improve NO-

dependent vascular function in hyperleptinemic states. It remains

to be established if leptin antagonists positively affect NO-

mediated vasorelaxation in response to agonists other than leptin

such as acetylcholine.

Second, we demonstrated that NO and COX-independent (i.e.

EDHF-mediated) portion of leptin-induced vasorelaxation is

mediated, at least in part, by H2S. Initial studies about vascular

effect of H2S suggested that this gasotransmitter is produced only

in smooth muscle cells and induces vasorelaxation by activating

KATP channels in these cells. However, more recently it has been

demonstrated that CSE is expressed in endothelial cells of

peripheral arteries and that H2S mediates acetylcholine-induced

EDHF-dependent relaxation of mouse and rat mesenteric arteries

[37,38], rat cerebral arteries [39] and mouse ductus arteriosus

[40]. Indeed, acetylcholine stimulates CSE-dependent H2S

production in endothelial cells, and H2S hyperpolarizes these cells

by activating SKCa and IKCa channels [37]. Hyperpolarization of

endothelial cells is then transmitted to smooth muscle cells through

the myoendothelial gap junctions. In addition, opening of

endothelial K+ channels may hyperpolarize smooth muscle cells

by two other mechanisms: (i) activation of Na+,K+-ATPase, (ii)

activation of K+ influx to smooth muscle cells through the

inwardly-rectifying K+ channels (Kir); both effect result from local

increase in extracellular K+ [31]. Our findings are consistent with

this mechanism since the H2S donor, GYY4137, relaxed

mesenteric arteries with either intact or removed endothelium

and in endothelium-intact segments its effect was partially

inhibited by apamin/TRAM-34 or glibenclamide and completely

blocked by all three inhibitors. In addition, EDHF-dependent

portion of leptin-induced vasorelaxation was markedly inhibited

by either BSS or PAG suggesting the involvement of H2S. To the

best of our knowledge this study is the first in which the

involvement of H2S in vascular effect of leptin was demonstrated.

The mechanism downstream from SKCa and IKCa channels was

not examined by us. Thus, it is unclear if myoendothelial gap

junctions, sodium pump or Kir channels are involved in leptin-

induced vasorelaxation. Our labs are currently investigating these

possibilities.

Some studies suggest that, in contrast to large arteries, in smaller

vessels the effect of H2S on smooth muscle cells is mediated by

KCNQ rather than KATP channels. For example, Schleifenbaum

et al. [41] have reported that anticontractile effect of NaHS on

mouse mesenteric artery is prevented by the KCNQ inhibitor,

XE991 but not by glibenclamide. In the present study the effect of

GYY4137 on endothelium-denuded segments was completely

abolished and on endothelium-intact segments was markedly

attenuated by glibenclamide suggesting that the effect of H2S on

smooth muscle cells was mediated, at least in part, by KATP

channels. We did not address the possible involvement of KCNQ

channels. It should be noted that in rat aortic rings vasodilating

effect of NaHS was blocked by both XE991 and glibenclamide

[42]. It is possible that both types of K+ channels are involved in

the effect of H2S or that inhibitors used exhibit some non-specific

activities toward KATP and KCNQ channels. In addition, our

study was performed in the rat whereas Schleifenbaum et al. [41]

Table 3. Leptin-induced relaxation of phenylephrine-preconstricted mesenteric artery rings in different experimental groups.

Total NO-dependent EDHF-dependent

Rmax EC50 Rmax EC50 Rmax EC50

Control 59.064.9 38.367.8 21.064.5 48.5611.9. 40.162.5 36.167.0

Leptin-treated 60.468.4 46.865.4 6.460,8*** 36.4611.2 53.465.0** 43.5611.5

Obese 59.469.3 42.869.0 6.761.6*** 38.8613.7 51.268.5* 43.6611.6

Obese +PEG-SRLA 59.768.6 44.9613.0 20.963.6 67.2613.9 40.763.0 36.366.5

PEG-SRLRA 60.268.4 43.5613.7 20.964.4 59.3612.3 39.965.8 36.166.9

NO-dependent vasorelaxation was measured in the presence of apamin (5 mM), TRAM-34 (1 mM) and indomethacin (10 mM), and EDHF-dependent vasorelaxation was
examined in the presence of L-NAME (100 mM) plus indomethacin (10 mM). Maximal relaxation (Rmax) was calculated as the leptin-induced percent decrease in tension
developed in response to phenylephrine. EC50– leptin concentration (ng/ml) which induced a half-maximal relaxation of PE-preconstricted segments. Rmax and EC50

values were calculated for each individual vascular preparation and data presented in the table are mean 6 SD from 6 animals per group.
*p,0.05,
**p,0.01,
***p,0.001 vs. control group (ANOVA and Tukey test).
doi:10.1371/journal.pone.0086744.t003
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examined mouse mesenteric arteries. Finally, different vasocon-

strictors (a-adrenergic agonist vs. serotonin) were used in both

studies. It should be noted that in the early study [43], relaxing

effect of H2S in the ex vivo perfused rat mesenteric vasculature was

partially attenuated by either endothelial denudation or by apamin

and charybdotoxin (the other inhibitor of IKCa) and partially

reduced by glibenclamide, which is consistent with our results

obtained by the measurement of isometric vascular tension.

In our previous study [44] we suggested that the EDHF-

dependent vascular effect of leptin was mediated by cytochrome

P450 (CYP)-dependent arachidonate derivatives such as EET

because it was blocked by CYP inhibitor, sulfaphenazole.

However, in the present study the effect of leptin was not affected

by the other CYP inhibitor, SKF 525A. In that previous study [44]

we did not examine isolated vessels but only blood pressure

changes in rats injected with leptin and/or respective inhibitors,

Figure 5. Effect of inhibitors of different EDHF mechanisms on leptin-induced vasorelaxation. A: Mesenteric artery segments of control
rats were preconstricted with phenylephrine, and the vasodilating effect of leptin (200 ng/ml) was examined in the presence of L-NAME and
indomethacin without other inhibitors or after addition of cytochrome P450 inhibitor SKF 525A (SKF, 10 mM), lipoxygenase inhibitor
nondihydroguaiateric acid (NDGA, 20 mM), H2O2 scavenger PEG-catalase (CAT, 250 U/ml), heme oxygenase inhibitor Cr(III) mesoporphyrin IX (CrMP,
10 mM), protein kinase G inhibitor KT5823 (KT, 1 mM), H2S scavenger bismuth (III) subsalicylate (BSS, 10 mM) or cystathionine c-lyase inhibitor D,L-
propargylglycine (PAG, 1 mM). ***p,0.001 vs. preparation treated only with L-NAME and indomethacin (Student t-test for related variables) B: Effect
of leptin (200 ng/ml) on PE-preconstricted mesenteric artery segments was examined in different experimental groups in the presence of L-NAME
and indomethacin (black bars), L-NAME, indomethacin and BSS (white bars) or L-NAME, indomethacin and PAG (grey bars). **p,0.01 vs. control
group, {p,0.001 vs. respective group not treated with either PAG or BSS.
doi:10.1371/journal.pone.0086744.g005
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and it is possible that EETs might be involved in the effect of leptin

in some other vascular beds. In addition, nonspecific effects of

sulfaphenazole after its in vivo administration could not be

excluded. Finally, EETs stimulate endothelial cell transient

receptor potential vanilloid-4 (TRPV4) calcium channels which

mediate Ca2+ influx in response to shear stress; this is the upstream

Figure 6. Relaxing effect of H2S donor, GYY4137, on phenylephrine-preconstricted mesenteric artery segments of control rats with
intact (A) or removed (B) endothelium examined in the absence of K+ channel inhibitors (black), in the presence of SKCa and IKCa

inhibitors (apamin and TRAM-34, respectively, red), in the presence of KATP channel inhibitor, glibenclamide (green) or in the
presence of all three inhibitors (blue).
doi:10.1371/journal.pone.0086744.g006
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mechanism contributing to activation of endothelial SKCa and

IKCa channels [45]. Thus, we cannot completely exclude the

possibility that, in addition to H2S, EETs are required for leptin-

induced SKCa and IKCa stimulation.

The third important finding of this study is that in experimental

obesity not associated with insulin resistance or hyperlipidemia the

leptin-induced EDHF/H2S pathway is up-regulated and may

compensate for NO deficiency. This effect is also accounted for by

hyperleptinemia because was abolished by PEG-SRLA. The

mechanism of EDHF up-regulation is unclear. Basal vascular CSE

activity toward either cystathionine or cysteine were not different

between groups, although we cannot exclude the possibility that in

response to acute leptin treatment the enzyme was activated to the

greater extent in leptin-treated and obese than in the control

group. Since H2S signaling in tissues is markedly dependent on

mitochondrial oxidation of the gasotransmitter, we also examined

the effect of leptin in the presence of stigmatellin. Stigmatellin

slightly enhanced the EDHF-dependent effect of leptin. In

particular, stigmatellin reduced EC50 which would be consistent

with accumulation of more H2S at lower leptin concentrations.

However, the difference in leptin-induced vasorelaxation between

control, leptin treated and obese groups persisted in the presence

of stigmatellin, suggesting that impaired mitochondrial H2S

oxidation in the two latter groups was not responsible for the

enhancement of leptin-induced EDHF in our current study. It is

well known that EDHF is inhibited by NO under baseline

conditions and is often up-regulated in states of NO deficiency

[31]. In addition, NO has been demonstrated to inhibit vascular

CSE [37]. However, it is unlikely that up-regulation of EDHF/

H2S in leptin-treated or obese groups resulted solely from NO

deficiency because EDHF-dependent vasorelaxation was exam-

ined in the presence of NOS inhibitor in all preparations. The

most likely explanation is that the sensitivity of endothelium to

H2S was enhanced in leptin-treated and obese rats because

GYY4137, which generates very low levels of H2S [26,27], but not

‘‘decomposed’’ GYY4137, produced more marked relaxing effect

in these groups. Previously it has been demonstrated that although

EDHF-mediated effect of acetylcholine on the 4rd order mesen-

teric arteries was impaired in obese rats fed the high-fat diet, IKCa

activator, 1-EBIO, produced greater vasorelaxation in obese than

in lean animals which was associated with greater expression of

IKCa protein in the vessel wall [46]. An alternative explanation

may be that the sensitivity to H2S was specifically increased in

obesity. Indeed, plasma levels of H2S are known to be decreased in

animal models of obesity and in obese humans where plasma H2S

levels negatively correlated with physical indices of obesity,

systemic blood pressure and microcirculatory function in vivo

[47,48]. Chronic deficiency of endogenous H2S could make blood

vessels more sensitive to exogenous H2S donors or to the acute

increase in endogenous H2S induced by vasodilators such as

leptin. It is thought that many of the biological effects of H2S are

Table 4. GYY4137-induced relaxation of phenylephrine-
preconstricted mesenteric artery rings.

With endothelium Without endothelium

Rmax (%) EC50 (mM) Rmax (%) EC50 (mM)

No inhibitors 77.365.6 96.6617.6 47.264.4{{{ 135.167.0{{{

Apamin+
TRAM-34

47.767.4*** 140.1612.6*** 45.465.0 146.1616.6

Glibenclamide 29.463.8*** 79.9617.4 - -

Effect of increasing concentrations of GYY4137 on mesenteric artery segments
with intact or removed endothelium was examined in the absence or in the
presence of K+ channel inhibitors and Rmax and EC50 values were calculated for
each preparation (n = 6/group).
***p,0.001 vs. preparation without K+ channel inhibitors (Student t-test for
related variables),
{{{p,0.001 vs. segments with intact endothelium (Student t-test for unrelated
variables). Because glibenclamide almost completely abolished the effect of
GYY4137 in endothelium-denuded segments, Rmax and EC50 could not be
calculated.
doi:10.1371/journal.pone.0086744.t004

Figure 7. Effect of SQR inhibitor, stigmatellin, on EDHF-
mediated leptin-induced relaxation of mesenteric artery
segments. Concentration-dependent effect of leptin on PE-precon-
stricted rings from control (A), leptin-treated (B) and obese (C) rats was
examined in the presence of L-NAME+indomethacin. Segments were
examined in the absence (black squares, continuous line) or in the
presence of 3 mM stigmatellin (white squares, broken line).
doi:10.1371/journal.pone.0086744.g007
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Table 5. EDHF-mediated leptin-induced relaxation of
phenylephrine-preconstricted mesenteric artery rings in the
absence and in the presence of stigmatellin.

Without stigmatellin With stigmatellin

Group Rmax (%) EC50 (ng/ml) Rmax (%) EC50 (ng/ml)

Control 40.162.5 36.166.9 42.363.0 24.963.0**

Leptin-treated 53.465.0{{ 43.5611.5 58.163.6***{{{ 34.969.1*

Obese 51.268.5{ 43.6611.6 54.567.0{{ 33.868.6**

*p,0.05,
**p,0.01,
***p,0.001 vs. respective segment not treated with stigmatellin (Student t-test
for related variables),
{p,0.05,
{{p,0.001,
{{{p,0.001 vs. control group (ANOVA and Tukey post-hoc test).
doi:10.1371/journal.pone.0086744.t005

Figure 8. Effect of GYY4137 on PE-preconstricted mesenteric artery rings from control (black), leptin-treated (red) and obese
(green) rats in the presence of apamin and TRAM-34 (A) or glibenclamide (B).
doi:10.1371/journal.pone.0086744.g008

Table 6. GYY4137-induced relaxation of phenylephrine-
preconstricted mesenteric artery rings in control, leptin-
treated and obese rats.

Apamin+TRAM-34 Glibenclamide

Group Rmax (%) EC50 (mM) Rmax (%) EC50 (mM)

Control 47.767.4 140.1612.6 29.463.8 79.9617.4

Leptin-treated 49.868.1 154.2614.3 46.266.4*** 88.2615.3

Obese 49.467.9 149.2613.7 48.165.9*** 80.6614.2

Concentration-dependent effect of GYY4137 was examined in the presence of
apamin and TRAM-34 (KATP channel-dependent relaxation) or glibenclamide
(SKCa and IKCa channel-dependent relaxation).
***p,0.001 vs. control group (ANOVA and Tukey test).
doi:10.1371/journal.pone.0086744.t006
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mediated, at least in part, by the sulfhydration of cysteine –SH

groups, and oxidized sulfenic (-SOH) groups are highly susceptible

for sulfhydration in vitro [49]. As hyperleptinemia and obesity are

associated with oxidative stress [50], conversion of thiol to sulfenic

groups could render them more sensitive to sulfhydration.

In conclusion, we demonstrated that leptin relaxes peripheral

arteries in both NO- and EDHF-dependent manner and the latter

mechanism is mediated by H2S. Short-term obesity associated

with hyperleptinemia but normal insulin sensitivity, glycemia and

lipid profile impairs NO-dependent and augments EDHF-

dependent effect of leptin. Both decrease in NO and increase in

EDHF are corrected by leptin antagonist suggesting that they are

accounted for by chronic hyperleptinemia but not by other

consequences of obesity. Increase in leptin-induced EDHF/H2S

pathway is mainly associated with the increased sensitivity of

endothelium to H2S.

Author Contributions

Conceived and designed the experiments: JB. Performed the experiments:

AJW JB. Analyzed the data: AG MW JB. Contributed reagents/materials/

analysis tools: AG GS MEW MW. Wrote the paper: AG MW JB.

References

1. Chrostowska M, Szyndler A, Hoffmann M, Narkiewicz K (2013) Impact of
obesity on cardiovascular health. Best Pract Res Clin Endocrinol Metab 27:

147–156.

2. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP (2009) Visceral obesity:

the link among inflammation, hypertension, and cardiovascular disease.
Hypertension 53: 577–584.

3. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, et al. (2010) Obesity-
induced hypertension: role of sympathetic nervous system, leptin, and

melanocortins. J Biol Chem 285: 17271–17276.

4. Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN (2013) Adipokines as

mediators of endothelial function and atherosclerosis. Atherosclerosis 227: 216–
221.

5. Mattu HS, Randeva HS (2013) Role of adipokines in cardiovascular disease.
J Endocrinol 216: T17–T36.

6. Zhou Y, Rui L (2013) Leptin signaling and leptin resistance. Front Med 7: 207–

222.

7. Morris DL, Rui L (2009) Recent advances in understanding leptin signaling and

leptin resistance. Am J Physiol Endocrinol Metab 297: E1247–E1259.

8. Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, et al. (2013)

Leptin’s Role in Lipodystrophic and Nonlipodystrophic Insulin-Resistant and
Diabetic Individuals. Endocr Rev 34: 377–412.

9. Simonds SE, Cowley MA (2013) Hypertension in obesity: is leptin the culprit?
Trends Neurosci 36: 121–132.

10. Benkhoff S, Loot AE, Pierson I, Sturza A, Kohlstedt K, et al. (2012) Leptin
potentiates endothelium-dependent relaxation by inducing endothelial expres-

sion of neuronal NO synthase. Arterioscler Thromb Vasc Biol 32: 1605–1612.

11. Momin AU, Melikian N, Shah AM, Grieve DJ, Wheatcroft SB, et al. (2006)

Leptin is an endothelial-independent vasodilator in humans with coronary artery
disease: Evidence for tissue specificity of leptin resistance. Eur Heart J 27: 2294–

2299.

12. Korda M, Kubant R, Patton S, Malinski T (2008) Leptin-induced endothelial

dysfunction in obesity. Am J Physiol Heart Circ Physiol 295: H1514–H1521.

13. Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, et al. (2010) Epicardial

perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction
in metabolic syndrome via a protein kinase C-beta pathway. Arterioscler

Thromb Vasc Biol 30: 1711–1717.

14. Mathew AV, Okada S, Sharma K (2011) Obesity related kidney disease. Curr

Diabetes Rev 7: 41–49.

15. Miehle K, Stepan H, Fasshauer M (2012) Leptin, adiponectin and other

adipokines in gestational diabetes mellitus and pre-eclampsia. Clin Endocrinol
(Oxf) 76: 2–11.

16. Tokuda F, Sando Y, Matsui H, Koike H, Yokoyama T (2008) Serum levels of
adipocytokines, adiponectin and leptin, in patients with obstructive sleep apnea

syndrome. Intern Med 47: 1843–1849.
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18. Bełtowski J, Wójcicka G, Jamroz-Wiśniewska A, Marciniak A (2009) Resistance
to acute NO-mimetic and EDHF-mimetic effects of leptin in the metabolic

syndrome. Life Sci 85: 557–567.

19. Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, et al. (2012)

The endothelium: influencing vascular smooth muscle in many ways.
Can J Physiol Pharmacol 90: 713–738.

20. Salomon G, Niv-Spector L, Gussakovsky E E, Gertler A (2006) Large-scale

preparation of biologically active mouse and rat leptins and their L39A/D40A/

F41A muteins which act as potent antagonists. Protein Expr Purif 47: 128–136.

21. Gertler A, Simmons J, Keisler DH (1998) Large-scale preparation of biologically

active recombinant ovine obese protein (leptin). FEBS Lett 422: 137–140.

22. Niv-Spector L, Shpilman M, Boisclair Y, Gertler A (2012). Large-scale
preparation and characterization of non-pegylated and pegylated superactive

ovine leptin antagonist. Protein Expr Purif 81: 186–192.

23. Kahn BB, Pedersen O (1993) Suppression of GLUT4 expression in skeletal

muscle of rats that are obese from high fat feeding but not from high

carbohydrate feeding or genetic obesity. Endocrinology 132: 13–22.

24. Stipanuk MH (1979) Effect of excess dietary methionine on the catabolism of
cysteine in rats. J Nutr 1109: 2126–2138.
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