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Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal
physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well
as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated
tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper
repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex
inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic
methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of
immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration,
controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies
including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.

1. Introduction

Tissue regeneration is a fundamental biological task essential
for the survival of all organisms. Tissue repair and regenera-
tion after mechanical injury or infection are firmly regulated
complex processes involving a highly efficient inflammatory
microenvironment. Inflammatory response is a body’s indis-
pensable defensive mechanism against tissue damage or
pathogens [1]. After tissue damage, a quick reciprocal
inflammatory response is generated in the local tissue micro-
environment by the damage-associated molecular patterns
(DAMPs) or pathogen-associated molecular patterns
(PAMPs) via the dying and invading organisms [2, 3]. The
inflammatory microenvironment facilitates various stages
to restore the normal tissue framework including an early
proinflammatory acute stage (initiation of recruitment of
vital inflammatory cells by the innate immune response com-
ponents to start the repair response), a second crucial stage
(subsiding proinflammatory response by switching key pro-
inflammatory macrophages to a repairing phenotype), and

the last stage (disappearance of inflammatory cells from the
injury site or elimination by apoptosis to restore tissue
homeostasis). However, a sustained chronic inflammation
often impairs the repair/regenerative process and forms
fibrosis and scarring. It also dysregulates normal tissue func-
tions and eventually leads to organ failure and death [4].

The initial acute inflammatory reaction has an intrinsic
function in healing tissue injury and plays an essential role
in restoring tissue homeostasis [5]. The principal goal of
acute inflammation is to eliminate dead cells and pathogens
at the injury site. Different types of immune cells including
nonhematopoietic and hematopoietic cells collectively
respond in the tissue microenvironment and together
orchestrate tissue repair and regeneration [6] (Figure 1(a)).
Although various cell types embrace tissue regenerative func-
tions, the resilient macrophages play an important regulatory
role. The acute inflammatory stage in skin injury encom-
passes stimulation of the innate immune system, resulting
in initial entry of neutrophils, followed by monocytes that
can be transformed to macrophages. Macrophages and other
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immune cells together clear the cell debris, combat against
pathogens, and also organize cellular mechanisms. Such out-
set following the stage of new tissue formation takes place
within 2-10 days after injury [7]. Multiplication and differen-
tiation of stromal and parenchymal cells could then recon-
struct tissue integrity. However, if the inflammation is not
properly resolved, the granulated tissue may transform into
scar tissue.

Both the migrating and local macrophages multiply and
undergo remarkable phenotypic and functional modifica-
tions towards cytokines and growth factors at a local tissue
microenvironment [8, 9]. Nevertheless, macrophage dys-
function could attenuate the proper tissue regeneration pro-
cess and activate fibrosis formation, type I and type III
collagen deposition, and myofibroblast activation. Therefore,
the knowledge on how the immune cells modulate
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Figure 1: (a) Schematic illustration of the tissue microenvironment at the site of injury. Tissue injury is sensed by the resident macrophages
via the released DAMPs and neutrophils that are primary infiltrating cells recruited to the damage site, which in turn recruit monocytes and
macrophages. The inflammatory microenvironment is formed by the released inflammatory cytokines, growth factors, and proteases in the
earlier stage. It is then shifted to the anti-inflammatory microenvironment that exploits tissue repair and homeostasis in the later stage. (b)
Illustrating how the physiochemical properties of biomaterials regulate the tissue immune system. Biomaterials aid in the regulation of
inflammatory cells towards the regeneration/repair phase. They are involved in the polarization of M1 inflammatory macrophages to M2
anti-inflammatory/profibrotic/proregenerative macrophages, which is a critical process for tissue regeneration. They also play a crucial
role in converting T-cells into T-regulatory cells. Reprinted with permission from [21] Copyright © Elsevier 2017.
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inflammation, tissue fibrosis, and neoangiogenesis would
illuminate the development of promising therapies that tar-
get tissue regeneration.

A close examination on the metabolisms of immune cells
over recent years has revealed a strong correlation prevailing
among the metabolic state and phenotype of cells. In partic-
ular, macrophages are a notable model of this phenomenon.
The M1 macrophages depend on aerobic glycolysis and fatty
acid synthesis. Conversely, the M2 macrophages rely on
oxidative phosphorylation (OXPHOS), tricarboxylic acid
(TCA), and fatty acid oxidation (FAO) [10, 11]. Although it
was believed earlier that the M1macrophages exclusively rely
on glycolysis and the M2 macrophages depend on OXPHOS
as well as FAO, it has been evident that the proportion is not
merely simple, and the recent evidences favor glycolysis in
M2 and FAO in M1 cells [12, 13]. Therefore, the knowledge
on metabolic phenotype switching provides important cues
for targeting immune metabolic constituents to tune immune
cell functions.

Biomaterials play a vital role in the immune modulation
and macrophage polarization based on their unique
physiological properties whether they stimulate or reduce
inflammation. The forms of biomaterials such as micro/na-
noparticles, scaffolds, and hydrogels and other properties
such as crosslinking capacity, topography, and wettability
as well as nature of biomaterials influence their functions
[14]. The biomaterials play a significant role in regulating cell
responses solely or as a part of a complicated system. The
innate immune cells are the foremost cells to counter the
implanted biomaterials in the vascularized tissue and conse-
quent cell recruitment. The intensity of the acute or chronic
inflammation depends on the implanted biomaterials, matrix
formation, and duration. Biomaterials can be shaped into
scaffolds or hydrogels for cell culture [15] and used for drug
delivery [16]. They can also be easily surface modified [17] or
injected [18] for different applications. The biomaterials with
unique biochemical and biophysical characteristics can inter-
act with the body and regulate the local tissue microenviron-
ment by modulating the immune system from scarring to
total regeneration. The biochemical properties of biomate-
rials include delivery of signaling biomolecules such as pro-
teins and small drugs. These signaling elements released
can stimulate cell-receptor proteins, which regulate the
process especially protein transport, signaling, and cell
morphology. For instance, biomaterials can induce angio-
genesis in vivo within scaffolds by releasing proangiogenic
growth factors [19]. Moreover, the biophysical characteris-
tics, in particular topology, stiffness, degradation, and
structure, can modulate local microenvironments via inter-
and intracellular signaling [20] (Figure 1(b)). The alter-
ations of the tissue microenvironment consist of tempera-
ture, pH, ions, and radicals. The scaffolds may direct
cellular infiltration by facilitating the transport of oxygen,
nutrients, and waste products and induce angiogenesis.
However, when the biomaterial biophysical properties are
disproportioned with tissues, it will result in low optimal
healing and defective functionality of regenerated tissue.
Therefore, potential biomaterials with advanced architec-
tures (biomimicking) and surface topography (bioactive)

provide well-orchestrated biomaterial-immune system
interactions for optimal functionality.

This review article discusses the inflammatory microen-
vironment, crucial macrophage regulatory mechanisms,
unfavorable inflammatory microenvironment, dysregulated
inflammatory diseases, and insights into effective therapies
and finally highlights recent biomaterial therapies for proper
tissue repair and regeneration. Due to the increasing signifi-
cance of immune-regulating biomaterials in tissue repair
and regeneration and therapy of many other diseases, we
wish this review can fill up the gap between immunological
knowledge and biomaterials and thus promote the develop-
ment of tissue microenvironment-modulating biomaterials
for better medicinal applications, in particular for tissue
repair and regeneration.

2. Inflammatory Microenvironment Signifies
Tissue Repair and Regeneration

The inflammatory microenvironment at the tissue damage
site is a complex interlinked framework of immune cells that
play a critical role in tissue healing and homeostasis.

2.1. Neutrophils. Neutrophils are the primary immune cells
arriving at the injury site and are critical to detecting wounds
and host defence. These short-lived immune cells are briskly
recruited by DAMP signals to restore barrier integrity and
facilitate tissue homeostasis [22]. They can then recruit
monocytes and macrophages to the inflammation site. They
express a large number of chemokine receptors such as
CXCR1 and CXCR2 related to the G protein-coupled recep-
tor (GPCR) family [23]. A recent study has indicated critical
roles of CXCL8 and CXCR1 or CXCR2 in fostering neutro-
phil stimulation and induction to the inflammation site [24].

The activated neutrophils release nuclear and granular
constituents to create web-like structures of DNA, called
neutrophil extracellular traps (NETs) [25, 26]. NETs com-
prise double-stranded DNA, histones, and granular proteins
including myeloperoxidase (MPO), elastase, and cathepsin G
[27, 28]. NETs are associated with pulmonary [29], inflam-
matory [30], and cardiovascular [31] thrombosis diseases
[32]. NETs are involved in the phagocytosis of their own
dying neutrophils and other cellular debris that enhance their
own removal and thereby provide resolution of inflammation
and tissue repair [23]. This removal process creates an antic-
ipatory proresolution strategy characterized by the release of
tissue-repairing cytokines, including interleukin 10 (IL-10)
and transforming growth factor-β (TGF-β). Sofoluwe et al.
have recently demonstrated that adenosine triphosphate
(ATP) channel pannexin 1 (Panx1) and ATP support NET
formation or NETosis, which is functionally expressed in
marrow-derived neutrophils of mice (wild type) induced by
the calcium ionophore A23187 or phorbol 12-myristate
13-acetate (PMA) in vitro [33]. They also found delayed
induction of NETosis in Panx1−/− mice. Therefore, the
biomaterials that stimulate neutrophil apoptosis would
have a great therapeutic effect on promoting tissue repair
and regeneration.

3Research



However, the overall effect of neutrophil response appar-
ently relies on the conditions including the activation of
inflammatory response, tissue microenvironment, and other
associated cell types. Nevertheless, various neutrophil subsets
are identified based on their different functions in cancers
including proinflammatory, antitumoral (N1), and anti-
inflammatory protumoral (N2) phenotypes [34]. In addition,
Ma et al. found neutrophil polarization during myocardial
infarction (MI) and suggested that lipopolysaccharide
(LPS)/interferon gamma (INF-γ) stimulates the polarization
of blood peripheral neutrophils to proinflammatory N1,
whereas IL-4 triggers the polarization of anti-inflammatory
N2 similar to macrophage phenotypes [35]. The N1 neutro-
phil phenotype is predominant in the myocardium during
MI, whereas the N2 phenotype increases over time, mitigat-
ing inflammation and promoting tissue repair. Cuartero
et al. used a peroxisome proliferator-activated receptor
gamma (PPAR-γ) agonist to polarize neutrophils to an N2
anti-inflammatory subtype, leading to beneficial results in
stroke [36]. However, further investigations are required to
evidently demonstrate the distinctive N2 phenotype func-
tions. It would be quite interesting to study whether this phe-
notypic subset polarization takes place in various
inflammatory diseases. Moreover, their phenotypic plasticity
to alter from one subset to another one is a fascinating chal-
lenge because of their short life span.

2.2. Mast Cells. Mast cells are vital immune cells of hemato-
poietic lineage residing in all vascularized tissues except for
the retina and nervous system [37]. They are a large source
of inflammatory factors such as histamine, heparin, numer-
ous types of cytokines, neutral proteases, and chondroitin
sulfate. Migration of mast cells to target sites is achieved by
the coordinated functions of chemokines, cytokines, integ-
rins, adhesion molecules, and growth factors [38]. Although
the mast cells are usually engaged in allergic responses, they
are also activated during initial tissue injury and release an
ample number of proinflammatory mediators including his-
tamine and vascular endothelial growth factor (VEGF). Mast
cells play an important role in recruiting inflammatory neu-
trophils to the injury site through protease-4 (chymase)
[39]. Similar to neutrophils, the mast cells secrete numerous
effector elements to recruit eosinophils and monocytes. A
great number of mast cells are lethal for the tissue regenera-
tion since they intensify acute inflammation and support scar
formation in the central nervous system [40]. Moreover, they
are highly present in chronic inflammatory wounds [41].
However, they also secrete anti-inflammatory molecules,
indicating their bilateral and active role during the tissue
repair process [40]. Nevertheless, regulation of mast cells to
encourage tissue regeneration rather than scar formation is
still limited.

2.3. Dendritic Cells. Dendritic cells are bone marrow-derived
efficient antigen-presenting cells (APC) that are important
modulators of innate and adaptive immunity. After tissue
injury, in situ immature dendritic cells captivate discharged
antigens and thereafter travel back to lymphoid organs
through chemokine gradient, whereby initiating clonal selec-

tion and development of specific T-cells. Additionally,
antigen-specific T-cells, B-cells, macrophages, natural killer
cells, and eosinophils are recruited to the injured site to elim-
inate invasive dangers. Even though their specific roles dur-
ing tissue repair and regeneration are poorly understood up
to present [42], they play a crucial role during the tissue heal-
ing process [43]. Dendritic cells apparently function as
immune modulators during tissue recovery via controlling
macrophage homeostasis. As a subset of the dendritic cell
population, the plasmacytoid dendritic cells can sense skin
injury through host-generated nucleic acids identified by
toll-like receptors 7 and 9 (TLR7 and TLR9) to enhance
wound healing via type I INF. Wound closure of burning is
considerably delayed in a dendritic cell-deficient mouse
model [42]. The defective wound healing is characterized
by the substantial inhibition of initial cellular proliferation,
granulated tissue formation, high TGF-β level at the wound
site, and blood vessel configuration. In a murine skeletal
muscle model, dendritic cells gathering together at the injury
site during regeneration undergo maturation following a tar-
get with antigen or with the exposure of LPS and migrate into
a lymph node, whereby supporting antigen-specific T helper
1 (Th1) priming [44].

2.4. Monocytes and Macrophages. Under normal physiologi-
cal conditions, macrophages reside abundantly in hemato-
poietic circulation and all types of tissues, which execute
scavenging and maintain tissue homeostatic functions. Upon
injury, huge numbers of monocytes depart from circulation
and reach to the injury site. All macrophages begin their life
as circulating monocytes and further reside in different tis-
sues and habitate the local microenvironment. Both the resi-
dent and infiltrating macrophages are stimulated by the local
microenvironmental cues and further mature into subpopu-
lations characterized by the distinctive functional pheno-
types. Macrophages are a great source of several cytokines,
growth mediators, proteases, extracellular matrix (ECM)
constituents, and soluble factors that support tissue repair,
regeneration, and fibrosis [45, 46]. Macrophages are differen-
tiated from circulatory monocytes that reach to the injury site
after neutrophils in 1-3 days [47]. They reach a peak level at
the injury site in around 7 days and increase to a high level up
to 21 days [48]. The circulatory monocytes are classified into
two different subsets based on their expression of the lym-
phocyte antigen 6 complex (Ly6C) marker in mice and
humans. The Ly6C+/hi (high) arises instantly from blood cir-
culation, while the Ly6C-/lo (low) possibly evolves from circu-
lating Ly6C+/hi monocytes [49]. They can be differentiated
depending on functions. For instance, the Ly6C+/hi classical
monocytes respond to injury by infiltrating tissue and dif-
ferentiate into macrophages during tissue regeneration. By
contrast, the Ly6C-/lo monocytes patrol endothelial integ-
rity in the vascular system, but they are not differentiated
into macrophages [50, 51]. After an extensive discussion
on the rise of blood macrophages found at the injury site,
it is now widely accepted that the infiltrating macrophages
originated only from Ly6C+/hi monocytes, which execute
clearing damage components, wound healing, and regener-
ative functions [52].
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However, it is still uncertain that a specific (local or
recruited) macrophage can adopt a local tissue microenvi-
ronment at distinct times in response to stimulation, or they
are certainly different functional monocyte subsets to
regulate divergent activities. Considering these constraints
of subset populations of macrophages such as M1 and M2,
here we discriminate these M1/M2 subpopulations using
their surface phenotype markers such as Ly6Chi and Ly6Clo.
Nevertheless, a subset of the macrophage population charac-
terized by specific markers has divergent functions in differ-
ent milieu. During the course of injury to repair,
macrophages frequently shift their phenotypes between
Ly6Chi and Ly6Clo. For instance, in a CCl4 (carbon tetrachlo-
ride) liver injury model, the Ly6Chi macrophages are
proinflammatory and profibrotic, whereas the Ly6Clo macro-
phages are anti-inflammatory and antifibrotic. Moreover, in
various tissues including skeletal muscle and renal tissue,
the Ly6Chi macrophage promotes inflammation and the
Ly6Clo macrophage stimulates fibrogenesis [53, 54].

A proinflammatory Ly6Chi CX3CR1lo macrophage pop-
ulation derived from monocytes acquires homing at the
injury site in a chemokine ligand 2- (CCL2-) dependent fash-
ion. The reparative Ly6Clo CX3CR1hi subpopulation moves
along the way led by cluster of differentiation 73 (CD73), vas-
cular cell adhesion protein 1 (VCAM-1), very late antigen-4
(VLA-4), endothelial-cell-surface enzymes (of leukocyte
extravasation), and adhesion proteins [55]. Lorchner et al.
identified that regenerative islet-derived 3β (Reg3β) is an
important modulator of macrophage to cardiac tissue after
injury [56]. The Reg3β facilitates recruitment of the repair
macrophage population that assists neutrophil removal, or
else it would stimulate matrix degeneration and delay colla-
gen accumulation and myocyte rupture.

In many tissues, an individual subset of monocytes can
function as proinflammatory and proreparatory cells, indi-
cating that in situ modulation rather than provision of the
proreparative LyC6- population is crucial in many contexts.
For instance, the protein activin-A that guides differentiation
of oligodendrocytes during remyelination of the central ner-
vous system (CNS) is a critical macrophage-derived prore-
parative factor, and inhibition of M2-derived activin-A
protein blocks the differentiation of oligodendrocytes during
remyelination in culture of cerebellar slices [57]. In response
to the stimuli, macrophages have a broad range of activities
particularly in the transition of innate immune response
through the mediation of various factors. Indeed, some of
these functions are distinct.

The opposing roles of macrophages, for example, pro-
and anti-inflammatory nature, rely on stimuli that trigger
to procure a divergent phenotype. Despite the fact that the
microenvironmental factors and phenotypes are divergent,
they are broadly classified into two phenotypes depending
on the type of T helper cell type 1 or 2 (Th1/Th2) cell polar-
ization [58]. The IFN-γ and tumor necrosis factor alpha
(TNF-α) excreted by Th1 cells stimulate macrophages to a
classically activated M1 phenotype, and the Th2 cytokines
including IL-4 and IL-10 can inhibit stimulation of macro-
phages, which are identified as an anti-inflammatory M2
phenotype [59]. The M1 macrophages primarily assist in

phagocytosis, as well as in IL-12-associated Th1 effects,
whereas the anti-inflammatory M2 phenotype performs
Th2 responses and serves in the later phases of tissue repair.
By means of the microenvironmental factors, the M2 pheno-
type is additionally subclassified into M2a, M2b, M2c, and
M2d subtypes. The M2a subtype is notably a profibrotic sub-
set activated via IL-4 and IL-13 [60]. The M2b subtype is trig-
gered by the combined exposure with immune complexes as
well as toll-like receptors (TLR)/IL-1 antagonist [61]. The
M2c subtype is triggered by the IL-10 and TGF-β/glucocorti-
coids that suppress inflammation and promote neovascular-
ization [60]. The M2d macrophages are considered tumor-
associated macrophages (TAMs) due to their involvement
in the tumor growth, angiogenesis, and metastasis [62]. They
are activated by IL-6, TLR, and A2 adenosine receptor (A2R)
agonists and produce higher levels of IL-10, TGF-β, and
VEGF but minimal levels of IL-12, TNF-α, and IL-1β. The
classification paradigm of the M1/M2 axis encounters several
controversies because it is based on the in vitro construction
on stimulating macrophages in culture with a specified set of
factors and hence may miss the in vivo setting of tissue-
specific gene expression programs. For example, in vitro
stimulation of monocytes using macrophage colony-
stimulating factor (M-CSF) or granulocyte macrophage
colony-stimulating factor (GM-CSF) indicates deviation
from the M1/M2 concept, because free fatty acids and high-
density lipoproteins are within such stimuli, which is
specially applicable to the cardiovascular investigators.
Therefore, the classification needs more keen observation on
natural habitats over simply naming according to functions
because they may be changed at different environments [63].

Overall, the earlier investigations with various experi-
mental schemes in different organ systems properly highlight
the unique and opposing role of inflammatory monocytes
and tissue-resident macrophages in the tissue repair and
regenerative process [63]. The critical decisive roles of mac-
rophages from proinflammatory to anti-inflammatory sub-
sets during regenerative response are discussed extensively
in the following section.

2.5. T-Cells.Over the past decade, innate immunity including
the macrophage phenotype polarization has been addressed
as a critical player in the tissue regeneration process. Never-
theless, recent studies indicate that adaptive immunity
including T-cells also performs a central role. The T-cell
types and subpopulations accumulating at the injury site
greatly vary in different tissues. For example, in bone, both
the Th1 CD4+ and cytotoxic CD8+ subpopulations restrict
regeneration. T-cells suppress major histocompatibility com-
plex- (MHC-) derived bone generation in a mouse through
regulating IFN-γ and TNF-α [64]. The investigation in
humans shows that the excretion of IFN-γ and TNF-α results
in delayed osteogenesis and fracture healing [63].

Although the regulatory T-cells (T-regs) have an indirect
role in regulating inflammation induced by injury, they also
act directly through amphiregulin, which is a molecule pro-
duced by different immune cells and plays a central role in
organ development and supports tissue regeneration in the
context of inflammation [65]. The highly accepted reliable
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specific T-reg marker is forkhead box P3 (FOXP3), which is
vital for the maturation and function of T-regs. An excessive
inflammation after tissue injury causes defective tissue heal-
ing and remodeling. T-regs from various tissues are recruited
to the injury site to promote inflammation resolution and
control immunity [66], where they can indirectly modulate
regeneration by regulating neutrophils, stimulating macro-
phage polarization, and controlling T helper cells [67, 68].
Furthermore, T-regs can directly support regeneration via
stimulating local progenitor cells [69]. A recent in vitro study
has highlighted that the activated T-regs facilitate neutro-
phils to excrete anti-inflammatory mediators such as heme
oxygenase-1, indoleamine 2, 3-dioxygenase (IDO), IL-10,
and TGF-β through the preinhibition of IL-6 production,
suggesting that T-regs can modulate inflammation via inhi-
biting neutrophil function [70]. Moreover, T-regs can control
infiltration of neutrophils to the damage site. For example,
removal of T-regs can cause the increase in neutrophil infil-
tration upon cardiac injury and consequently results in a
defective healing process [66]. Many studies have evidenced
that CD4+ T-regs are essential for the repair and regeneration
of various tissues such as skeletal muscle, lung, myocardium,
bone, kidney, and skin [71–75].

2.6. Pro- to Anti-Inflammatory Macrophage Modulation for
Tissue Regeneration. The proinflammatory macrophages
known as M1 macrophages can be polarized into anti-
inflammatory macrophages or alternatively activated M2
macrophages. This M1-M2 macrophage modulation is cru-
cial for scavenging inflammation and promoting tissue
repair. In case if the early inflammation is not regulated,
excessive inflammation can impair the tissue repair process.
Alternatively, an immature early anti-inflammation process
could interrupt the tissue repair and regeneration process.
IFN-γ is an important cytokine involved in the activation of
M1 macrophages. The IL-4 and IL-13 are typical stimulating
factors for inducing the M2 phenotype. Alternatively, the
anti-inflammatory IL-10, intermediates of glucose and lipid
metabolism, prostaglandins, and glucocorticoids, may also
induce the M2-like phenotype. The anti-inflammatory IL-10
plays an essential role in the polarization of macrophages
from proinflammation to anti-inflammation, which boosts
muscle regeneration [76]. Nevertheless, IL-4 is often trans-
mitted as a protein to trigger M(IL-4)-like macrophage
transition. For instance, in an in vivo rat model with
peripheral nerve damage, IL-4 is supplied through the
injectable agarose hydrogels to enhance the number of
M(IL-4) macrophages [77].

Moreover, the controlled delivery of IL-4 supports the
repair of peripheral nerve via M(IL-4) macrophages. Overall,
the release of IL-4 possibly improves tissue repair and regen-
eration in various contexts by inducing M(IL-4) macro-
phages. However, the IL-4 effect on the T-regs still has to
be explored. The T-reg accumulation at the injury site sug-
gests the modulation of macrophage phenotypes, supporting
their contribution to the transition of macrophages through
IL-10 and other regulators. In a previous study, early reduc-
tion in T-regs upon injury fosters NK cells and effector T cells
to produce IFN-γ, resulting in increased inflammatory stim-

ulation of macrophages [78]. Similar to anti-inflammatory
M(IL-4) macrophages, mesenchymal stem cells also play
a regulatory role by switching resident macrophages from
a proinflammatory M(IFN-γ) phenotype to a tissue-
regenerative phenotype [79]. However, the M(IL-4) cells
simultaneously develop an anti-inflammatory microenvi-
ronment that facilitates persistence and growth of both
MHCs and progenitor cells at the injury site, indicating the
existence of a reciprocal helpful feedback relationship among
anti-inflammatory macrophages and pluripotent stem cell
subsets that promotes tissue regeneration [80, 81].

Indeed, impairment in the polarization of M1 to M2
macrophages has been involved in the pathogenic chronic
wounds. In the diabetic wound repair process, activation of
PPAR-γ is critical for the phenotype transition of macro-
phages defected by the steady manifestation of IL-1β in
mouse and human wounds. This causes impaired macro-
phage shifting from M1 to M2, leading to a delayed wound
healing process [82]. The later stage of the wound healing
process involves removal of neutrophils, because the over-
time accumulated neutrophils produce proteases. The over-
produced proteases can deteriorate the complement system,
ECM, clotting factors, immunoglobulins, and cytokines,
which are essential for tissue repair and regeneration. More-
over, they also produce reactive oxygen species (ROS) that
further impair and delay the tissue healing process. Hence,
the clearing of neutrophils is demanded to advance the repair
process into a proliferative stage. The macrophages play a
major role in the removal of neutrophils through apoptosis
and then by phagocytosis referred to as efferocytosis [83,
84]. It is noteworthy that the efferocytosis of neutrophils by
macrophages is a critical element to stimulate modulation
from a pro- to anti-inflammatory phenotype [85, 86]. For
instance, lung macrophages induce the engulfment of apo-
ptotic bodies by the epithelial cells of the lung airway via
insulin-like growth factor 1 (IGF-1) [87]. A recent study
shows that the developmental endothelial locus-1- (DEL-1-)
secreted protein inhibits adhesion of leukocytes and endothe-
lial cells and initiation of inflammation and thus functions in
resolving inflammation. The proresolving action of DEL-1
can be attributed to the efferocytosis via reprogramming
liver X receptor- (LXR-) dependent macrophages to a pro-
resolving phenotype with the help of specific proresolving
mediators [88].

2.7. Metabolisms Linked to Proinflammatory and Prorepair
Functions of Immune Cells. Macrophages are familiar in
embracing the challenging circumstances to fight infection
and promote repair, but their precise energetic needs in this
setting are not fully understood. Nevertheless, the macro-
phages receive their bioenergy via glycolysis or oxidative
metabolism, which can cause various phenotypes. Mitochon-
dria are the powerhouses of immune cells [89]. Metabolic
intermediates not only are a source of energy but also
are directly involved in metabolic switching of phenotypes
of different immune cells including macrophages, neutro-
phils, dendritic cells, T-cells, T-regs, and memory T-cells
(Table 1).
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2.7.1. Glycolysis. The M1 classically activated macrophages
are major regulators of primary defence infections and gain
energy via glycolysis [90], whereas the alternatively activated
M2 macrophages obtain energy from oxidative metabolism
to boost their long-term activities [93]. Indeed, the activation
of M1 macrophages stimulates the glycolysis pathway that
entails glucose uptake and conversion of pyruvate to lactate.
Meanwhile, ROS are produced by impairing the respiratory
chain functions.

The hypoxia-inducible factor 1-alpha (HIF-1α) is a tran-
scription factor that regulates transcriptional programming
of glycolytic metabolism and production of proinflammatory
cytokines for activating M1 macrophages [102]. Moreover,
the accumulated ROS by the impaired TCA cycle following
inflammatory circumstances stabilize HIF-1α and uphold
the M1 phenotype [103]. Similarly, succinate oxidation by
succinate dehydrogenase (SDH) sustains the LPS-mediated
proinflammatory phenotype and triggers IL-1β production
through HIF-1α, which can be shut down by inhibiting gly-
colysis using 2-deoxyglucose (2-DG) [103, 104]. This
response illustrates that the macrophage metabolism not
only provides an energy source but also is involved directly
in the transcription modulation of immune function.
Another metabolite itaconate of LPS-stimulated macro-
phages suppresses inflammation by blocking SDH [105].
However, in HIF-1α-deficient cells, the LPS may be
involved in stimulation of nuclear factor kappa-light-
chain-enhancer of activated B (NF-κB) via a ubiquitous
phosphofructokinase-2 (uPFK2) regulatory enzyme of gly-
colysis [106]. Deactivation of HIF-1α in myeloid cells sub-
stantially reduces the manifestation of glucose transporter
1 (GLUT1) and commencement of glycolytic cascade.
Another glycolytic regulatory enzyme pyruvate dehydroge-
nase kinase 1 (PDK1) is also essential for the HIF-1α in
M1 macrophages [107]. Glycolytic switch takes place
before the oxygen level of mitochondria inhibits respira-
tion, indicating preemptive adaptation that is greatly
related to the physiological event, since inflammatory cells
move down to oxygen gradient. However, with the failure
of HIF-1α, PDK1 inhibition causes defective macrophage
migration. Additionally, the shortage of myeloid cell
prolyl-hydroxylase 2 (PHD2) promotes the anaerobic gly-
colysis in a HIF-1α- and PDK1-dependent manner [108].
In LPS-stimulated cells, glycolysis is ameliorated through
the induction of an enzyme pyruvate kinase isoenzyme
M2 (PKM2) [109]. Alternately, PKM2 translocates into

the nucleus, wherein it interacts with HIF-1α and facili-
tates the expression of HIF-1α-related genes that translate
into glycolytic enzymes as well as inflammatory factors
including IL-1β [109]. It is exciting to observe that the
PKM2 nuclear tetrameric form can rewrite gene expres-
sion profiling of macrophages to obtain ones more like
the M2 phenotype. This reprogramming suggests that the
regulation of HIF-1α indeed can shift proinflammatory
M1 to a proreparative M2 phenotype. Another fascinating
glycolytic enzyme glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) induces glycolysis in the activated immune
cells by binding to messenger RNA (mRNA) that encodes
IFN-γ [110].

Although the effective role of HIF-2α in stimulating alter-
natively activated M2 phenotype is promising, the mecha-
nism remains unclear. HIF-2α perhaps regulates the M2
transcription factor Arg1. However, there is discrepancy over
the role of HIF-2α because it can also stimulate the produc-
tion of IL-1β related to the M1 phenotype [103]. These stud-
ies demonstrate that both the isoforms of HIF-1α and HIF-
2α apparently have redundant and overlaying actions
(Figure 2). Even if one is silenced, the other could not be
capable of compensating. Therefore, there are still major
loopholes in our knowledge on the various functional roles
of isoforms of HIF-1α and HIF-2α.

The prolyl-hydroxylases (PHD) 1-3 are 2-oxoglutarate-
dependent dioxygenase (2-OGDD) enzymes that play a piv-
otal role in the regulation of HIF-1α. The HIF-1α proline
moieties positioned on the oxygen-dependent degradation
domain are hydroxylated by the actions of PHDs. Following
a low oxygen condition or at declined levels of alpha-keto
glutarate (α-KG) or Fe2+, the PHD actions are altered, lead-
ing to HIF-1α or HIF-2α accumulation and translocation to
the nucleus wherein the expression of genes related to metab-
olism of immune cells is regulated [111]. The iron regulatory
proteins (IRPs), namely, IRP2, control the metabolic pro-
cesses by switching glycolysis to OXPHOS in mouse embry-
onic fibroblasts via HIF-1α and HIF-2α [112].

2.7.2. Pentose Phosphate Pathway. Alternatively, the pentose
phosphate pathway (PPP) is also increased in the LPS-
activated macrophages and is essential for the production
of nicotinamide adenine dinucleotide phosphate (NADPH)
required for NADPH oxidase that is crucial for the ROS pro-
duction and nitric oxide (NO) synthesis [103]. The critical
regulatory enzyme of this pathway is a carbohydrate

Table 1: Metabolic pathways in different types of immune cells.

Type of immune cells Metabolism∗ References

M1 macrophages Aerobic glycolysis, PPP [90, 91]

M2 macrophages TCA, OXYPHOS, FA oxidation, amino acid [11, 90, 92–94]

Neutrophils Aerobic glycolysis, PPP [95, 96]

Dendritic cells Aerobic glycolysis, PPP [97, 98]

Activated T-cells Aerobic glycolysis [99]

Regulatory T-cells (T-regs) Fatty acid oxidation [100]

T-memory cells Fatty acid oxidation [101]
∗TCA: tricarboxylic acid; OXYPHOS: oxidative phosphorylation; PPP: pentose phosphate pathway.
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kinase-like (CARKL) protein, also known as sedoheptulose
kinase, which controls the flux of PPP and is greatly
expressed in M2 macrophages [113]. If the CARKL protein
is suppressed, macrophages become more like M1, suggest-
ing the PPP role in the modulation of M1 macrophages.
However, it is still unclear why the M1 macrophages favor
PPP, although the cells exhibit low proliferation capability.
In contrast, the M2 macrophages obtain their energy from
oxidative and fatty acid oxidative metabolisms.

2.7.3. Oxidative Phosphorylation (OXPHOS). The OXPHOS
is involved in the electron gradient that creates a proton
motif force essential for the ATP generation through the
mitochondrial complexes. The M1 macrophages activated
by LPS are found to have a dysregulated Krebs cycle and
OXPHOS pathways [114]. These metabolic transitions sup-
port brisk ATP generation to uphold their phagocytic actions
and supply intermediates to sustain PPP inM1macrophages.
An overexpression of GLUT-1 in M1 macrophages leads to
the increased uptake of glucose, which in turn increases the
numbers of PPP intermediates and reduces OXPHOS
[115]. In contrast, M2 and T-regs favor to procure anti-
inflammation phenotype functions.

The monocytes utilize OXPHOS and glycolysis to fulfill
energy demands that differ based on the immune response
whether anti-inflammatory or resolution phase. The thiore-
doxin 1 (Trx1) reduction of Cys in HIF-1α and Fe-S clusters
is expected to increase the efficiency of oxidative phosphory-
lation and inhibit glycolytic gene expression due to HIF-1α
degradation. Upon stimulation, the M2 macrophages induce
electron transport chain components to perform OXPHOS
and drive pyruvate into the Krebs cycle. The M2 phenotype
can be inhibited by blocking OXPHOS, thereby driving the
M1 macrophage phenotype. Further constraining of oxida-
tive metabolism in the M1 macrophage reinforces the M2
phenotype [106]. Macrophages activated upon exposure with
IL-4 can stimulate the transcription factor signal transducer
and activator of transcription 6 (STAT6), which further
induces protein PPAR-γ-coactivator-1β (PGC-1β) that is

responsible for the induction of mitochondrial respiration
and biogenesis. Along with transcription factors, nuclear
respiratory factor 1 (NRF-1) and estrogen-related receptor
α (ERRα) also can drive the generation of important mito-
chondrial complexes including cytochrome c and ATP syn-
thase [116]. Indeed, the knockdown of PGC-1β ruins the
metabolic M2 macrophage profile and also their functions
[117]. The PPARs especially PPAR-γ and PPAR-δ play a crit-
ical role in sustaining the M2 phenotype via macrophage
galactose-type C-type lectin 1 (MGL-1) and β-oxidation of
fatty acids, respectively [118, 119]. Although the metabolic
variations in macrophages are largely agreed, the switches
that orchestrate distinct phenotypes at the molecular level
remain greatly unclear.

2.7.4. TCA or Citric Acid or Krebs Pathway. TCA is a general
aerobic pathway of mitochondrial respiration in cells. TCA
or the Krebs pathway functions in providing energy as well
as metabolic intermediates including citrate, α-KG, succi-
nate, fumarate, and malate that regulate many cellular
responses via several signaling pathways (Figure 3). An
impaired Krebs cycle has been found in LPS-activated M1
macrophages [114]. The important Krebs cycle intermediate,
namely, citrate, plays a key role in the immuno-metabolic
modulation of immune cells. The higher isocitrate/α-KG
ratio induces downregulation of the transcriptional factor
Idh1 observed in M1 classical macrophages and dendritic
cells [120, 121]. The impaired Krebs cycle and enhanced gly-
colysis flux drive pyruvate, which enters into the Krebs cycle
but is unable to pass citrate/isocitrate. An elevated level of cit-
rate is discovered in mouse macrophages stimulated by LPS
and human macrophages triggered by TNF-α or IFN-γ
[122]. This is in turn associated with the upregulation of
mitochondrial citrate carrier (CIC) and ATP-citrate lyase
(ACLY) via NF-κB in LPS- or TNF-α-induced immune cells.
On the other hand, IFN-γ-stimulated cells induce CIC and
ACLY through STAT1 [123]. The breakdown of the Krebs
cycle and the accumulation of citrate are related to the gener-
ation of crucial proinflammatory mediators in humans

Phagocytosis

ROS

2-
D

G Succinate
PKM2
PDK1 INF-𝛾

LPS
IL-3
IL-4

HIF-2𝛼HIF-1𝛼

HIF-1𝛼

M1
clsassically
activatedIL-1𝛽

Pro-inflammatory
Bacterial killing
Phagocytosis
Migration

Glycolysis
Glut1/Glu3
iNOS

M2
alternatively

activated

IL-1𝛽
TNF-𝛼

Oxidative phosphorylation
Arginase

Figure 2: Regulatory functions of HIF-1α and HIF-2α in M1 and M2 macrophages. HIF-1α modulates the glycolytic pathway of M1
macrophages and inflammatory cytokine production. HIF-2α regulates the alternatively activated M2 macrophages through activating
arginase and oxidative phosphorylation.

8 Research



including prostaglandin E2 (PGE2), NO, and ROS [122, 123].
Intriguingly, the Akt-mammalian target of rapamycin 1
(mTORC1) signaling pathway also regulates the function of
ACLY and protein levels in IL-4-stimulated macrophages
[124]. Alternatively, the accumulated citrate formed by the
key aspect of IDH1 can be utilized to stimulate fatty acids
and acetylation of histone, and the other fate is the generation
of itaconate [125].

Itaconate has recently come under spotlight in the area of
immune cell metabolisms because of its efficient anti-
inflammatory regulator capacity. Upon LPS exposure, the
M1 macrophages largely produce itaconate metabolite in
the Krebs cycle from citrate [105]. The mitochondrial
enzyme aconitase 2 (ACO2) acts on citrate and produces
cis-aconitate [126], which is further decarboxlylated to drive
itaconate by the enzyme cis-aconitate decarboxylase, referred
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to as immune-responsive gene 1 (IRG1). Treatment with
dimethyl itaconate (DMI), a permeable analog of itaconate
in murine bone marrow-derived macrophages (BMDMs)
stimulated with LPS, can downregulate the expression of var-
ious proinflammatory genes along with inducible nitric oxide
synthase (iNOS) and suppress the production of IL-6, IL-18,
IL-1β, ROS, and NO [105]. It has been shown that itaconate
can also prevent the functions of SDH that is mitochondrial
component complex II of the electron transport chain
(ETC) [127] and further inhibit ROS generation by reverse
electron transport (RET) [128]. Although the usage of DMI
provides insights into the regulatory function of itaconate,
there are still some questions that need to be answered, for
example, how the gene silencing of IRG1 and prominent
amount of IRG1 mRNA as well as itaconate synthesis are
enhanced in immune cells. Itaconate also triggers electro-
philic stress and binds with glutathione and consequently
stimulates both nuclear factor erythroid 2-related factor
2- (Nrf2-) dependent [129] and independent reactions. Bam-
bouskova et al. found that this selective electrophilic stress
regulates secondary transcriptional response rather than pri-
mary transcriptional response to activate toll-like receptor
via inhibiting inhibitor of kappa B-ζ (IκB-ζ) protein induc-
tion that is independent of Nrf2 but dependent on a key
mediator activating transcription factor 3 (ATF3) [130].

The key enzyme of the Krebs cycle α-KG plays critical
functional roles in promoting an anti-inflammatoryM2mac-
rophage phenotype while suppressing proinflammatory
responses [131]. The M2 macrophages activate the expres-
sion of an array of scavenging receptors including mannose
receptors that function in identification and phagocytosis of
apoptotic cells. In IL-4-activated M2 macrophages, the
TCA pathway imparts in the production of uridine 5′
-diphospho-N-acetylglucosamine (UDP-GlcNAc), an essen-
tial intermediate necessary for the glycosylation of the man-
nose receptor [120]. In contrast, chemical inhibition of the
OXPHOS pathway enzyme ATP synthase in IL-4-activated
M2 macrophages reduces the functional expression of M2
genes such as Arg1, C-type mannose receptor 1 (Mrc1),
and markers CD206 and arginase-1 [132]. The main cause
of the increased glutaminolysis in the proinflammatory
IL-4-activated macrophages is the high level of α-KG,
resulting in the promotion of the anti-inflammatory M2
phenotype through regulating the histone demethylase
Jumonji domain-containing histone demethylase 3 (Jmjd3)
or T5-methylcytosine hydroxylases (TET). In contrast, in
LPS-activated M1 macrophages, the low level of α-KG
reduces proinflammatory functions. The α-KG represses
the inhibitor of nuclear factor kappa-B kinase (IKKβ) activa-
tion needed for the proinflammatory functions driven
through the NF-κB pathway depending on PHD activity.
These results emphasize the targeting schemes involved in
α-KG production, suggesting a fascinating therapeutic possi-
bility in impaired macrophage-associated diseases.

The alternatively activated M2 macrophages also induce
arginine metabolism through arginase-1 (Arg-1), resulting
in the generation of ornithine, urea, and polyamines that
are crucial for the wound healing functions of M2 macro-
phages [133]. Recently, a key protein TNF-α-induced protein

8-like 2 also known as TIPE2 has been reported, which can
trigger an M2 phenotype through inducing arginine metabo-
lism. Fascinatingly, TIPE2 strives these actions upon long-
term classical stimulation with LPS rather than alternative
activation. Therefore, TIPE2 can be a critical switch that neg-
atively modulates arginine metabolism and rewrites classical
M1 into an anti-inflammatory phenotype. On the other
hand, iNOS is enhanced in M1 macrophages, resulting in
the catabolism of arginine into citrulline and NO that are
important for intracellular killing of pathogens. These results
illustrate that examining the metabolic profiles of macro-
phages can develop more potential therapeutic target in
switching phenotypes.

NO produced in murine macrophages is involved in the
regulation of macrophage phenotypes via TCA cycle modifi-
cations and citrate accumulation. NO inhibits the TCA
enzyme aconitase. Furthermore, the inflammatory macro-
phages reroute pyruvate far away from pyruvate dehydroge-
nase (PDH) depending on NO but not HIF-1α,
consequently promoting glutamine anaplerosis and eventu-
ally leading to the suppression of ETC complexes [135].

2.7.5. Fatty Acid Metabolism. An increased fatty acid synthe-
sis is observed in LPS-stimulated macrophages [136]. Cas-
toldi et al. found that triacylglycerol synthesis promotes the
macrophage inflammation and decreases FA oxidation
[137]. The inhibition of triacylglycerol synthesis significantly
blocks lipid droplet (LD) formation, which further affects the
production of PGE2, IL-6, IL-1β, and phagocytic capability.
A recent report indicated that fatty acids are preferable sub-
strate in prorepair M2 macrophages after cardiac injury
[138]. An increased arachidonic acid metabolism and eicosa-
noid synthesis activated by the cyclooxygenase 2/1 (COX2/-
COX1) ratio, isoform of microsomal prostaglandin E
synthase (mPGE2S), arachidonate 5-lipoxygenase, leukotri-
ene A4 hydrolase, and thromboxane A synthase 1 are
prominent in M1 macrophages. Conversely, COX1 and
15-lipoxygenase are stimulated, whereas the mPGE2S is
inhibited in the M2 macrophage [139]. Moreover, TLRs
also stimulate the production of nonclassical eicosanoids
including resolvins and lipoxins, which support anti-
inflammatory or proresolving activities [140]. An elevated
FA metabolism and corresponding stimulation of PPAR-
α/β/δ in macrophages seem to play a significant role in
switching macrophages into a reparative phenotype. In
humans, M1 macrophages induce glycolysis and result in
the production of proinflammatory IL-6, IL-12, p40, and
TNF-α similar to murines. However, the M2 phenotype
oxidative metabolism and fatty acid oxidation are not pre-
vailed instead of the gluconeogenesis induced by Fbp1
largely involved in macrophages [141]. The key enzyme
fatty acid synthase (FAS) plays a critical regulatory role
in M1 stimulation [142]. This study illustrates that the
FAS is essential for the membrane remodeling, and the
impaired FAS can cause alterations in the plasma mem-
brane composition. The stimulation of FAS by the mito-
chondrial uncoupling protein 2 in macrophages also
intervenes the activation of the NOD-like receptor (NLR)
family pyrin domain containing 3 (NLRP3) inflammasome
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and the subsequent secretion of IL-1β and IL-18 in
response to the LPS stimuli [143]. However, the mechanis-
tic pathways of endogenous and exogenous FAs that
induce inflammasome activation in macrophages are still
unclear. A recent study shows that the saturated fatty acids
rather than unsaturated fatty acids activate the inflamma-
some via increasing phosphatidylcholine levels and thereby
cause suppression of membrane fluidity and subsequent
disruption of Na+/K+ ATPase, which in turn leads to a
K+ efflux [144].

Namgaladze and Brüne reported that in humans, IL-4-
induced macrophages do not stimulate PGC-1β, an essential
transcription factor required to induce fatty acid oxidation.
In murine studies, blockers of fatty acid oxidation have no
impact on the production of M2-type factors such as Mrc1
and CCL18 [145], indicating the principal variances in the
metabolic needs of macrophage phenotype modifications
between humans and mice. The fatty acid oxidation can
indeed regulate the proinflammatory functions of macro-
phages. A recent study shows that larger intracellular levels
of unsaturated fatty acids such as arachidonic acid, oleic acid,
and linoleic acids rather than saturated fatty acids trigger the
generation of IL-1α in foam cells, which in turn causes severe
inflammation [146]. Particularly, the M2 macrophages acti-
vated with IL-4 depend on fatty acid oxidation through
STAT6 and PGC1β and suppress inflammatory responses
[117, 147]. The influence of FA oxidation on M2 macro-
phages is primarily noticed by reducing fatty acid oxida-
tion via regulating AMP kinase, a probe responsible for
metabolic alterations to elevate ATP levels, which in turn
impairs the inflammatory resolution functions of macro-
phages [148].

2.7.6. Amino Acid Metabolism. In recent years, the roles of
amino acids in development and effector actions of immune
cells have been considered especially for immune modulation
[149]. L-Arginine is a crucial amino acid that can modulate
immune cells. In M1macrophages, L-arginine is metabolized
into NO and citrulline by iNOS. In contrast, suppression of
iNOS leads the M1 macrophage metabolic and phenotype
switch towards M2 macrophages. By contrast, in M2 macro-
phages activated with IL-4, L-arginine metabolized by
arginase-1 results in the production of urea and L-ornithine
[90]. Thereafter, it serves as a precursor for the polyamines
and proline that are required for the synthesis of collagen
and tissue remodeling of the M2 macrophage [150]. Gluta-
mine is another nonessential amino acid that significantly
contributes to the polarization of M2 macrophages by acti-
vating the glutamine-UDPN-acetylglucosamine (GlcNAc)
pathway to produce α-ketoglutarate [94]. On the other hand,
succinate produced from the glutamine-dependent aner-
plerosis or γ-aminobutyric acid (GABA) triggers polarization
of M1 macrophages [131]. Glutamine plays an important
role in M2 macrophages by providing almost third portion
carbon to replenish the TCA cycle. In contrast, suppression
of glutamine synthetase swifts M2 macrophages towards
M1 polarization, suggesting its integral role in theM2macro-
phages [151]. However, the current data available on the glu-
tamine metabolism in the regulation of macrophage

phenotypes is largely from in vitro studies. Moreover, how
they modulate the phenotype functions of the human macro-
phage is still unclear.

3. Unfavorable Inflammatory
Microenvironment in Tissue Regeneration

Although the tissue repair and regeneration process critically
involves the resolution of inflammation as well as tight con-
trol of immune response, this process is often dysregulated,
leading to fibrosis and scar formation that disturb tissue
architecture and functions.

3.1. Fibrosis. Fibrosis is a pathological state due to chronic
and uncleared inflammation that triggers the production of
synchronic inflammatory, regenerative, and angiogenic com-
ponents in an uncontrolled manner [152]. Development of
fibrosis ultimately leads to organ dysfunction and death. In
response to the DAMPs and inflammatory factors of macro-
phages during injury, the inflammation and associated func-
tions of fibroblasts will be enhanced to promote their
migration, differentiation, and synthesis activities [153]. In
general, they synthesize new proteins and ECM proteoglycan
constituents to reconstruct a typical tissue structure. An
excessive deposition of ECM during the process of fibrosis
drastically impairs tissue structure and functions [46]. Wynn
and Ramalingam hypothesized that constant stimulation and
sustained mobilization of M(IL-4)-like cells may be involved
in the production of pathological fibrosis [4]. Nonetheless, so
far the majority of studies on fibrosis have engrossed on the
inflammatory functions of macrophages. Murray et al.
demonstrated that serum amyloid P (SAP) inhibits TGF-
β1-induced pathologies including airway inflammation,
apoptosis, pulmonary fibrocyte accumulation, and collagen
deposition, without affecting TGF-β1 level [154]. In addition,
SAP minimizes pulmonary M2 macrophages and enhances
chemokine IP10/CXCL10 expression in a SMAD3-
independent manner.

Fibrosis is predominantly accompanied by the crippled
angiogenesis and persistent generation of local tissue hyp-
oxia. The principal oxygen homeostasis regulator HIF-1α is
instantly associated with the TGF-β1 during fibrogenesis
[155]. Certainly, attenuation of HIF-1α expression signifi-
cantly declines TGF-β1 generation in alveolar macrophages
and impairs the production of bleomycin-induced fibrosis,
substantiating the important role of TGF-β1 in the develop-
ment of fibrosis. However, fibrosis can also be independent of
TGF-β [156], wherein type 2 cytokine, namely IL-13, per-
forms a major role in many cases [157]. The involvement of
macrophages in the production and stimulation of IL-13
cytokine is still unclear because macrophages are thought to
be not a major source of IL-13 [158]. An endoplasmic retic-
ulum (ER) protein, disulfide isomerase containing thiore-
doxin domain 5 (TXNDC5), contributes to fibrogenesis by
stimulating TGF-β1 signaling cascade through binding and
stabilizing lung TGFBR1. Furthermore, activation of
TGF-β1 upregulates TXNDC5 through an ER stress/ATF6-
dependent regulation of lung fibroblasts [159]. A transcrip-
tion factor JUN plays a crucial role in the lung fibrogenesis
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by increasing the expression of CD47, programmed death-
ligand 1 (PD-L1), and IL-6. The inhibition of CD47, PD-
L1, and IL-6 reverses fibrosis by enhancing phagocytosis of
fibroblasts and removing suppressive functions on the adap-
tive immune system [160]. The oxidative stress-induced
hepatocyte premature senescence implicated in liver fibrosis
is attenuated by IGF-1 via promoting cytoplasmic Akt1-p53
interaction, which in turn blocks nuclear p53-progerin
(farnesylated mutant lamin A protein) interaction [161].
A bioactive chitosan hydrogel prepared with immobilizing
the C domain of IGF-1 peptide (IGF-1C) and adipose-
derived mesenchymal stem cell (ADSCs) cotransplantation
against ischemic kidneys attenuates fibrosis and amelio-
rates renal functions [162]. Therefore, IGF-1 embracing
paracrine effects may be a promising therapeutic target
to reduce fibrosis. Perhaps, the activated macrophages trigger
fibrosis by producing cytokines that stimulate fibroblasts to
produce collagen and ECM. The activated profibrotic mye-
loid cells solely express folate receptor β. The folate-
targeted TLR7 agonist (FA-TLR7-54) rewrites M2 similar
cells that produce fibrosis cytokines. This results in the sup-
pression of profibrotic cytokine secretion, biosynthesis of
hydroxyproline, deposition of collagen, and consequent
expansion of alveolar airspaces [163]. One challenge for the
regenerative investigators is to regulate phenotypes of fibro-
blasts and mesenchymal cells that orchestrate tissue regener-
ation. In this regard, novel strategies using biomaterials
enriched with growth factors, stem cells, and decellularized
ECM scaffolds can significantly improve the quality of regen-
erated tissues.

3.2. Chronic Inflammation. Chronic inflammation is charac-
terized by the prolonged response to inflammatory signals
involved in continuous recruitment of lymphocytes, mono-
cytes, and macrophages with neovascularization as well as
connective tissue proliferation. Chronic inflammation sus-
tains tissue remodeling and impairs tissue functions in sev-
eral diseases. It is evident that the resolution phase of
inflammation encompassing the control of extravasation of
immune cells, regulation of production of chemokines and
cytokines, shutdown of signaling pathways connected to leu-
kocytes, and succeeding leukocyte removal via efferocytosis
after an injury is essential to restore tissue homeostasis. How-
ever, an impaired resolution of inflammation causes chronic
inflammatory diseases such as colitis and asthma and is also
involved in immutable tissue damage as well as enhanced risk
for the development of cancer, osteoporosis, and cardiovas-
cular diseases [164–166]. Unlike the acute inflammation that
is initiated by the DAMPs and PAMPs, the systematic
chronic inflammation is classically triggered by DAMPs in
the absence of PAMPs [167, 168]. Therefore, the develop-
ment of drugs and therapies is chronically weighed on anti-
inflammatory steroids, nonsteroidal anti-inflammatory
drugs (NSAIDS), and furthermore targeted strategies includ-
ing TNF monoclonal antibodies.

In this review, we insinuate that novel approaches that
mitigate the negative functions of inflammation in a tissue
microenvironment may allow constructive functions in the
immune response. Another systematic emerging idea is to

regulate the polarization of immune response, and the con-
temporary data also indicate that modulating the entry port
of inflammatory cells could be one scheme, although macro-
phages may also activate matrix metalloproteinases (MMPs)
and other degenerative enzymes to affect ECM. Several types
of MMPs are involved in the clearance of fibrosis, but some
others function in the development of fibrosis. The chronic
inflammation-associated molecular composition of diseases
and current therapies are reviewed in detail in the following
section.

4. Chronic Inflammation-Associated Diseases
and Therapies

4.1. Myocardial Infarction (MI). MI is a type of acute coro-
nary syndromes caused by acute and persistent ischemia
and hypoxia [169] and has recently become one of the lead-
ing causes of death and disability. In recent years, the clinical
therapeutic methods of MI mainly contain pharmaceutical
therapies for thrombolysis, antiplatelet and antihypertension,
and interventional therapies such as percutaneous coronary
intervention (PCI) and coronary artery bypass grafting
(CABG) [170]. Longer time of coronary artery blockage leads
to a larger area of irreversible myocardial necrosis and finally
death. Therefore, the patients with acute MI should be
treated with thrombolysis as soon as possible to make the
infarcted blood vessels reopen completely and continuously
for saving the dying myocardium, preserving the cardiac
function, and reducing mortality [171]. Thrombolytic drugs
include streptokinase, urokinase, and recombinant streptoki-
nase. Urokinase is widely used due to the absence of antige-
nicity, definite curative effect of turning plasminogen into
plasmin to degrade fibrin and dissolve thrombus, and conve-
nient application without a skin test [172]. Compared to the
conservative and single pharmaceutical therapies, interven-
tional therapies are universally considered more effective
MI reperfusion methods for further reducing mortality from
10% to 5% [173]. However, the slow flow/no-reflow phenom-
enon occasionally occurring after the interventional thera-
pies leads to ineffective treatments, which remains a
challenge and difficulty due to its undefined mechanism
[174]. Advances have been achieved recently in the possible
mechanisms that are related to the fracture and shedding of
the thrombus tissue during the mechanical compression of
the balloon or stent, resulting in microvascular damage,
microcirculation embolism, microvascular spasm, reperfu-
sion injury, inflammation, release of ROS, and/or swelling
of cardiomyocytes [175]. To deal with this phenomenon, pre-
operative and intraoperative application of some drugs such
as tirofiban, alprostadil, and nitroprusside together with a
thrombus aspiration device makes much sense for inhibiting
microcirculation embolism and promoting microvascular
expansion to some degree [176–179].

Considering that the clinical therapeutic methods still
have some limitations in irreversible myocardial necrosis
and declined cardiac function, other effective regeneration
medicine strategies including stem cell therapy [180, 181]
and regenerative biomaterial (such as nanoparticles, patches,
scaffolds, and hydrogels) therapy have been developed
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recently. In particular, the ROS-responsive biomaterials play
an important role in the tissue microenvironment and regen-
eration [182]. For example, implantation of thioketal-
(PUTK-) based ROS-responsive polyurethane patches
loaded with glucocorticoid methylprednisolone (MP)
improved significantly the reconstruction of functions of
the myocardium including elevated ejection fraction,
reduced infarction size, and increased revascularization in
MI rats [183].

Inflammation participates in and plays a key role in the
pathophysiological process of heart damage, repair, and
regeneration after MI [184–186], which provides a basis
and guidance for regenerative medicine strategies. Generally,
initial ischemia and hypoxia after MI result in massive cell
apoptosis, and the released DAMPs jointly induce acute
inflammation in the tissue microenvironment [187]. Then,
the immune cells such as neutrophils and macrophages are
recruited successively to secrete more inflammatory factors
such as TNF-α, IL-6, and IL-1β, which further exacerbate
the inflammation and abnormal ventricular remodeling in
the MI area [21]. Stem cells are a type of cells with high plas-
ticity and self-renewing ability and are applied in a large
number of clinical studies. Efficiency of stem cell therapies
in MI is mainly based on two hypotheses: differentiation into
myocardial tissue-related cells such as cardiomyocytes and
paracrine effect. Lee et al. injected 2 million ADSCs into the
coronary artery in a pig MI model [188]. The ADSC treat-
ment group could increase the capillary density and reduce
the infarction area to improve the final cardiac function,
likely due to the differentiation of ADSCs into vascular endo-
thelial cells instead of cardiomyocytes. Gnecchi et al. found
that implanted bone marrow-derived mesenchymal stem
cells (BMSCs) are able to activate endogenous stem cells
and promote the proliferation of original cardiomyocytes
through a paracrine effect to achieve the inhibition of MI
[189]. However, simple injection of stem cells faces some
inevitable problems such as low cell retention, time-
consuming cell preparation, and potential allogeneic
immune response [190]. Hao et al. fabricated an injectable
fullerenol/alginate hydrogel loaded with ADSCs for cardiac
repair [180]. They found that fullerenol nanoparticles can
scavenge excessive ROS to reduce microenvironment inflam-
mation and then improve the survival capacity of ADSCs,
which are beneficial for increased vascularization and cardiac
function. Moreover, the direct usage of noncell regeneration
medicinal biomaterials having a property of modulating the
MI inflammatory environment presents a greater potential
and convenience for MI treatment. Han et al. synthesized
graphene oxide (GO) particles of 150 nm loaded with IL-4
plasmid DNA (IL-4 pDNA) to treat MI [191]. The GO parti-
cles can reduce inflammation as an antioxidant, and the IL-4
pDNA increases the ratio of anti-inflammatory M2 macro-
phages to inflammatory M1 ones, leading to significant myo-
cardial repair. Fan et al. prepared a glutathione- (GSH-)
modified collagen hydrogel loaded with recombinant protein
glutathione-S-transferase- (GST-) TIMP-basic fibroblast
growth factor (bFGF) [192]. TIMP is a peptide PLGLAG that
can respond to upregulated MMP-2/9 and break to release
GST and bFGF on demand, which inhibits the degradation

of ECM byMMP-2/9 and contributes to the final vasculariza-
tion and MI repair.

In summary, the most clinically used treatment for MI is
PCI therapy together with thrombolytic drugs and a throm-
bus aspiration device for better reperfusion efficiency. Con-
sidering the limitations of irreversible myocardial necrosis
and declined cardiac function of clinical methods, regenera-
tive biomaterial therapies deserve more attention.

4.2. Atherosclerosis. Atherosclerosis is a chronic inflamma-
tory vascular disease, characterized by lipid deposition and
fibrosis underneath the inner wall of vessels, which may
result in serious clinical symptoms such as sudden cardiac
death, acute myocardial infraction, and stroke [193].
Atherosclerosis-related inflammation is associated with
immune activation and induction of inflammatory mediators
and signaling pathways [194]. The formation of atherosclero-
sis is a continuously changing process, and the pathological
development progress mainly includes three stages. The
inflammation plays an important role in all stages of the ath-
erosclerotic process (Figure 4(a)) [195]. In the first stage, the
accumulation of low-density lipoprotein (LDL) on the arte-
rial wall takes place and further passively diffuses via endo-
thelial cell (EC) junctions, leading to pathological intimal
thickening [196]. In the nascent atheroma, monocytes can
be observed adhering to the surface of the endothelium.With
time prolongation, the monocytes pass through the endothe-
lial monolayer to the intima, where they proliferate and dif-
ferentiate into macrophages and foam cells (Figure 4(b)).
Macrophages in the atheroma may also have the characteris-
tics and probably the antigen-presenting functions. During
atherogenesis, the smooth muscle cells (SMCs) migrate from
the media into the intima and produce ECM molecules such
as collagen and elastin (Figure 4(c)). Then, the fibrous cap
ruptures to trigger thrombus. Therefore, the therapies of ath-
erosclerosis in its early stage play an important role in slow-
ing down the lesions and saving the lives of patients.

The promising therapeutic strategies include nonspecific
anti-inflammatory drugs such as allopurinol, colchicine,
methotrexate, and aspirin; biologic therapies targeting che-
mokines and cytokines such as tumor necrosis factor inhibi-
tors and IL-1 neutralization; and small-molecule enzyme
inhibitors such as phospholipase inhibitors and antileuko-
trienes, as well as targeting of inflammatory signaling path-
ways (inhibition of NADPH oxidase, p38 mitogen-activated
protein kinase (MAPK), or phosphodiesterase) [197]. Simul-
taneously, medications to lower lipid, anticoagulation, hyper-
tension control, and prevention of thrombosis as well as
antiplatelet drugs are used as routine treatments for anti-
atherosclerosis [198].

However, severe atherosclerosis always induces a large
area of lumen occlusion, which requires surgical intervention
such as the technique of percutaneous coronary intervention
(PCI) or coronary artery bypass grafting (CABG) surgery
[199]. Considering that stents are unsuitable for those with
small or tortuous vessels or lesions at vessel bifurcation and
high risk of restenosis, their widespread use may be limited.
CABG surgery is the standard of care for patients, having
the better long-term patency and showing a reduction in
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morbidity andmortality compared to PCI.However, themor-
tality, duration of operation, and risk of sternal wound prob-
lems are reported for this type of graft [200]. Both carotid
endarterectomy (CEA) and carotid artery stenting (CAS) are
the standard treatment for carotid atherosclerosis [201].

Nanocarriers or polymer-based therapeutics used in the
context of atherosclerosis treatment have been widely
reported, which can overcome the limited efficacy and plenty
of side effects related to the existing strategies based on con-
ventional drug delivery systems [202]. Inflammatory signal-
ing plays an important role in atherosclerosis and is one of
the most promising targets for the nanosystems. For exam-
ple, the ROS-responsive PEG-b-PPS micelles are used as a
smart drug delivery system to treat atherosclerosis, which
not only quickly release the encapsulated drug and rographo-
lide but also consume ROS by themselves. The micelles can
simultaneously decrease the inflammatory response and
ROS level to treat atherosclerosis (Figure 5(a)) [203]. More-
over, by taking the physicochemical and biological character-
istics of thrombus, fibrin-targeted and H2O2-responsive
nanoparticles have been developed (Figure 5(b)) [204]. A
fibrin-targeted imaging and antithrombotic nanomedicine
(FTIAN) can target fibrin specifically to image thrombus,
scavenge H2O2, and prevent platelet activation, which can
reduce the formation of thrombus. Consequently, the inflam-
matory response biomaterials combined with different drugs
can be a more effective antiatherosclerotic therapy and
deserved further study.

4.3. Inflammatory Bowel Disease. Inflammatory bowel dis-
ease (IBD) is a chronic inflammatory disorder of the gastro-
intestinal tract, which can be divided into chronic relapsing
inflammatory disorders (Crohn’s disease) and ulcerative
colitis. IBD is considered an inappropriate and continuing
inflammatory response to commensal microbes in a geneti-
cally susceptible host [205]. Nonsteroidal anti-inflammatory
drugs and corticosteroids as well as immuno-suppressive
and immuno-regulatory agents such as methotrexate, azathi-
oprine, and its metabolite 6-mercaptopurine are used to cure
IBD, aimed at reducing intestinal inflammation and immune
system hyperresponsiveness [206]. Besides, a selective TNF-α
blocker, the monoclonal antibody infliximab, is considered a
major advance in IBD therapy [207]. Conventional oral for-
mulations are limited for use in IBD due to the adverse effects
and toxicity following distribution of drug among the body
[208]. Compared with the conventional agents, small interfer-
ing RNA (siRNA) can effectively alleviate IBD progression
and promote intestinal mucosa recovery through precise reg-
ulation of the expression of proinflammatory cytokines
related to IBD [209]. Nanoparticle delivery systems for siRNA
confer stability of RNA during delivery in vivo, and the nano-
particles with ligand modification can target macrophages in
the inflamed intestinal mucosa [210] (Figure 6).

For the treatment of IBD, nanoparticles show special
advantages including protecting drugs and increasing drug
release/retention at diseased sites. The nanoparticle delivery
systems include liposomes and polymer-based nanoparticles
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[210]. For instance, a kind of nanoparticles formulated from
ROS-responsive poly(1,4-phenleneacetonedimethylene thio-
ketal) (PPADT) is synthesized [211]. The NPs successfully

release loaded TNF-α-siRNA that knocks down the proin-
flammatory cytokine TNF-α in response to the high ROS
level in the inflammatory gut region. A nanosystem designed
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based on Tempol (Tpl) and a biocompatible β-cyclodextrin-
derived material (Tpl/OxbCD NP) was reported [212]. This
nanomedicine is stable in the gastrointestinal tract and can
effectively scavenge multiple components of ROS and selec-
tively release Tpl in the inflamed intestinal tissues. Another
pH and ROS-sequential responsive nano-in-micro compos-
ite for targeted therapy of IBD can selectively release rifaxi-
min (an intestine-specific antibiotic, RIF) to the inflamed
tissues [213].

4.4. Chronic Diabetic Wound.Millions of people get diabetes
worldwide, and about 25% of them suffer from diabetic foot
ulcer (DFU), which is a typical chronic wound and can lead
to amputation [214]. Common acute wound caused by
mechanical factors can heal naturally via a series of continu-
ous and overlapping physical stages such as haemostasis,
inflammation, proliferation, and remodeling [215]. But the
chronic wound can hardly recover because of its abnormal
wound microenvironment. The chronic wounds are con-
firmed by persistent inflammation, impaired angiogenesis
and epithelialization, disordered cytokine/growth factor
secretion, and excessive degradation of ECM, which delay
the normal progression of wound healing [216]. The com-
mon features of the chronic diabetic wounds are high level
of ROS [217], formation of bacterial biofilms [218], excessive
neutrophil infiltration [219], and the maladjustment of the
number of different macrophage phenotypes in the wound
[62]. Aimed at these symptoms in diabetic wounds, various
strategies have been developed to adjust the chronic inflam-
mation and accelerate skin regeneration.

The nanoparticles have been extensively used for wound
healing, which may have different functions such as anti-
infection, antioxidant, immunoregulation, and controlled
release of drugs/cytokines/genes [220]. Qiao et al. prepared
copper sulfide nanodots that can eradicate multidrug-
resistant bacteria owing to the photothermal effect [221].
Meanwhile, the controlled release of copper ions can acceler-
ate wound healing by promoting fibroblast migration and
endothelial cell angiogenesis. The excessive ROS in chronic
wounds lead to severe damage to nucleic acids and proteins
[222]. Liu et al. developed a simple and efficient one-step
way to get ultrasmall Cu5.4O nanoparticles. This nanoparticle
has multiple enzyme-mimicking properties and can scavenge
broad-spectrum ROS, which is beneficial to wound healing
[223]. Gan et al. prepared a kind of konjac glucomannan-
modified SiO2 nanoparticles with immunoregulation func-
tion, which can reduce the inflammation level and promote
wound healing by inducing macrophages to differentiate
into M2 phenotypes in situ [224]. This material provides a
new endogenous regulation method to treat diabetic wound
without adding drugs or exogenous M2 phenotype macro-
phages. Due to their unique biochemical characteristics,
lipid-based vesicles are applied to the constructions of an
advance drug delivery system. A recent study indicates that
dexamethasone-loaded liposomes can achieve local delivery
to primary human macrophages, induce an anti-inflamma-
tory/proresolution phenotype, and promote diabetic wound
healing [225].

Hydrogels are three dimensional networks of hydrophilic
polymers filled with water [226]. Due to their high hydration
(similar to native ECM), tunable properties, and porous
architecture, they are highly recognized in biomedical appli-
cations [227]. A gelatin methacryloyl- (GelMA-) based adhe-
sive hydrogel for the local delivery of miR-223 5p mimic
(miR − 223 ∗) encapsulated in hyaluronic acid- (HA-) based
nanoparticles was developed [228]. This hydrogel delivery
system with miR − 223 ∗ efficiently promotes the formation
of uniform vascularized skin at the wound site, which is
mainly due to the polarization of macrophages to the
M2 phenotype. Zhao et al. prepared a multifunctional
hydrogel (PDA@AgNPs/CPHs) withmany desirable features,
including antibacterial property, tunable mechanical and
electrochemical properties, repeatable adhesiveness, good
processability, and self-healing ability [229]. This hydrogel
shows a significant effect on promoting angiogenesis, acceler-
ating collagen deposition, inhibiting bacterial growth, and
controlling wound infection in a diabetic wound healing ani-
mal test. Besides, this conductive hydrogel is a biocompatible
detector that can monitor movements of the human body in
real time. Xiao et al. designed an antioxidant thermorespon-
sive citrate-based hydrogel (H-HKUST-1) embedded with
copper metal organic framework nanoparticles, which can
decrease toxicity of copper ion and accelerate diabetic wound
healing [230]. The animal test result shows that the
H-HKUST-1 hydrogels can induce angiogenesis, collagen
deposition, and reepithelialization during wound healing.

Electrospinning technology provides a convenient and
direct approach to prepare scaffolds consisting of microfi-
bers/nanofibers [231]. Various types of electrospun fibers
such as core-shell structure [232] and hollow [233] structure
have been prepared so far. Since the microfibers/nanofibers
possess a high specific surface area and a highly porous 3D
network, the electrospun nanofiber scaffolds have a well
interaction with cells [234]. Different chemical structures
and modifications also endow the fibers with plenty of func-
tions [235]. Augustine et al. reported the development of
electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) membrane incorporated with cerium oxide nano-
particles (nCeO2) for diabetic wound healing application
[236]. The nCeO2-PHBV membranes can enhance cell
proliferation and vascularization to promote the healing
of diabetic wounds. Liu et al. prepared a kind of electrospun
thioether-grafted hyaluronic acid nanofibers (FHHA-S/Fe)
that can form a nanofibrous hydrogel in situ on the
wound, which combine the advantages of both hydrogel
and nanofibers [237]. The in vivo test shows that this
material can synergistically modulate the inflammation
microenvironment to help diabetic wound healing by scav-
enging ROS effectively in the early inflammation phase
and promoting transformation of the gathered M1 macro-
phages to the M2 phenotype.

Dysfunction of HIF-1α is one of the reasons that hinder
the healing of diabetic wound [238]. Gao et al. prepared
poly(ε-caprolactone)/type I collagen electrospun nanofiber
wound dressings loaded with dimethyloxalylglycine
(DMOG), which can stabilize HIF-1α by inhibiting its degra-
dation [239]. The in vivo test shows that the DMOG-loaded
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nanofibers can improve diabetic wound healing by accelerat-
ing reepithelialization, angiogenesis, and wound closure.

The electrospun fibers can also be applied to deliver pep-
tides. Liraglutide (Lira), a GLP-1R receptor agonist, has been
reported to promote the angiogenic ability of endothelial cells
[240]. Yu et al. prepared a poly(lactide-co-glycolide)/gelatin
(PLGA/Gel) nanofibrous membrane that achieves controlled
release of liraglutide [241]. The PLGA/Gel/Lira can shorten
wound closure time and increase blood vessel density, colla-
gen deposition, and alignment, efficiently improving the
healing process of diabetic wounds.

In summary, the recent studies show that more and more
biomaterials for diabetic wound healing attach importance to
wound microenvironment adjustment, including the regula-
tion of inflammation, cytokines/nucleic acids, phenotypes of
macrophages, and elimination of excessive ROS/reactive
nitrogen species (RNS). Instead of delivery of drugs or
growth factors directly, a suitable wound microenvironment
can activate the natural wound healing process correctly,
which involves a series of exquisitely complex physiological
activity.

4.5. Osteoarthritis. Osteoarthritis (OA) is a whole joint dis-
order that involves structural changes in hyaline articular
cartilage, subchondral bone, ligaments, capsules, synovium,
and muscles around the joints [242], which is the most
prevalent joint disease afflicting millions of wordwide peo-
ple [243, 244]. Accumulating research results indicate that
chronic low-grade inflammation is the key to the patho-
logical process and symptoms of OA [245], instead of
the traditional view that osteoarthritis is only a degenera-
tive disease. The pathogenesis of osteoarthritis is quite
complicated, including many factors such as mechanics,
inflammation, and metabolism [242].

In OA joint tissue and synovial fluid, not only are the
levels of plasma proteins, complement components, and
cytokines abnormally high but also the chondrocytes and
synovial cells are activated to overproduce redundant inflam-
matory mediators [246] such as IL-1 and TNF-α, prostaglan-
dins, NO, and much too high concentration of ROS [247].
The overexpressed inflammatory mediators in response to
joint structural breakdown alter metabolism and differentia-
tion behaviors of chondrocytes, inducing secretion and acti-
vation of MMPs [248] and aggrecanases [249], both of
which can degrade the ECM. The abnormality of a variety
of cells and inflammatory mediators worsens the inflamma-
tory microenvironment of osteoarthritis, disrupts the
dynamic balance in the joints, and might eventually lead to
joint failure.

Nonsurgical therapies such as physical treatment, anti-
inflammatory drugs, analgesic or chondroitin sulfate supple-
mentation, and local injection of sodium hyaluronate are
firstly adopted to temporarily alleviate pain and relieve
symptoms for the early OA [242], which are difficult to
inhibit the progress of the disease and completely repair the
damaged cartilage. Early diagnosis and timely treatment of
OA play critically important roles in delaying the onset and
progression of severe OA, of which the treatments have to
rely on surgical interventions [243, 244] such as joint replace-

ment, marrow stimulating techniques, and joint debride-
ment. Since all of these surgical procedures have defects,
tissue engineering has led to the development of more
advanced regenerative techniques [250]. Emerging treat-
ments combined with biologicals, ranging from growth fac-
tors, blood derivatives, and genes to stem cells or
chondrocyte transplantation and stem cell-derived exo-
somes, are advocated as the promising tools, which make a
difference in regulating immune function, lowering inflam-
matory mediators, and thus reducing joint damage and pro-
moting cartilage regeneration [251, 252].

Various types of biomaterials including hydrogels
[253–255], nanoparticles [256–260], electrospun membranes
[261], 3D printed materials [262], drug or bioactive factor
carriers, and tissue engineering scaffolds have been applied
for the treatment of OA. In particular, the hydrogel has been
deemed as an attractive option, attributed to the capabilities
to stimulate the ECM environment and to incorporate bioac-
tive molecules and drugs as well as the convenience of han-
dling and minimally invasive repair of cartilaginous tissues
via adjusting chemical structure, injectability, and crosslink-
ing properties [263]. Madry et al. have prepared an injectable
hydrogel based on thermosensitive poloxamers, which is
loaded with and able to release a therapeutic recombinant
adeno-associated virus (rAAV) vector overexpressing the
chondrogenic SRY-box transcription actor 9 (SOX9) in full-
thickness chondral defects [253]. The hydrogel-virus com-
plex is applied in a clinically relevant minipig model
in vivo, which may represent a major step towards improved
cartilage repair in the near future. Besides, the hydrogel scaf-
folds with the capabilities to promote cartilage tissue repair
based on regulating the cartilage microenvironment present
a novel perspective for cartilaginous tissue regeneration. Feng
et al. have fabricated an aggrecanase-1 cleavable hydrogel
conjugated with N-cadherin mimetic peptides HAV-
DIGGGC to mediate the degradation of hydrogels and cell-
cell interactions of encapsulated BMSCs, thus achieving a
better regeneration of osteochondral defects [254].

The intra-articular treatment systems in virtue of inject-
able hydrogels and nanobiomaterials provide effective long-
term symptom relief and disease-modifying properties via
enhancing whole joint retention and regulating the OA
inflammatory microenvironment, especially for the manage-
ment of the early or midstage OA [264]. For instance, Jin
et al. have developed a hyaluronate acid-based injectable
hydrogel physically mixing epigallocatechin-3-gallate to
scavenge ROS, which inhibits inflammation and enhances
cartilage regeneration [255].

Recently, nanoparticles have been modified through
active and passive targeting strategies to facilitate localization
and interactions with specific joint tissues such as cartilage
and synovium [265]. In this way, the therapeutic system
based on nanoparticles with the capabilities of regulating
the OA microenvironment can intelligently enter the tar-
geted cells and thereby efficiently suppress inflammation
and delay the progression of OA. Li et al. have demonstrated
that polyethyleneimine-modified mesoporous silica nano-
spheres can successfully bring hyaluronan synthase type 2
into synoviocytes to synthesize endogenous HA with high
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molecular weight and downregulate the synovial inflamma-
tory mediators in the OA microenvironment, hence promot-
ing the self-repairing mechanism and putting forward a
totally different method for OA management [258]. Chen
et al. designed a novel MMP-13/pH-responsive and
cartilage-targeting ferritin nanocages encapsulating hydroxy-
chloroquine for OA imaging and therapy, which can smartly
monitor the overproduced MMP-13 in OA and release
hydroxychloroquine induced by weak acid. Such theranostic
nanoplatform holds promise for smart and precise OA clini-
cal application [259]. In addition, specifically targeting and
regulating macrophages are other crucial sources of inflam-
matory responses in OA joint, representing a fresh trend
towards therapeutic platform construction. Liang et al. have
fabricated a multifunctional anti-inflammatory drug delivery
system based on a carbonic oxide (CO) release molecule
loaded in peptide dendrimer nanocages, the surfaces of
which are wrapped with folic acid- (FA-) modified HA
[261]. The system can be smartly delivered into activated
macrophages via FA- and HA-mediated specific targeting
effects and then rapidly release CO by depleting hydrogen
peroxide to inhibit the expression of IL-1β, IL-6, and TNF-
α, thus to inhibit the degradation of articular cartilage ECM.

In summary, OA is still an incurable joint disease. The
ever-improving biomaterial-based OA therapeutic platforms
have been designed to effectively regulate the OA inflamma-
tory microenvironment to suppress the secretion of inflam-
matory mediators, relieve symptoms, and promote joint
tissue repair and regeneration, which turns out to be highly
efficient options for OA management. Besides, the emerging
therapies via targeting and regulating the key inflammatory
cells to improve the OA microenvironment provide new
insight into OA management and hold promise on the pre-
cise treatment of every stage of OA.

4.6. Acute Lung Injury (ALI). Inflammation is the body’s
defence against internal and external harmful stimuli. How-
ever, uncontrolled inflammation can injure cells, tissues,
and organs and cause damage to the body [266]. Acute lung
injury (ALI) is diffuse alveolar damage induced by excessive
inflammatory response, which may further develop into
acute respiratory syndrome (ARDS) and thereby threaten
to life health if not timely treated [267, 268].

Various internal and external injury factors such as tissue
necrosis, bacteria, and viruses can cause damage to epithelial
cells of alveoli. The macrophages in alveoli will recognize
these factors and release inflammatory mediators such as
TNF-α and IL-1 that can activate capillary endothelial cells
and recruit white blood cells (WBCs) such as neutrophils
and monocytes from the blood vessel and bone marrow to
the inflamed tissue [269]. The activated endothelial cells will
overexpress intercellular adhesion molecular-1 (ICAM-1)
that can bind to integrin expressed on WBCs’ membrane
and then help WBCs migrate and adhere onto the vascular
wall. Meanwhile, endothelial cells will shrink under the stim-
ulation of inflammatory mediators, leading to the increase in
vascular permeability [270], followed by the WBCs and pro-
tein edema fluid exuding to the alveoli. More WBCs will
gather in the inflammatory site because of chemotaxis and

are activated by the inflammatory mediators. Furthermore,
the activated WBCs will take the phagocytosis role and
release ROS and lysosomal enzymes to kill and degrade the
pathogens. If the pathogens cannot be eliminated in a short
time, the WBCs will not stop to migrate to the infected tissue
and release more ROS and lysosomal enzymes not only
within the cells but also outside cells, resulting damage to
normal lung tissue and cells. Therefore, there are high levels
of cytokines and chemokines such as ROS, lysosomal
enzymes, TNF-α, IL-1, and more WBCs especially neutro-
phils in the ALI microenvironment.

There are no effective methods to treat ALI at present,
because the available drugs with a high dose are poorly tar-
geted to the lung and thus bring side effects on other organs
[271]. When ALI is caused by bacteria or viruses, antibiotics
and antiviral drugs are widely used in clinic. However, the
multidrug-resistant bacteria and new viruses (such as
SARS-CoV-2) are huge challenges [272, 273]. Apart from
symptomatic treatment, supportive care is also important
for recovery, including lung protection ventilation, nutri-
tional support, and fluid management [274]. Therefore,
anti-inflammatory therapy for pneumonia and lung injury
is a necessary and effective method.

Nowadays, the drug delivery systems (DDS) that respond
to the ALI microenvironment have attracted much concern
[275]. Wang et al. used 4-(hydroxymethyl) phenylboronic
acid pinacol ester-modified alpha-cyclodextrin (Oxi-alpha
CD) as a carrier to obtain a kind of ROS-responsive moxi-
floxacin- (MXF-) loaded nanoparticles, which release MXF
triggered by H2O2 and are effective in a mouse model of pul-
monary P. aeruginosa infection [276]. Zhang and his
coworkers developed an acid-sensitive nanoparticle to target
inflamed lungs. The nanoparticle is composed of a low
pH-sensitive polymer, poly(beta-amino esters), as a core
for drug loading and controlled release, and its surface is
modified with anti-ICAM-1 antibodies for targeting the
lung. This kind of nanoparticles can target the inflamed
site and release the loaded drug, reducing inflammation
in an ALI mouse model [277]. Ma et al. provided a DDS
that can not only responsively release drug but also have
diagnosis property. The anti-inflammation drug predniso-
lone is conjugated to a two-photon AIE bioimaging com-
pound via ROS-responsive linker, which is further
encapsulated into a core-shell micelle. The micelle is com-
posed of an amphipathic polymer that can release the drug
through hydrophobic-to-hydrophilic transition of the core
triggered by ROS [278]. In addition, our lab also prepared
PPADT nanoparticles loaded with FK-506, which can sup-
press the lung inflammation caused by PM 2.5 [279].

The polymer-based DDS has good targeting property,
which can reduce dose and side effects to drugs. Further-
more, the stimulus responsiveness enables the drugs to be
released in a controlled manner and also eliminates inflam-
matory mediators in the lesion site, offering a promising
therapy for the treatment of ALI.

4.7. Inflammatory Disorders of the Central Nervous System.
The inflammatory-related diseases of CNS include a wide
spectrum of inflammatory or autoimmune disorders of
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CNS distinguished by the immune-mediated tissue injury
and existence of inflammatory infiltrations in the brain and
spinal cord [280, 281]. The brain injury milieu is allied with
immune reactions, i.e., the activation of innate immunity
comprised of resident monocytes, astrocytes, and microglia
as well as released cytokines and chemokines, and recruited
macrophages, granulocytes, and lymphocytes from circula-
tion. Although convincing evidence suggests that the adap-
tive immune cells are activated by the native antigen
recognition, the consequent multiplication and clonal
development are highly absent. The acute and chronic
inflammatory brain disorders are predominated by the
class I MHC-restricted CD8+ T-lymphocytes [282]. At
later stages, astrocytes turn up in a reactive state to create
glial scar tissue [283]. In general, CNS has minimal capac-
ity to naturally regenerate after traumatic injury/disorders.
Therefore, advanced tissue regenerative therapies are
required to promote tissue and functional repair of CNS.
One such strategy is transplantation of cells including
mesenchymal stem cells (MSCs), neural stem cells,
induced pluripotent stem (iPS) cells, and endothelial pro-
genitor cells [284–287]. Although cell transplantation is
largely preferred to regenerate CNS, several limitations
remained due to less cell viability, lower cell survival,
and uncontrolled cell multiplication and integration [288].

The conventional delivery of therapeutic molecules by
oral and intravenous administration has also been restrained
by diffusion over the blood-brain/spinal cord barrier [289].
By contrast, the composite strategies integrating cells, bioac-
tive molecules, and biomaterials have thus attracted signifi-
cant interest over the past few years to improve cell
survival, reduce side effects across the blood-brain barrier,
and achieve local delivery. For example, implantation of
porous collagen-based scaffolds (PCSs) seeded with neural
stem cells can enhance cell delivery and differentiation, acti-
vate robust axonal elongation, and decrease astrogliosis in
animals [290]. HA is an extensively considered and modified
natural polymer for a regenerative scaffold of CNS because it
plays an important role in neural tissues by regulating cell
migration, proliferation, and differentiation. For instance,
HA interacts with the CD44 cell surface receptor of glial
and neuronal cells, which regulates cell behavior at tissue
damage conditions [291]. Moreover, HA-CD44 pairing in
astrocytes triggers the Rac 1-dependent PKN (protein kinase
N) pathway, leading to enhanced astrocyte migration, and
activated Src family kinases (SFKs) and cascade of focal adhe-
sion kinase (FAK) [292, 293]. Combination of HA with syn-
thetic peptides in particular RGD and IKVAV potentially
supports differentiation of neural progenitor cells (NPC) into
oligodendrocytes and synapse-forming neurons [294].
Hydrogels have been employed to recapitulate and improve
regeneration and functions of CNS [295]. Injectable self-
assembling peptide-based hydrogel (SAPH) used directly
on the rat brain after traumatic brain injury significantly trig-
gers VEGF-receptor 2 and thereby enhances angiogenic
effect and new blood vessel formation. Furthermore, the
von-Willebrand factor (vWF) and α-smooth muscle actin
(α-SMA) also increase along with blood vessel density
[296]. Coupled self-assembling peptide (SAP) and neural

stem/progenitor cell (NSPC) transplantation enhances
engraftment of NSPC, synaptic connectivity, and behavioral
outcomes and reduces CSPG deposition and astrogliosis
[297]. The composite 3D biomimetic CNS scaffolds consist-
ing of polyethylene glycol-gelatin-methacrylate (PEG-
GelMa) can promote the repair of rat spinal cord injury
[298]. The NSPS derived from the spinal cord are suspended
in a fibrin matrix consisting of brain-derived neurotrophic
factor, VEGF, fibroblast growth factor, and calpain inhibitor,
which are loaded into a scaffold and then incorporated into a
thoracic cord transection lesion of rats. After implantation,
the 3D scaffold maintains its architecture for 6 months, the
engrafted NCPS survive, the axons expand into the host spi-
nal cord, and the synaptic transmission recovers, leading to
electrophysiological and functional development. These
studies show that with the suitable combination of ideally
engineered scaffolds, stem cells, and growth factors, the
adverse environment of brain/spine cord injury can be
improved, resulting in the regeneration of CNS. Moreover,
the use of electrically conductive biomaterials and integration
of different functional scaffolds/hydrogels are more apprecia-
ble to achieve better neural tissue repair and regeneration.

5. Conclusions and Future Perspectives

The primary role of the inflammatory microenvironment
particularly immune cells at the tissue injury/damage site is
to establish and orchestrate proregenerative milieu. Different
types of immune cells and several immune regulators partic-
ipate in all the phases of tissue repair/regeneration and
homeostasis. As discussed in this review, among diverse
types of immune cells, monocytes and macrophages are crit-
ical players, which secure many functional traits that are crit-
ical for the tissue regeneration. However, the mechanistic
stimulations by which they modulate phenotypes for proin-
flammation, anti-inflammation, prorepair, and profibrogenic
mechanisms remain unclear. Further efforts are needed to
fully understand the functional characteristics of distinct
macrophage phenotypes in several organs.

The immune responses in potential tissue regeneration
are crucial to regulate the disease environment. One such
emerging strategy is the modulation of macrophage pheno-
type responses. Development of therapies specially targeting
the immune system is restrained because of deficient of spe-
cific markers that discriminate within the subsets of immune
cells, causing a break in our knowledge that how these sub-
populations of immune cells act among normal and disease
conditions. However, one strategic plan to determine new
immune regulatory targets for regeneration therapeutics is
to determine the specific markers and function of tissue-
resident immune cells under homeostasis and injury.
Although different phenotypes of pro/anti-inflammatory
macrophages are extensively studied in the context of wound
healing, fibrosis, and regeneration, other phenotypic subpop-
ulations, for instance, nuetrophils and T-cells, need to be
investigated to know their precise roles in tissue regeneration.
Modulation of macrophage polarization seems to be success-
ful in application. Thus, the current knowledge on the meta-
bolic profiles of distinctly activated macrophages could be a
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promising target for therapeutic applications. Although met-
abolic molecular aspects of macrophages are still at the back,
the metabolic switches are much more crucial.

There is little knowledge on the role of the adaptive
immune system particularly T-cells in tissue regeneration.
Does adaptive immunity facilitate tissue regeneration
depending on antigen specificity? If so, how the T-cells are
assigned and stimulated and function to counter self-
antigens during injury, which are distinctive from reacting
nonself antigens? At present, several therapies are hampered
because of the lack of specific markers that identify different
subpopulations of immune cells. T-regs in skeletal muscle,
adipose, and colonic lamina propria are known to maintain
tissue homeostasis [299]. It has been reported that IL-33
expands T-regs in the lamina propria, which facilitate local
tissue repair with stimulation of amphiregulin. The precise
role of T-regs in intestinal regeneration needs further
examination.

The T-regs’ suppressive actions play a role in supporting
tissue repair. However, the allied contributions of skin-
resident T-regs versus lymph nodes to suppress severe
inflammation still need to be addressed. There is still far
more to be discovered related to the metabolic reprogram-
ming of immune cells because a diverse range of switches is
involved in the phenotype transition. For example, L-PFK2
to the more active u-PFK2 during classical activation causes
accumulation of fructose-2,6-bisphosphaste that drives gly-
colysis and simultaneous downregulation of sedoheptulose-
7-phosphate.

Although citrate connects various critical pathways
including carbohydrate, fatty acid, and protein transitions,
its key role in generating acetyl-CoA that is involved in the
acetylation of histones in modulating immune cell functions
needs further investigation. Several studies discussed here
have provided new mechanistic insight into how the delivery
of immune signals can program tolerance and how material
characteristics impact immune cell functions in disease
settings.

Furthermore, the chronic inflammation sustains tissue
remodeling and dysfunction in many diseases. Although
the immune modulation by biomaterials has great capacity
in therapy of several diseases, coordinating control over
immune activities is urgently required. The majority of
recent findings about the interactions of biomaterials includ-
ing scaffolds, nanoparticles, and hydrogels with immune cells
and stem cells suggest that appropriate design of biomaterials
may modulate immune signality, which in turn affects regen-
erative capacity of stem cells and inflammation resolution in
a complex microenvironment. Several studies have pointed
out the initial immune response towards implanted biomate-
rials, but detailed strategies would be necessary to achieve
optimal functional incorporation. The future biomaterials
having structural and functional properties that resemble
antigen self-assembling peptides may modulate adaptive
immune response and thereby achieve appealing regenera-
tion results. Failure to provide itemized understanding of
biomaterial-immune cell interactions governing consequen-
tial pathological alterations in the microenvironment is a
central barrier to the development of potential biomaterial-

based therapies. Emerging strategies and solutions to prevent
or decrease undesirable side effects in the usage of biomedical
devices/implants still designate a major challenge in the tis-
sue engineering field. Moreover, biomaterials with the inte-
gration of stem cells/bioactive elements provide an excellent
scope to design novel therapies especially for inflammatory
diseases of CNS. Finally, in the future, biomaterials can be
used in emerging areas that illuminate immune tolerance.
These include immune metabolisms, wherein exciting con-
nections between immune functions and metabolisms are
being discovered.
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