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Background: Insulin resistance (IR) is the hallmark of PCOS and it is known that exercise

may decrease it. What is unknown is whether exercise may mechanistically alter the

underlying IR, attenuating the dynamic lipid induced IR in insulin resistant subjects.

Methods: 12 women with polycystic ovary syndrome (PCOS) and 10 age and body

mass index matched controls completed an 8 week supervised exercise program at 60%

maximal oxygen consumption. Before and after the exercise program, all participants

underwent hyperinsulinaemic euglycaemic clampswith either saline or intralipid infusions.

Skewed data were log transformed and expressed as mean ± SEM.

Results: Before exercise, women with PCOS had a higher HOMA-IR and lower VO2

max than controls. Compared to saline, lipid infusion lowered the rate of insulin stimulated

glucose disposal (M value; mg/kg/min) by 67 ± 5% (from 0.5 ± 0.03 to −0.25 ± 0.2,

p= 0.01) in PCOS, and by 49± 7% (from 0.65± 0.06 to 0.3± 0.1, p= 0.01) in controls.

TheM value was significantly less in PCOS compared to controls for both saline (p< 0.01)

and lipid (p < 0.05). Endurance exercise in PCOS improved VO2 max and HOMA-IR, but

not weight, to those of pre-exercise control subjects. The glucose disposal rate during

the lipid infusion was reduced following exercise in PCOS, indicating decreased IR (67

± 5 vs. 50 ± 7%, p = 0.02), but IR was not altered in controls (49 ± 7 vs. 45 ± 6%,

p = 0.58). The incrementally increased IR induced by the lipid infusion did not differ

between controls and PCOS.

Conclusion: Insulin sensitivity improved with exercise in the PCOS group alone showing

that IR can bemodified, though likely transiently. However, themaximal IR response to the
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lipid infusion did not differ within and between control and PCOS subjects, indicating that

the fundamental mechanism underlying insulin resistance was unchanged with exercise.

Precis: Maximal insulin resistance induced by lipid infusion determined at baseline and 8

weeks after exercise in control and PCOS women did not differ, though insulin sensitivity

increased in PCOS after exercise.

Keywords: insulin resistance, intralipid, endurance exercise, PCOS, insulin sensitivity

INTRODUCTION

Non-esterified fatty acids (NEFA) play a significant role in the
pathophysiology of insulin resistance (1). Increased availability

of NEFA could lead to storage of lipids “ectopically” in tissues
other than adipocytes, such as muscle, liver and beta cells
(2). The intramuscular triglyceride (IMTG) storage is positively

correlated with the degree of total body and visceral fat (3,
4). Increased availability coupled with a decreased rate of

mitochondrial lipid oxidation in skeletal muscle results in
accumulation of intra-myocellular lipid metabolites such as the
long chain fatty acids Acyl Co A, diacylglycerol (DAG) and
ceramides (5, 6). These are thought to interfere with insulin
signaling mediated glucose transport, and thus result in insulin
resistance (IR) in skeletal muscle (7, 8). An acute fat load
orally or intravenously results in an acute rise in DAG in the

muscle that subsequently induces insulin resistance by reducing
nonoxidative glucose disposal through PKCθ activation (9).
Furthermore, an acute rise in NEFA levels decreases insulin
stimulated glucose disposal in skeletal muscle and increases
hepatic glucose production, resulting in IR (10).

Fatty acids are the predominant fuel used by skeletal muscle
during fasting and exercise. Exercise increases the blood flow
through the adipose tissue and enhances the delivery of free

fatty acids for use by skeletal muscle. Exercise improves fatty
acid oxidation and reduces accumulation of intra-myocellular
fat metabolites and subsequently improves IR (11). A maximal

rate of fat oxidation is observed at exercise intensities between
59 and 64% of maximum oxygen consumption (VO2 max) in
trained individuals, and between 47 and 52% of that in a large

sample of the general population (12). Bruce et al. illustrated that
moderate intensity exercise increases mitochondrial fatty acid
oxidation and decreases DAG and ceramide content of skeletal
muscle in obese subjects (11). Schenk et al. demonstrated that
one session of exercise completely decreased the accumulation
of highly bioactive fatty acid metabolites, and then reversed fatty
acid-induced IR, in healthy subjects (13).

Polycystic ovary syndrome (PCOS) is a dysmetabolic
condition that is strongly associated with obesity, IR and
metabolic dyslipidaemia. Women with polycystic ovary
syndrome (PCOS) showed lower insulin sensitivity (IS) than
women without PCOS, and the impact of BMI was greater on
IS in women with PCOS than those without PCOS (14). In
addition, PCOS that were overweight showed moderately lower
IS than lean PCOS (15). The prevalence of gestational diabetes,
impaired glucose tolerance and type 2 diabetes (5-fold in Asia,
4-fold in the Americas and 3-fold in Europe) are significantly

increased in PCOS regardless of their age, with risk independent
of, yet exacerbated by, obesity (16).

PCOS is well recognized to have an intrinsic post-receptor
insulin signaling defect in skeletal muscle (17, 18) that may
augment the detrimental effect of NEFA on insulin sensitivity.
Therefore, raised NEFA levels may worsen IR to a greater extent
in women with PCOS than those without PCOS, but it is
unknown if this mechanism can be modified. A lipid infusion
gives a dynamic and maximal measure of IR, and the gold
standard to measure IR is the hyperglycemic glucose clamp
method to determine its change with an intervention. The effect
of endurance exercise on lipid induced IR in subjects with
underlying IR has not been studied, nor is it known if the
underlying mechanism of IR is altered by exercise. We therefore
hypothesized that women with PCOS were less tolerant to an
acute rise in NEFA levels resulting in more severe IR than
weight and age matched healthy subjects, and that endurance
exercise would improve their tolerance to lipid induced IR with a
mechanistic change in IR.

SUBJECTS AND METHODS (FIGURE 1)

This study was approved by a local research ethics committee.
Subjects with PCOS were recruited from the endocrine
clinics, and normal female controls were recruited through
advertisements at a local university and in the hospital
newsletters. PCOS was diagnosed based on the presence of two
out of three criteria; oligomenorrhoea, clinical or biochemical
hyperandrogenism, and polycystic ovaries on ultrasound after
exclusion of other endocrine causes of hyperandrogenism
according to the Rotterdam criteria (19); however all women
fulfilled all 3 criteria. All the subjects gave their informed consent
to participate in the study. They were all non-smokers, took no
regular medications, had no concurrent illness and had had no
regular exercise prior to the study. All women had a pregnancy
test prior to their inclusion in the study. Subjects who were
diagnosed with impaired glucose tolerance at screening oral
glucose tolerance test were excluded. Subjects were requested
not to modify other aspects of their lifestyle, including their
dietary pattern, during the study period. All the subjects had
anthropometric measurements, fasting blood sampling and two
hyperinsulinaemic euglycaemic clamps with either 5 h saline or
intralipid infusions at baseline. Normal control women had the
initial clamp in the first week of their menstrual cycle, whilst
PCOS women were clamped after 6 weeks amenorrhea. These
tests were repeated after completion of an 8 week moderate
intensity exercise program.
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FIGURE 1 | Overall study scheme.

Hyperinsulinaemic Euglycaemic Clamps
Following a 12 h overnight fast, participants underwent a
hyperinsulinaemic euglycaemic clamp that measured insulin
sensitivity whilst receiving an infusion of normal saline on
the first occasion followed by a second intralipid infusion
within a week. An 18 gauge intravenous cannula was inserted
into an antecubital vein to administer test infusions and a
retrograde cannula was inserted into the dorsal hand vein on the
contralateral hand. This hand was heated (60◦C) to arterialize
venous blood for the measurement of blood glucose. On the
lipid infusion day, an additional cannula was placed in the
contralateral antecubital vein for the lipid emulsion. After fasted
blood samples were taken, either normal saline 1.5 mL/min or
20% intralipid 1.5 mL/min along with unfractionated heparin
sodium 0.3 unit/kg/min was infused for 5 h. At 180min, a
2 h hyperinsulinaemic euglycaemic clamp was started using
intravenous soluble insulin (Humulin S, Eli Lilly and Co.,
Indianapolis, IN) at a rate of 80 mU/m2 surface area/minute
for the first 20min followed by a constant rate of 40 mU/m2

surface area/minute for the remaining 100min. Plasma glucose
was clamped at 5.0 mmol/L with a variable infusion rate of
20% dextrose, adjusted relative to arterialized blood glucose
measurements undertaken every 5min. Endogenous glucose
production was more than 90% suppressed by an acute rise of
insulin with the primed insulin infusion (20). The rate of insulin
stimulated glucose disposal (mg/kg/min) (M value), a measure
of insulin sensitivity, was calculated from the mean of the five
20min periods from 20 to 120min during the clamp using the
Defronzo method (21). Blood samples were taken at baseline and
every hour for 5 h. These samples were centrifuged at 1,500G for
15min at 4◦C within 15min of sampling, and then plasma and
serum stored at−80◦C until analysis.

Exercise Intervention
All participants underwent a structured supervised exercise
program for a 1 h session, three times per week for 8
weeks in the sports laboratory at the Department of Sports,

Health and Exercise Science, the University of Hull. Moderate
intensity exercise was defined as achieving a targeted heart rate
equivalent to 60% of their baseline VO2 max. Measurement of
individualized VO2 max was performed on amotorized treadmill
starting with a warm up, then speeding to walking pace then
increasing every minute until the subject could not keep pace
with the treadmill or became too tired to continue. Inspired
and expired gas fractions, and heart rate were continuously
monitored (22). All supervised exercise sessions achieved a
targeted heart rate equivalent to 60% of their baseline VO2 max.
A mid-point reassessment was conducted to adjust the moderate
intensity based on improvements in exercise capacity.

Biochemical Analysis
Serum insulin was assayed using a competitive chemiluminescent
immunoassay (Euro/DPC, Llanberis, UK). Plasma glucose was
measured using a Synchon LX 20 analyzer (Beckman-Coulter,
High Wycombe, UK). Serum testosterone was measured by
high performance liquid chromatography linked to tandem
mass spectrometry (Waters Corporation, Manchester, UK)
and sex hormone binding globulin (SHBG) was measured
by immunometric assay with fluorescence detection on the
DPC Immulite 2000 analyzer. The free androgen index (FAI)
was obtained as the quotient 100∗ Testosterone/SHBG. Total
cholesterol, triglycerides (TG), and high density lipoprotein
cholesterol (HDL-c) were measured enzymatically using a
Synchon LX20 analyzer (Beckman-Coulter, High Wycombe,
UK). LDL-c was calculated using the Friedewald equation (23).
Non-esterified fatty acids (NEFA) were analyzed using enzymatic
colorimetric methods (Wako NEFA-H2) on a Konelab20
autoanalyzer with an inter-assay and the coefficient of variation
was 1.4%.

Data Analysis
Homeostatic model assessment of insulin resistance (HOMA-
IR) was calculated by the formula: HOMA1-IR = fasting plasma
insulin (µU/ml) × fasting plasma glucose (mmol/L)/22.5 (24).
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TABLE 1 | Baseline characteristics of participants.

Controls (n = 10) PCOS (n = 12)

Age (year) 25.26 ± 6.5 28.27 ± 6.5

BMI (kg/m2) 26.8 ± 6.5 29.4 ± 5.5

Waist (cm) 81.1 ± 14.2 98.8 ± 15.8

WHR 0.79 ± 0.06 0.87 ± 0.06

Testosterone (nmol/L) 1.05 ± 0.34 1.51 ± 0.69

FAI 2.1 ± 2.05 6.77 ± 2.90

SHBG (nmol/L) 69.6 ± 29.7 26 ± 17.6

TC (mmol/L) 4.61 ± 0.75 4.13 ± 0.65

TG (mmol/L) 0.84 ± 0.18 1.25 ± 0.72

HDL-c (mmol/L) 1.48 ± 0.47 1.12 ± 0.20

LDL-c (mmol/L) 2.66 ± 0.56 2.33 ± 0.51

FPG (mmol/L) 4.89 ± 0.56 4.94 ± 0.55

HbA1c (mmol/mmoL) 33 ± 5.6 34 ± 2.9

TSH (iu/L) 1.9 ± 0.91 1.6 ± 0.58

HOMA-IR 1.34 (0.80, 2.13) 2.3 (1.3, 3.9)

NEFA (mmol/L) 0.48 (0.29, 0.64) 0.45 (0.42, 0.58)

VO2 max (ml/kg/min) 36.3 ± 6.3 26.9 ± 4.8

Skewed variables are provided as themedians (25th, 75th percentile). Normally distributed
variables are shown as the means ± standard deviation.

Total TG are under the response curve (AUC), and insulin,
glucose and NEFA AUC were calculated using a trapezoidal
rule (25).

Statistical analysis was performed using SPSS for Windows
NT, version 19.0 (SPSS Inc., Chicago, IL). Wilcoxon signed ranks
test was applied to skewed variables that violated the assumptions
of normality when tested with the Kolmogorov–Smirnov test,
and paired sample t test for normally distributed data within
the group. Log transformation and then an unpaired t test were
undertaken on those data that were skewed. Data are presented
means ±SEMs. For all analyses, a two-tailed P ≤ 0.05 was
considered to indicate statistical significance. The missing values
were handled by case-wise deletion.

RESULTS

Twelve women with PCOS and ten healthy subjects, comparable
in terms of age and BMI, completed the study. Baseline
characteristics of the subjects are summarized inTable 1. Subjects
with PCOS had a larger waist hip ratio, higher FAI and HOMA-
IR, and lower HDL-c than controls. Fasting TG and NEFA were
not increased in PCOS relative to controls. PCOS subjects were
less physically fit, with a lower VO2 max than controls.

Effect of Lipid on Insulin Resistance Before
Exercise Intervention (Tables 2, 3)
During the saline infusion, PCOS subjects had a lower rate of
insulin stimulated glucose disposal (0.65 ± 0.06 vs. 0.5 ± 0.03
mg/kg/min, p = 0.01) but higher TG AUC 3h (3.51 ± 0.56 vs.
2.34± 0.14) mmol/L, p= 0.05 than controls. Lipid infusion led to
a 3.5–4 fold rise in NEFA AUC and TG AUC in both groups. This
led to a reduction in insulin stimulated glucose disposal rate in

PCOS from 0.5 ± 0.03 to−0.16± 0.2) mg/kg/min, p= 0.01 and
in controls from 50.65 ± 0.06 to 0.3 ± 0.1 mg/kg/min, p = 0.01.
The glucose disposal rate fell more in PCOS than in controls
from their (saline) baseline levels following lipid infusions (67
± 5 vs. 49 ± 7%, PCOS vs. control, p = 0.05). Therefore, PCOS
subjects weremore susceptible to lipid induced insulin resistance.
In addition, the lipid infusion caused a rise in plasma glucose
AUC 3 h in PCOS from 14.2 ± 0.26 to 14.9 ± 0.25 mmol/L,
p = 0.03 but with no concomitant increase in insulin secretion
[insulin AUC 3 h (pmol/L): with saline 2.1 ± 0.0 with intralipid
2.2 ± 0.08]. The within group effect of the intralipid infusion on
insulin sensitivity is summarized in Table 2.

When the effect of the intralipid infusion on insulin sensitivity
between the PCOS and control groups was analyzed, no
differences were apparent (Table 3).

Effect of Exercise on Demographic and
Fasting Biochemical Parameters
(Tables 4, 5)
The endurance exercise for 8 weeks improved cardiovascular
fitness in both PCOS patients and controls (mean VO2 max
ml/kg/min ± SEM: PCOS before 8 weeks exercise, 26.9 ± 1.40;
PCOS after 8 weeks exercise, 28.7 ± 1.7, p = 0.05) and (mean
VO2 maxml/kg/min± SEM: controls before 8 week exercise, 36.3
± 2.02; controls after 8 week exercise, 39.2 ± 1.8; p = 0.008).
This was accompanied by a significant reduction in HOMA-IR
in PCOS from 1.2 ± 0.09 to 1.07 p = 0.01) although this did
not reach significance in controls (from 0.94 ± 0.11 to 0.86 ±

0.1; p = 0.08). The post exercise HOMA-IR level of PCOS was
reduced to the pre-exercise level of controls. The reduction in
IR was associated with a reduction in waist circumference (98.1
± 4.6 vs. 96.4 ± 4.4 cm, p = 0.05) but no significant changes in
weight (29.4± 1.6 vs. 29.1± 1.8 kg/m2, p= 0.40) in PCOS. Total
cholesterol, LDL-c, HDL-c and NEFA levels were not decreased
post-exercise, but TG fell in both groups (Table 4).

There were no significant differences between groups in
demographic or biochemical data following exercise, with the
exception of with VO2 max, where the control group showed a
significant improvement with exercise while the PCOS group did
not (Table 5).

Effect of Exercise on Lipid Induced Insulin
Resistance (Figure 2, Tables 6, 7)
After 8 weeks of moderate intensity exercise, there were
concomitant rises in insulin sensitivity, in both PCOS patients
and controls (Table 6). More importantly, exercise improved
lipid induced insulin resistance in both group (Table 6). In PCOS,
endurance exercise improved lipid induced insulin resistance
i.e. lipid infusion reduced glucose disposal rate by 67% before
exercise and 50% after exercise (p = 0.02). The effect of lipid
infusion on glucose disposal rate between controls (before
exercise) and PCOS (after exercise) was similar (49 ± 7 vs. 50
± 7%, p = NS) (Figure 2). Exercise decreased TG AUC in PCOS
(p < 0.05), and lowered the 3 h AUC NEFA levels significantly
(Table 6).
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TABLE 2 | Effect of intralipid infusion on insulin sensitivity within groups.

Controls PCOS PCOS-Controls

Mean (After-before) Mean (After-before) Mean difference (95% CI) p-value

Glucose disposal mg/kg/min −2.518 −2.076 0.51 (0.49, 0.54) 0.33

NEFA AUC 3h (mmol/L) 4625 5922 1558 (1496, 1620) 0.19

TG AUC 3h (mmol/L) 8.24 9.01 0.60 (0.48, 0.72) 0.63

Glucose AUC 3h (mmol/L) 0.65 0.73 −0.058 (−0.092, 0.024) 0.88

Insulin AUC 3h (pmol/L) −16.64 38.23 57.58 (55.66, 59.50) 0.49

NEFA AUC 5h (mmol/L) 9703 11137 1987 (5572, 5782) 0.36

TG AUC 5h (mmol/L) 18.2 18.4 −0.54 (−14.77, 13.69) 0.94

TABLE 3 | Effect of intralipid infusion on insulin sensitivity between groups.

Controls PCOS PCOS-Controls

Mean (After-before) Mean (After-before) Mean difference (95% CI) p-value

Glucose disposal mg/kg/min −2.518 −2.076 0.512 (0.489, 0.541) 0.33

NEFA AUC 3h (mmol/L) 4625 5922 1558 (1496, 1620) 0.19

TG AUC 3h (mmol/L) 8.24 9.01 0.60 (0.48, 0.72) 0.63

Glucose AUC 3h (mmol/L) 0.65 0.73 −0.058 (−0.092, 0.024) 0.88

Insulin AUC 3h (pmol/L) −16.64 38.23 57.58 (55.66, 59.50) 0.49

NEFA AUC 5h (mmol/L) 9703 11137 1987 (5572, 5782) 0.36

TG AUC 5h (mmol/L) 18.2 18.4 −0.54(−14.77, 13.69) 0.94

TABLE 4 | Demographic and biochemical changes with exercise within groups.

Parameters Controls (n = 10) PCOS (n = 12)

Exercise Exercise

Before After p = Before After p =

BMI (kg/m2) 26.8 ± 2.0 26.5 ± 1.5 0.07 29.4 ± 1.6 29.1 ± 1.8 0.40

Waist (cm) 81.1 ± 4.5 80.1 ± 3.6 0.20 98.1 ± 4.6 96.4 ± 4.4 0.05

TC (mmol/L) 4.61 ± 0.24 4.44 ± 0.27 0.29 4.13 ± 0.19 3.95 ± 0.24 0.26

TG (mmol/L) 0.84 ± 0.06 0.69 ± 0.07 0.03 1.25 ± 0.21 0.97 ± 0.12 0.06

HDL-c (mmol/L) 1.48 ± 0.15 1.6 ± 0.12 0.29 1.12 ± 0.06 1.13 ± 0.06 0.78

LDL-c (mmol/L) 2.66 ± 0.18 2.68 ± 0.23 0.99 2.33 ± 0.15 2.12 ± 0.14 0.11

*NEFA (mmol/L) 2.65 ± 0.05 2.66 ± 0.06 0.89 2.65 ± 0.04 2.65 ± 0.02 0.86

FPG (mmol/L) 4.89 ± 0.18 4.74 ± 0.15 0.26 4.94 ± 0.16 431 ± 0.40 0.18

*HOMA-IR 0.94 ± 0.11 0.86 ± 0.10 0.08 1.2 ± 0.09 1.07 ± 0.08 0.01

VO2 max (ml/kg/min) 36.3 ± 2.02 39.2 ± 1.8 0.008 26.9 ± 1.40 28.7 ± 1.7 0.05

*Log transformed t test (±SEM).

When the effect of exercise on intralipid-induced insulin
resistance was analyzed between the PCOS and control group, no
significant differences were found (Table 7).

Analysis of testosterone and SHBG before and after exercise
did not differ (data not shown).

Given the importance that obesity may have on insulin
sensitivity, subjects with a BMI >30 were excluded from a
subanalysis of 7 PCOS and 9 control subjects, but the M value
did not differ significantly from the results above (data not
shown).

DISCUSSION

It is well recognized that women with PCOS are more
IR than their weight and age matched controls (26). In
the hyperinsulinaemic euglycaemic clamp the rate of glucose
infused is equal to the rate of whole-body glucose disposal
or metabolizable glucose (M value) and reflects the amount
of exogenous glucose necessary to fully compensate for the
hyperinsulinemia; in insulin resistance this M value is lower and
this was reflected in the lower values seen for the PCOS patients
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TABLE 5 | Demographic and biochemical changes with exercise between groups.

Controls PCOS PCOS-Controls

Exercise Mean (After-before) Mean (After-before) Mean difference (95% CI) p-value

BMI (kg/m2) −0.18 −0.16 0.06 (0.02, 0.10) 0.97

Waist (cm) −2.1 −2.2 −0.10 (−0.22, 0.022) 0.96

TC (mmol/L) −0.17 −0.2 −0.03 (−0.05, 0.01) 0.91

TG (mmol/L) −0.19 −0.01 0.18 (0.16, 0.37) 0.16

HDL-c (mmol/L) −0.07 −0.02 0.05 (0.04, 0.06) 0.54

LDL–c (mmol/L) 0 −0.28 −0.28 (−0.29, −0.27) 0.17

NEFA (mmol/L) 0.23 −37.44 −37.67 (−44.86, −30.48) 0.70

FPG (mmol/L) −0.04 −0.27 −0.23 (−0.26, −0.20) 0.66

HOMA–IR 0.58 −0.25 -0.83 (−0.86, −0.80) 0.16

VO2 max (ml/kg/min) 8.05 −4.89 −12.94 (−13.25, −12.63) <0.005

FIGURE 2 | Effect of intralipid on the rate of glucose disposal before and after

moderate intensity exercise (Data are expressed as mean ± SEM).

compared to controls in the saline infusion and particularly in
the lipid infusion that exacerbated the insulin resistance. The
tolerance to an acute rise in NEFA in PCOS has not been studied
in comparison with non-PCOS women. Before exercise, an acute
rise in NEFA with the lipid infusion lowered the rate of insulin
stimulated glucose disposal in skeletal muscle (i.e., increased
insulin resistance) by a greater magnitude in PCOS than age and
BMI matched controls. This could be related to their underlying
insulin signaling defect or to their lower VO2 max and higher
waist circumference when compared with controls. This also
suggests that the underlying dyslipidemia found in PCOS may be
a major contributor to the exacerbation of the underlying IR, and
may be reflected in the improvement in IR with anti-lipid statin
therapy (27).

Ectopic fat in muscle, liver and beta cells (2) through
triglyceride storage leads to a decreased rate of mitochondrial
lipid oxidation in skeletal muscle, resulting in accumulation of
intra-myocellular lipid metabolites such as the long chain fatty
acids Acyl Co A, diacylglycerol (DAG) and ceramides (5, 6).
These are thought to interfere with insulin signaling mediated
glucose transport, and thus result in IR in skeletal muscle (7, 8);

therefore, if this is the fundamental cause of IR in PCOS, exercise,
through a reduction in intra-myocellular fat metabolites, would
improve IR relative to that of the control subjects (11). At the
end of the 8 weekmoderate intensity exercise, women with PCOS
improved fasting HOMA-IR and insulin stimulated glucose
disposal in skeletal muscle with a significant improvement
in physical fitness similar to controls. PCOS patients became
more tolerant of lipid induced IR after exercise and became
comparable with controls prior to exercise, but this was not
reversed to that level seen for normal controls following exercise.
This improvement is likely due to increased fat oxidation with
moderate intensity exercise (12), and a reduction in intra-
myocellular fat metabolites would improve IR (11). In addition,
moderate intensity exercise has been proven to improve insulin
sensitivity in conjunction with favorable alterations in lipid
partitioning and an enhanced lipid oxidative capacity within
muscle in healthy adults (28). Though previous studies have
shown the benefit of exercise and weight loss with a reduction
of IR in PCOS (29, 30) and a reduction in muscle lipid (31),
this is the first time a study has shown that endurance exercise
attenuates lipid induced IR. This suggests that PCOS women
who undertake moderate intensity exercise for 180min per week
could tolerate an acute fat load comparable to the level observed
in controls and possibly reduce the risk of adverse metabolic
outcomes. The absolute increase in the dynamic IR induced by
the lipid infusion did not differ before and after exercise for both
the controls and PCOS subjects, indicating that the underlying
mechanism of the IR was unchanged by exercise. However, IR
could be modified with exercise in the PCOS insulin resistant
individuals, but could not be improved upon if insulin resistance
was already normal. PCOS subjects who did the exercise had a
response i.e. the percent reduction in glucose disposal rate to
the lipid infusion was similar to healthy subjects with no regular
exercise.

Following exercise, there was a significant reduction in NEFA
AUC during the lipid saline infusion for controls and for both the
saline and lipid infusions for the PCOS group, suggesting exercise
induced effective removal of circulating NEFA (32). TG levels fell
with exercise, thus it is unlikely to be due to an increased uptake
of NEFA by the liver to synthesize very low density lipoproteins
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TABLE 6 | Effect of exercise on intralipid-induced insulin resistance within groups.

Controls (n = 10) PCOS (n = 12)

Exercise Exercise

Parameter Infusion Before After p = Before After p =

*Glucose disposal mg/kg/min Saline 0.65 ± 0.06 0.74 ± 0.05 0.01 0.5 ± 0.03 −0.25 ± 0.03 0.01

Intralipid 0.30 ± 0.10 0.42 ± 0.08 0.01 −0.16 ± 0.2 −0.79 ± 0.17 0.01

Lipid induced % reduction in glucose disposal rate 49 ± 7% 45 ± 6% 0.58 67 ± 5% 50 ± 7% 0.02

*NEFA AUC 3h (mmol/L) Saline 2.9 ± 0.05 2.5 ± 0.10 0.002 3.0 ± 0.02 2.7 ± 0.05 0.003

Intralipid 3.0 ± 0.09 3.0 ± 0.11 0.60 2.7 ± 0.07 2.3 ± 0.02 0.0001

TG AUC 3h (mmol/L) Saline 2.34 ± 0.14 2.51 ± 0.41 0.70 3.51 ± 0.56 2.83 ± 0.48 0.05

Intralipid 11.0 ± 1.28 9.35 ± 0.78 0.09 13.4 ± 1.61 10.7 ± 1.44 0.03

Glucose AUC 3h (mmol/L) Saline 14.4 ± 0.40 14.1 ± 0.26 0.38 14.2 ± 0.26 14.01 ± 0.49 0.65

Intralipid 15.0 ± 0.24 14.9 ± 0.24 0.86 14.9 ± 0.25 14.4 ± 0.28 0.17

*Insulin AUC 3h (pmol/L) Saline 2.0 ± 0.08 2.0 ± 0.07 0.87 2.1 ± 0.07 2.2 ± 0.08 0.56

Intralipid 1.9 ± 0.08 2.0 ± 0.09 0.91 2.2 ± 0.09 2.2 ± 0.08 0.83

Normally distributed variables are shown as mean ± SEM. *Log transformed t test (±SEM).

TABLE 7 | Effect of exercise on intralipid-induced insulin resistance between groups.

Controls PCOS PCOS-Controls

Exercise Infusion Mean (After-before) Mean (After-before) Mean difference (95% CI) p-value

Glucose disposal mg/kg/min Saline 0.56 0.72 0.16 (0.12, 0.19) 0.8

Intralipid 0.56 0.28 −0.28 (−0.30, −0.26) 0.41

NEFA AUC 3h (mmol/L) Saline −405.94 −244.41 161.52 (146.11, 176.94) 0.5

Intralipid −606.07 −1129.59 −523.52 (−594.28, −452.76) 0.64

TG AUC 3h (mmol/L) Saline 0.17 −0.78 0.86 (0.82, 0.91) 0.13

Intralipid −1.64 −2.32 −2.49 (−2.56, −2.41) 0.63

Glucose AUC 3h (mmol/L) Saline −0.36 −0.15 0.21 (0.18, 0.25) 0.69

Intralipid −0.08 −0.34 −0.26 (−0.30, −0.22) 0.64

Insulin AUC 3h (pmol/L) Saline −2.14 1.70 3.84 (1.87, 5.81) 0.91

Intralipid −0.76 −46.95 −46.19 (−48.18, −44.19) 0.2

NEFA AUC 5h (mmol/L) Saline −479.92 −314.04 165.88 (144.42, 187.34) 0.57

Intralipid −176.11 −1688.26 −1512.15 (−1596.83, −1427.48) 0.31

(VLDL). Therefore, the fall in NEFA levels after exercise in this
study may well indicate increased uptake of NEFA by skeletal
muscle in PCOS.

PCOS has a profound effect on peripheral insulin resistance
due to a reduction in insulin receptor substrate-1 (IRS-1)
associated phosphatidylinositol (PI) 3-kinase activity in skeletal
muscle (33). This underlying intrinsic defect in the proximal
insulin signaling pathway could explain their lipid intolerance.
However, a previous study showed that intralipid had no effect on
proximal signaling (34). Therefore, it is more likely that acutely
elevated NEFA levels act synergistically rather than enhancing
the underlying insulin signaling defect in skeletal muscle glucose
transport in PCOS. A recent study showed that endurance-
trained athletes with high mitochondrial oxidative capacity had
lower lipid induced IR than untrained subjects (35). This might
explain why PCOS subjects with less physical fitness had more
severe lipid induced IR than controls before exercise. Analysis

of testosterone and SHBG before and after the 8 week exercise
showed no change, in accord with others (36).

Abdominal obesity is associated with increased delivery
of NEFA to non- adipose tissue, either due to enhanced
mobilization of NEFA from adipose tissue due to decreased
effective inhibition of insulin on hormone sensitive lipase (37)
or to decreased entrapment of NEFA by adipose tissue during
the postprandial period (38). It has been recognized that elevated
NEFA interferes with skeletal muscle glucose transport via
increased production of intermediate lipid metabolites (39).
Corbould et al. reported that an intrinsic insulin signaling defect
only inhibited insulin mediated glucose transport in the presence
of lipidemia in skeletal muscle of PCOS in in vitro studies (18, 40).
The present in vivo study confirms the importance of high NEFA
levels increasing skeletal muscle IR in PCOS. Therefore, IR will be
enhanced in PCOS in those with a high fat diet, or acute weight
gain with high NEFA availability. The M value did not differ
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significantly when subjects with a BMI >30 were excluded, but
this is likely due to the observation that insulin resistance may
decrease 15 ± 8% with BMI (25) and the sample size was too
small to detect this.

Bruce et al. investigated the effect of 8 weeks of moderate
intensity endurance exercise on the rate of mitochondrial
fatty acid oxidation and lipid content in muscle of obese
subjects and their relation to glucose tolerance. It was found
that endurance exercise improved glucose tolerance with an
increase in mitochondrial fatty acid oxidation (11). A recent
study reported that trained individuals were more tolerant to
lipid induced insulin resistance than untrained subjects because
they had higher mitochondrial oxidative capacities in skeletal
muscle (35). Therefore, adequate mitochondrial lipid oxidation
is required to maintain the balance of fatty acid uptake and
utilization to protect excessive accumulation of intra-myocellular
triglycerides and their metabolites. In women with PCOS, the
impaired insulin-stimulated total oxidative and non-oxidative
glucose disposal are associated with a consistent downregulation
of mitochondrial oxidative phosphorylation gene expression
(OXPHOS) in skeletal muscle that couples with reduced levels of
peroxisome proliferator-activated receptor gamma co-activator
alpha (PGC-1alpha) (41). Hence, this defect could also be
a plausible explanation for the failure of exercise to reverse
completely lipid-induced insulin resistance in PCOS in this
study.

This failure of complete reversal of lipid induced insulin
resistance by exercise was also observed in healthy subjects
in this study. Therefore, it may well be due to the time gap
between the lipid infusion test and exercise activity. In other
words, performing the lipid trial immediately after the exercise
may have given a different result, particularly if the effect of
exercise was not sustained. This had been seen in a previous
study in which an hour of prior leg exercise before lipid
infusion alleviated the lipid induced insulin resistance in healthy
subjects (42).

The strength of this study was using gold standard
methodology for this intensive interventional study and the well
supervised exercise intervention. However, the limitations were
that this was a small group of women with PCOS, though all
fulfilled all three of the diagnostic criteria for its diagnosis thereby

reducing heterogeneity; the groups were not well matched for
BMI and age. The diagnostic criteria to define the PCOS
group would likely not have altered the results here as IS
was reported to be no different between NIH and Rotterdam
criteria (15).

In summary, insulin sensitivity improved with exercise in the
PCOS group alone showing that IR can be modified, though
likely transiently. However, the maximal IR response to the lipid
infusion did not differ within and between control and PCOS
subjects indicating that the fundamental mechanism underlying
insulin resistance was unchanged with exercise.
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