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ABSTRACT Quantitative trait loci (QTL) mapping of wood properties in conifer species has focused on
single time point measurements or on trait means based on heterogeneous wood samples (e.g., increment
cores), thus ignoring systematic within-tree trends. In this study, functional QTL mapping was performed for
a set of important wood properties in increment cores from a 17-yr-old Scots pine (Pinus sylvestris L.) full-sib
family with the aim of detecting wood trait QTL for general intercepts (means) and for linear slopes by
increasing cambial age. Two multi-locus functional QTL analysis approaches were proposed and their
performances were compared on trait datasets comprising 2 to 9 time points, 91 to 455 individual tree
measurements and genotype datasets of amplified length polymorphisms (AFLP), and single nucleotide
polymorphism (SNP) markers. The first method was a multilevel LASSO analysis whereby trend parameter
estimation and QTL mapping were conducted consecutively; the second method was our Bayesian linear
mixed model whereby trends and underlying genetic effects were estimated simultaneously. We also
compared several different hypothesis testing methods under either the LASSO or the Bayesian framework
to perform QTL inference. In total, five and four significant QTL were observed for the intercepts and slopes,
respectively, across wood traits such as earlywood percentage, wood density, radial fiberwidth, and spiral
grain angle. Four of these QTL were represented by candidate gene SNPs, thus providing promising targets
for future research in QTL mapping and molecular function. Bayesian and LASSO methods both detected
similar sets of QTL given datasets that comprised large numbers of individuals.
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Wood is one of the most abundant and versatile organic materials on
earth. It is mainly composed of secondary cell wall consisting primarily
of cellulose, lignin, and glycoprotein. Its great importance for the world

economy and society has motivated the establishment of a large num-
ber of conifer breeding programs worldwide with the primary aim of
increasing wood production and improving its quality (Mullin et al.
2011; Rosvall 2011). With respect to the genetic improvement of
growth and form properties, conifer breeding has achieved notable
successes. However, the costs and time required for evaluating wood
properties in a large number of individuals have prevented wood
quality to be incorporated into most operational breeding programs
despite evidence that wood properties such as density, microfibril angle,
fiber dimensions, and spiral grain harbor considerable genetic variation
and moderate-to-high heritability (Gaspar et al. 2008; Bouffier et al.
2009; Gapare et al. 2009; Fries 2012; Hong et al. 2014). The assessment
of wood properties is further complicated by substantial and systematic
variation within trees such as early-latewood and juvenile-mature wood
transitions (Zobel and Sprague 1998). Developing affordable molecular
tools that could be used in, for example, early screening of tree seedlings
is therefore considered a potential solution to assist wood quality
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improvement operationally. Moreover, access to new instruments for
efficient wood characterization offers new opportunities to analyze
large numbers of trees for more traits and with higher detail.

Quantitative trait loci (QTL) analysis is a technique applied to
elucidate the genetic basis of quantitative traits by placing the position
of putative genes underlying a complex trait onto a genetic map
(Lander and Botstein 1989). QTL identification can be used to develop
molecular strategies for early tree selection of economically important
tree properties. QTL analyses based on anonymous DNA markers,
such as amplified length polymorphisms (AFLP) or random amplified
polymorphic DNA (RAPDs), identified major QTL, each explaining
from 5% to 27% of the variance for pine wood traits such as density,
ring width, microfibril angle, and lignin content in loblolly pine (Pinus
taeda L.) (Knott et al. 1997; Kaya et al. 1999; Sewell et al. 2000, 2002;
Brown et al. 2003), maritime pine [Pinus pinaster (Ait.)] (Plomion
et al. 1996; Brendel et al. 2002), radiata pine (Pinus radiata D. Don.)
(Emebiri et al. 1997; Kumar et al. 2000), and Scots pine (Pinus sylvestris
L.) Lerceteau and Szmidt 2000; Lerceteau et al. 2001). More recently,
high-throughput technologies have contributed to the development of
a third generation of genic markers such as expressed sequence tag
polymorphisms (ESTs) and single nucleotide polymorphisms (SNPs)
that may increase the resolution and informativity of QTL mapping
considerably. Nonetheless, only a few QTL studies have been published
that have utilized ESTs and SNP in pines (Markussen et al. 2003; Brown
et al. 2003; Pot et al. 2006). Although these studies incorporated a very
limited number of gene-based markers, they have nonetheless become
a useful source of candidate genes for wood related traits.

Previous QTL studies of wood properties have been limited to
measurements at single time points or to trait averages of a hetero-
geneous wood sample (e.g., stem sections, increment cores). Thus, the
dynamic and systematic within-tree variation due to age and seasons
was not taken into account, limiting the extent to which results could
be generalized. For instance, given wood trait data from increment
cores, a cumbersome process of repeated analyses on separate annual
rings has been required to assess the stability of a QTL over time
(Sewell et al. 2000, Brown et al. 2003, Ukrainetz et al. 2008). However,
multiple observations of wood properties obtained by dendrochrono-
logical studies could instead be fitted to mathematical functions or
curves dependent on the year of wood formation, on cambial age, or
on distance from pith, a procedure called functional QTL mapping
(Ma et al. 2002). The QTL analysis could then be performed on these
functions, thus accounting for the systematic within-tree variability
and increasing the relevance of detected QTL in comparison with anal-
yses performed on samples specific for a certain tree age or annual ring.
Functional QTL analyses have been conducted in Scots pine (Sillanpää
et al. 2012) and Populus (Wu et al. 2003; Ma et al. 2002, 2004; Lin and
Wu 2006) but were focused on the dynamic nature of growth rather
than that of wood properties.

The functional/longitudinal QTL analysis needs to take both
between- and within-individual variation into consideration. This can
be implemented by a two-step multilevel approach (Gee et al. 2003;
Heuven and Janss 2010). The phenotypic temporal trend of each in-
dividual is in the first step estimated as a curve. The curve parameters
are then considered as latent traits for which marker effects are evalu-
ated in a second independent analysis by some common QTL mapping
tools. A possible alternative to such a two-step model is the linear
mixed effects model (LMM) (Furlotte et al. 2012; Sikorska et al.
2012), which fits the temporal trend and estimates marker effects si-
multaneously in one single, albeit complex, procedure. Both two-step
multilevel and LMM models are well-suited to the simultaneous effect
estimation of several loci (Zeng 1994; Kao et al. 1999). Single locus

methods, such as classical interval mapping (Lander and Botstein 1989),
are simple and computationally efficient, but in cases where the sample
size is small, investigated markers are numerous, and significance testing
is conservative, single locus effects may suffer from severe overestima-
tion (denoted the “Beavis effect”) (Beavis 1994; Slate 2013). Multiple
locus approaches such as stepwise regression (Segura et al. 2012),
LASSO (Tibshirani 1996), and Bayesian methods (Xu 2003; Guan
and Stephens 2011) can improve in this matter. For these methods,
variable selection and shrinkage estimation play key roles in avoiding
oversaturated models and locus effect overestimation. In this study, we
considered the LASSO variable selection for the marker effect estima-
tion step of the multilevel approach and a Bayesian spike and slab prior
approach for the linear mixed model (henceforth abbreviated as
BLMM). To our best knowledge, these advanced multi-locus methods,
and especially the extended functional mapping methods, have not been
used in any previous QTL study for mapping wood properties. In QTL
analyses, a typical procedure is to estimate the effects of the loci first,
and then to quantify multi-locus association detection uncertainty or
significance by applying some sort of decision rules (e.g., hypothesis
testing). Tests designed for LASSO and Bayesian variable selection often
require some adjustments with respect to multiplicity (Scott and Berger
2010; Bühlmann et al. 2014). For the multilevel LASSO (mLASSO)
model, one may consider a multiple-split test method (Meinshausen
et al. 2009), a covariance test method (Lockhart et al. 2014), or stability
selection method (Meinshausen and Bühlmann 2010). For the BLMM,
which uses indicator variables, a false discovery rate control approach
(Ventrucci et al. 2011) can be pursued.

The primary aim of this study was to determine the extent to
which QTL with major effects could be detected for a set of important
conifer wood properties considered as dynamic functional traits de-
pendent on time (i.e., cambial age). A secondary aim was to examine and
compare two different multi-locus functional QTL mapping methods,
mLASSO and BLMM on a real wood property data set, and to charac-
terize and compare several decision rules that can be applied within the
framework of mLASSO and BLMM. To achieve these two aims, func-
tional QTL mapping was performed on a Scots pine (Pinus sylvestris L.)
full-sib family established in a single large plot in northern Sweden using
a set of AFLP and SNP molecular markers paired with phenotypic as-
sessment of the wood of multiple annual rings in increment cores or by
repeated assessments on standing trees.

MATERIALS AND METHODS

Field test
The studied field test, named Flurkmark (S23F881485), is located
25 km north of Umeå in northern Sweden (latitude 64�029N, longitude
20�139E, altitude 115 m above sea level). The site is a mesic dwarf-shrub
type with site index T21 (Hägglund and Lundmark 1982) and the plant
material consists of 1000 offspring (F1) of one full-sib family. The
parental (P) trees AC3065 and Y3088 were plus-trees originating from
north Sweden (latitudes 65�089N and 64�099N, respectively) selected for
the Swedish Scots pine breeding program based on their vitality, rapid
growth, small branch diameters, and wide branch angles. One-yr-old
seedlings were planted in 1988 using an approximate spacing of 2 · 2
m. QTL studies have previously been conducted on parts of this mate-
rial with respect to other traits (Lerceteau and Szmidt 2000; Lerceteau
et al. 2001; Sillanpää et al. 2012).

Wood sampling and measurements
A subset of 286 trees was sampled for wood cores. To limit the impact
of environmental variation, trees selected for sampling were all situated
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together in a part of the trial that exhibited the highest survival (98% in
2007) and growth. Wood samples were obtained during autumn 2004
using an electric drill combined with a 10-mm-diameter increment
borer (Haglöf Sweden, AB). Samples were taken from a height of 0.8 m
above the ground. They were subsequently sent to Innventia, where
their properties were analyzed; the first part of the evaluations was
performed and the data were made ready for the genetic studies to
follow. The samples were air-dried, sawed, and polished into vertical
2 · 7 mm. From these strips, radial data profiles of wood traits (Table 1,
Supporting Information, File S1) such as wood density (WD), radial
fiberwidth (FWr), tangential fiberwidth (FWt), fiberwall thickness
(FTh), microfibril angle (MFA), and dynamic modulus of elasticity
(MOE) were acquired with the Silviscan instrument (Evans 1994,
2006). In addition to the traits assessed on increment cores, the spiral
grain angle (GA) was measured at breast height (1.3 m above the
ground) under bark in an extended subset of trees (492) using a non-
destructive weight-and-wedge device (Chalmers University of Technol-
ogy, Sweden) (File S2). Measurements were made in accordance with
Hannrup et al. (2003) in 2006 and 2007 in the north, south, east, and
west directions using the means of each year as measurement traits.

Initial processing of wood property data
The first step in the evaluation of the radial profile wood trait data was
to identify the interfaces between all annual rings and their parts of
earlywood and latewood using methods developed by Innventia based
on analysis of radial variations in wood density. Then followed
calculations of the widths of each annual ring (RW) and its parts of
earlywood and latewood, as well as the proportions of earlywood (EP)
and latewood (LP) of each ring. Further, wood trait averages were
calculated for each annual ring, for most traits averages were also
calculated for their earlywood and latewood (Table 1). Then, the ring
locations were manually cross-checked and the data were corrected
for some errors. Finally, the annual ring data were also sorted accord-
ing to the calendar year of their formation. The cambial age variation
in annual rings of the same calendar year (reflecting that the trees
reached the sampling height at different ages) was small, with a variation

range of maximum 4 yr. The effect of cambial age was therefore as-
sumed to be synchronous with the effect of calendar year. The nine
annual rings formed during the calendar years 1995–2003 (approxi-
mately corresponding to 5–13 rings from pith) were chosen for further
study because observations from those rings were reasonably complete
(.95%). For MFA and MOE, the measurement resolution was low
(1 observation/mm) and only allowed the study of averages of three
adjacent annual rings (1995–1997, 1998–2000 and 2001–2003, respec-
tively). In contrast, the resolution for WD, FWr, and FTh (20 observa-
tions/mm) was high enough to enable the separation of observations
into earlywood and latewood components within each annual ring
(Table 1) and to calculate wood trait averages for the components.
There are many definitions for designating wood as earlywood and
latewood (Mork 1928; Green and Worral 1964). The transition between
pronounced earlywood and latewood is, however, gradual and easily
influenced by site, weather, and other factors. If the annual ring is
divided into two components only, then the averages for both will
be influenced by all these factors, which is negative for many types
of studies. To deal with this, Innventia introduced designation
criteria including a third transitionwood component in between
earlywood and latewood (Olsson 2000). Each location i within an
annual ring was designated as earlywood or latewood depending on
whether the wood density measured at that location (WDi) exceeded
thresholds related to the span between the minimum wood density
(WDmin) and the maximum wood density (WDmax) within each in-
dividual annual ring:

WDi #WDmin þ 0:2ðWDmax2WDminÞ/i designated as earlywood
WDi $WDmin þ 0:8ðWDmax2WDminÞ/i designated as latewood

otherwise i designated as transition wood

In the current study, the transition wood component was not studied
per se due to its unspecific character. The data for all traits were checked
with respect to normal distribution. Earlywood and latewood ratio (EP
and LP) were found to deviate considerably from normality and were
therefore arcsine square root–transformed (Snedecor and Cochran
1980) prior to further analysis.

DNA extraction, marker development, and scoring
Total DNA was extracted from vegetative buds of the studied full-sib
individuals. The buds were pealed and freeze-dried before being grinded
and DNA was extracted using the CTAB method (Doyle and Doyle
1990).

An array of 768 single nucleotide polymorphism (SNP) markers
was developed for Illumina Golden Gate assay at the University of
Oulu, Department of Biology (S. T. Kujala, T. Knürr, K. Kärkkäinen,
D. B. Neale, M. J. Sillanpää, and O. Savolainen, unpublished data), and
it is publicly available at the Evoltree website (http://www.evoltree.eu/).
During the development process, 237 SNPs were extracted from 56 gene
fragments that had been sequenced in individuals of different popula-
tions by Palmé et al. (2008), Pyhäjärvi et al. (2007, 2011), and Kujala
and Savolainen (2012). These gene fragments were selected mainly for
their value as candidates for timing of bud set and cold tolerance. In
addition, 531 SNPs from 341 other gene fragments were obtained from
the Comparative Resequencing in Pinaceae Project (CRSP) in the
laboratory of D. B. Neale, University of California at Davis (http://
dendrome.ucdavis.edu/NealeLab/crsp/). The SNP genotyping was per-
formed using GoldenGate Illumina technology at Centre National de
Genotypage (CNG) in Evry, France. The automatic allele calling for
each locus was accomplished with the GenCall software (Illumina, San
Diego, CA).

n Table 1 List of the wood traits, their abbreviations,
measurement unit, and the number of values per tree used
in analysis

Traits Abbreviation Unit Values/Tree

Annual ring width RW mm 9
Earlywood percentage EP % 9
Latewood percentage LP % 9
Mean wood density WD kg m23 9
Earlywood density EWD kg m23 9
Latewood density LWD kg m23 9
Mean radial fiber width FWr mm 9
Earlywood radial fiber width EFWr mm 9
Latewood radial fiber width LFWr mm 9
Mean tangential fiber widtha FWt mm 9
Mean fiberwall thickness FTh mm 9
Earlywood fiberwall thickness EFTh mm 9
Latewood fiberwall thickness LFTh mm 9
Microfibril angle MFA � 3
Modulus of elasticity MOE GPa 3
Grain angleb GA � 2
a

Early and latewood components of FWt were omitted because the variation
within annual rings was negligible.

b
For GA, only the annual rings formed in 2006 and 2007 were studied, but the
number of trees assessed (492) was considerably greater than for the other
traits (286).
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In addition to the SNPs, several amplified length polymorphism
markers (AFLP) were developed. The AFLPs were produced according
to Vos et al. (1995). The following 15-primer enzyme combinations
were used: E-act/M-cctg; E-act/M-cccg; E-act/M-ccgc; E-act/M-ccgg;
E-act/M-ccag; E-acg/M-cctg; E-acg/M-cccg; E-acg/M-ccgc; E-acg/M-
ccgg; E-acg/M-ccag,; E-aca/M-cctg; E-aca/M-cccg; E-aca/M-ccgc;
E-aca/M-ccgg; and E-aca/M-ccag. The amplified fragments were sent
to the DNA facility at Iowa State University and run on ABI3100
Genetic Analyzer. The mapping data were analyzed with GeneMarker
v1.6 (SoftGenetics, State College, Pennsylvania).

A large set of 492 progeny individuals were thus genotyped using
508 AFLP markers and a small subset (91) of these individuals were
also genotyped using the previously developed 768-SNP array (File S3
and File S4). The individuals of the smaller subset were all sampled for
wood traits by Silviscan. Furthermore, both parents (AC3065 and
Y3088) of the field trial progeny were genotyped using both SNP and
AFLP markers.

Sorting and mapping of marker data
Marker sorting and mapping were performed with all the available
genotype data simultaneously, but with the aim of constructing two
sorted genotype datasets, one pure AFLP dataset for the larger subset
of individuals (henceforth abbreviated as the A-set) and one mixed
SNP+AFLP dataset intended for the smaller subset (abbreviated as the
S+A set). Because the studied full-sib family was generated by two
noninbred and highly heterozygotic parents, a two-way pseudo-testcross
mapping strategy was used (Grattapaglia and Sederoff 1994;
Grattapaglia et al. 1995). Markers for which genotyping scoring suc-
cess was inadequate (,80%) and poorly genotyped individuals
(,70%) were excluded from further study. Even though the inclusion
of 1:2:1-segregating SNPs made the construction of a consensus map
possible, it was nonetheless reasonable to assume that different sets of
QTL segregated within each of the unrelated and heterozygotic
parents. Therefore, the marker linkage mapping was performed on

maternal and paternal sections separately (see File S5 for more de-
tailed information about the linkage mapping).

In summary, 153 AFLP markers genotyped on 455 individuals (the
A dataset) and 153 AFLP and 166 SNP markers genotyped on 91
individuals (the S+A dataset) were retained in the analysis after filtering
and sorting. Two-hundred fifty-one markers were distributed on 26
maternal and 24 paternal linkage groups (LGs), whereas 68 markers
could not be assigned to any linkage group (unmappable).

Multilevel functional QTL detection by LASSO
variable selection
Following the multilevel model approaches of Gee et al. (2003),
Heuven and Janss (2010), Hurtado et al. (2011), and Sillanpää et al.
(2012), we fitted our multiple phenotype measurements within each
individual to a simple linear curve dependent on time tik:

yik¼ mi0þmi1tik þ eik; eik �i:i:d:Nð0;s2
i0Þ; (1)

for individuals i = 1,. . .,n, and repeated measurements k = 1,. . .,mi

(mi = 9 for an individual with a complete set of measurements). The
least square estimates of the intercept mi0 and the slope mi1 were
considered to be new latent traits aimed at evaluating the overall
trait mean across annual rings and the trait rate of change, respec-
tively. According to Heuven and Janss (2010), the intercepts and
slopes are less correlated compared with the repeated measurements
in the original scale and should have a constant variance, which
would reduce the necessity to account for residual dependencies in
the model. To make mi0 correspond to the biologically meaningful
mean across annual rings, the time variable tik was recoded and
centralized to range from 24 to 4 instead of using the original
calendar years (1995–2003). Individuals with more than five missing
measurements were excluded from the analysis. Examples of the
wood property development by time for a subset of traits are pre-
sented in Figure 1.

Figure 1 Trajectories of four
wood traits by time including
(A) wood density, (B) earlywood
percentage, (C) radial fiberwidth,
and (D) fiberwall thickness. For
each trait, individual trajectories
are shown in light blue lines, and
the mean trajectory is shown in
a black line.
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Next, to describe the association between the latent traits and the
molecular markers, the following multiple linear regression models
were used to map intercept (m̂i0) and slope (m̂i1) traits separately as:

8>>><
>>>:

m̂i0 ¼ a0 þ
Pp
j¼1

xijbj þ ai0; ai0 �i:i:d: Nð0;s2
0Þ;

m̂i1 ¼ a1 þ
Pp
j¼1

xijgj þ ai1; ai1 �i:i:d: Nð0;s2
1Þ;

(2)

where xij is the genotype value of individual i and marker j (j = 1,. . .,p)
coded as 0 and 1 for two possible genotypes, respectively, a0 and a1

are the intercept terms, bj and gj are the effects of marker j, and
ai0 and ai1 are the residuals for intercept and slope traits, respectively.
For the three wood traits that only have two or three phenotype
assessments per tree (GA, MFA, and MOE), we performed separate
LASSO analyses for each assessment. Because the ordinary least
squares (OLS) method usually cannot provide accurate estimates for
a number of markers near to or larger than the number of individuals
assessed (the p . n-problem) (Hastie et al. 2009), we instead applied
a popular penalized regression approach named LASSO as a marker
(variable) selection method (Tibshirani 1996):8>>>>><

>>>>>:
ðm̂i0 2a0 2

Pp
j¼1

xijbjÞ2 þ l0
Pp
j¼1

jbjj;

ðm̂i1 2a1 2
Pp
j¼1

xijgjÞ2 þ l1
Pp
j¼1

jgjj;
(3)

where the penalty terms l0
Pp
j¼1

���bj

��� and l1
Pp
j¼1

���gj

���, (l0, l1.0) reduce

the number of markers included in the model by shrinking unim-
portant effects to zero. The tuning parameters l0 or l1, determine
the degree of shrinkage and model sparsity. It was chosen explicitly
by the 10-fold cross-validation (CV) model selection procedure (Li
and Sillanpää 2012). The LASSO computation was performed by the
MATLAB/R package “glmnet” (Friedman et al. 2010).

Single-step functional QTL detection by Bayesian linear
mixed effect model
Instead of relying on a two-step multilevel model, we may alternatively
estimate the temporal trend and effects of markers simultaneously in
one linear mixed effect model (BLMM). By substituting equations (2)
back to equation (1), we obtain

yik ¼ mi0þmi1tik þ eik

¼ ða0 þ
Pp
j¼1

xijbj þ ai0Þ þ ða1 þ
Pp
j¼1

xijgj þ ai1Þtik þ eik

¼ a0 þ a1tik þ ai0 þ ai1tik

þ
Xp
j¼1

xijbj þ
Xp
j¼1

xijtikgj þ eik; eik �i:i:d:Nð0;s2
0Þ;

(4)

which is equivalent to the longitudinal random intercept and random
slope model (Fahrmeir and Kneib 2011; Furlotte et al. 2012; Sikorska
et al. 2012; Wang 2012). The fixed intercept and slope parameters a0

and a1 describe the population time trends, and the random effect
parameters ai0 and ai1 describe the individual specific time trends.
The individual specific random intercept and slope terms are important
because they: describe the deviation of individual trends over the pop-
ulation trend; construct a certain temporal covariance structure among

phenotypes; and take the possible heterogeneity in the data caused by
missing (environmental) covariates into account (Fahrmeir and Kneib
2011). We formulated a full Bayesian procedure for model inference.
The fixed intercept and slope parameters were assigned with non-
informative priors: a0 � Uð2N;þNÞ, a1 � Uð2N;þNÞ . The
residual variance s2

0 was assigned with a Jeffreys’ noninformative
prior: pðs2

0Þ } 1
s2
0
. The random parameters were assigned with multi-

variate normal priors with common variance component S2 · 2 over
all the individuals: ½ai0;ai1�jS2· 2 � MVNð0;S2 · 2Þ. An inverse-
Wishart prior was specified for the covariance matrix: S2 · 2 � Inv2
WishartðC2· 2; yÞ with fixed hyperparameters C2· 2 ¼ I2· 2 (identity
matrix) and y ¼ 1. Under such prior settings of random intercept and
slope parameters, the marginal variance of yik is VarðyikÞ ¼
s2
0 þ S11 þ 2tikS12 þ t2ikS22, and covariance between yik and yih

(k 6¼ h) is Covðyik; yihÞ ¼ S11 þ ðtik þ tihÞS12 þ tiktihS22, implying
that the random intercept and slope terms describe serial correlation
and heterogeneity of variance for the repeated phenotype measure-
ments in the mixed model (Weiss 2005, p. 255).

For marker effect parameters, we assigned mixture priors (or so-
called spike and slab priors):

bj

���rj �ð12 rjÞIfbj¼0gþrjNð0;s2
j Þ;
�
same prior for parameter gj

�
(5)

Such spike and slab priors play a similar role as the l1 penalty in
LASSO to perform variable selection (Habier et al. 2011). The binary
indicator variable rj (rj = 0, 1) determines whether marker j should
be included in the model. A Bernoulli prior was assigned to
rj: Pðrj

��wÞ ¼ wrjð12wÞrj . We fixed w to be 0.5, so that the estimates
of rj were mainly determined by the data. Furthermore, the var-
iance parameter s2

j was assigned with inverse-gamma prior:
s2
j � Inv2Gammaða; bÞ, with fixed hyperparameters a = 0.1, and

b = 0.1.
For traits including MFA, MOE, and GA with two or three

phenotype assessments per tree, we simplified equation (4) by including
only tree-specific intercept terms but not tree-specific slope terms:

yik ¼ a0 þ ai0 þ
Xp
j¼1

xijbj þ eik; eik �i:i:d:Nð0;s2
0Þ; (6)

In practice, a Markov Chain Monte Carlo (MCMC)-based method
was used for estimating all the parameters defined in our Bayesian
model. The detailed information of the MCMC sampling methods is
available in the File S5.

Quantification of uncertainty and hypothesis testing
In this study, we also treated the question of how to best quantify QTL
uncertainty and significance by hypothesis testing based on LASSO
and BLMM, respectively. Empirical studies (Xu 2007; Li and Sillanpää
2012) have shown that LASSO-CV tends to select many small effect
markers in addition to the major QTL. The small marker effects may
contribute to phenotype prediction but may not represent the fore-
most QTL candidates. Therefore, some post variable selection QTL
inference is needed to judge which markers selected by LASSO can be
declared as putative QTL with any confidence.

Constructing a test statistic for a marker under the LASSO scheme
is, however, not a straightforward task, because LASSO estimates,
unlike the least squares method, do not asymptotically follow any
standard parameter distribution (Chatterjee and Lahiri 2011). The
simplest method attempted was to first select a subset of markers
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by using LASSO on the whole data set, and then re-estimate the effects
of those markers one-by-one with a simple regression model by the
OLS method and perform the standard t-test (including the standard
Bonferroni correction for multiple testing). This method was used as
a baseline for comparisons (p-value is abbreviated as Single-p) and is
similar to the tests of many single locus methods (Furlotte et al. 2012;
Slate 2013).

Recently, several theoretically more solid approaches have been
developed for indirectly quantifying the uncertainties of the markers
selected by LASSO. We investigated the following three methods. The
first is the multiple-split test (p-value is abbreviated as MST-p) of
Meinshausen et al. (2009), which involves dividing the sample at
random into two parts with equivalent number of individuals. The
first half of the data are used to determine the optimal tuning param-
eter and to choose a subset of markers by LASSO, whereas the second
half of the data are used to t-test those markers. For this study, the
sample split procedure was repeated 100 times and the p-values (ad-
justed by Bonferroni correction) were combined to minimize the
effect of random sampling of the data. The second is the covariance
test (p-value is abbreviated as COV-p) proposed by Lockhart et al.
(2014), which tests the significance of a marker entering the LASSO
model and differs from the classical t-test of whether the marker effect
equals zero. The COV-p test statistic is constructed directly based on
the LASSO solution path, which is a compromise between shrinkage
estimation and variable selection. Therefore, the COV-p for those
selected markers should be more accurate than the p-values calculated
by the t-tests. The third is the stability selection proposed by Mein-
shausen and Bühlmann (2010), involves drawing a subsample of half
the number of individuals available and applying the LASSO on it to
select a set of markers repeatedly (1000 times). Then, the stability
selection probability (SSP) of each marker being selected was calculated
and used to judge the support of QTL. Meinshausen and Bühlmann
(2010) suggested a decision rule based on SSPs to control the expected
number of false positives. In practice, we calculated MST-p and
SSP by our own Matlab codes [please see Bühlmann et al. (2014)
for more information about these two methods]. The COV-p was
calculated by the R package “covTest” (http://cran.r-project.org/web/
packages/covTest/index.html).

For the BLMM model (4), we took the advantage of the sampling
of indicator variables rj defined in the prior (5). The empirical mar-
ginal posterior distribution of rj: P̂ðrj ¼ 1

��yÞis often viewed as a pos-
terior inclusion probability (PIP) (Guan and Stephens 2011) and has
a similar interpretation as the previously mentioned SSP (Meinshausen
and Bühlmann 2010). A main difference, however, is that the PIP is
calculated from the MCMC samples based on the whole data with-
out the need of repeated sub-sampling. However, the probability
P̂ðrj ¼ 0

��yÞ ¼ 12 P̂ðrj ¼ 1
��yÞ can be interpreted as an approxima-

tion of a local false discovery rate (LFDR) (Efron et al. 2001; Ventrucci
et al. 2011) for each individual marker j = 1,. . .,p. We can calculate
a global level posterior false discovery rate (BFDR) (Ventrucci et al.
2011; Heuven and Janss 2010) by combining LFDRs for a group of
markers. A BFDR-based decision rule can be derived to judge signifi-
cant markers to control BFDR under a certain threshold a (a=0.05) so
that the multiplicity adjustments are achieved. Specifically, the LFDRs
for each marker are sorted in ascending order. The average value of the
LFDRs for the first T markers (T = 1,. . .,p) is defined as a BFDR for
these markers. We find the highest possible value of BFDR (the average
of the T smallest LFDRs), which is still smaller than the given threshold,
and the corresponding markers are defined to be significant.

The QTL uncertainty evaluation of the results of our particular
analysis was performed at two levels. If a marker attained a value less

than 0.2 for any of the test statistics Single-p, MST-p, COV-p, or
BFDR, then it was declared as a suggestive QTL. For the suggestive
level, an SSP inclusion ratio of at least 0.66 and 0.58 was required for
AFLP and SNP+AFLP datasets, respectively, which, according to the
formula of Bühlmann et al. (2014), guaranteed the expected number
of false selected markers to be less than 2. However, for a marker to be
declared a significant QTL, requirements were stricter. For the LASSO
analyses, at least two of the test statistics were required to show
p-values # 0.05 (Single-p, MST-p or COV-p) or an SSP inclusion
ratio of at least 0.83 and 0.66 for AFLP and SNP+AFLP datasets,
respectively, which guaranteed the expected number of false selected
markers to be less than 1. For the Bayesian analysis, a BFDR value less
than 0.05 was required. Declarations of suggestive or significant QTL
were made separately for each dataset and analysis method.

We calculated the percentage of phenotypic variation explained by
both suggestive and significant QTL for intercept and slope traits,
respectively, as:

H2
intercept;QTL ¼

varð P
j2fsug2QTLg

xijb̂jÞ

varðmi0Þ
  and  

H2
slope;QTL ¼

varð P
j2fsug2QTLg

xijĝjÞ

varðmi1Þ
;

respectively.
Note that for the BLMM methods, we have
varðmi0Þ � varðai0Þ þ varðPp

j¼1
xijb̂jÞ and

varðmi1Þ � varðai1Þ þ var

 Xp
j¼1

xijĝj

!
:

RESULTS
From what could be observed from general trends of the studied wood
material, the percentage ratio of earlywood (EP) decreased by 3.0% per
year and latewood increased by 2.1% per year (Figure 1, Table 2). This
trend in combination with the mean latewood density (LWD, 755 kg/
m3) being much higher than that of earlywood density (EWD, 328 kg/
m3) likely caused the overall ring wood density (WD) to increase by age
by approximately 14.5 kg/m3�yr, although EWD and LWD did not
show such pronounced trends per se. In a fashion similar to wood
density, the fiber cell wall thickness (FTh) also increased (0.09 mm/yr)
by increasing ring number from pith. The mean grain angle under
bark (GA) at the tree age of 17–18 yr was 0.82�, implying a mild left-
handed spiral grain.

QTL detection for intercepts (means)
In total, 24 suggestive (minimum one p-value , 0.2) and five signif-
icant (minimum two p-values , 0.05) QTL were detected across
different intercept traits (including single time point traits), datasets,
and QTL mapping methods (Figure 2, Figure 3). The fractions of phe-
notypic intercept trait variation that was explained by QTL (H2

QTL)
ranged from zero to 0.15 (Table 3). Notably, several appreciably strong
QTL were observed for the intercept of WD and EWD (three suggestive
and one significant QTL) and for FWr and EFWr (three suggestive and
two significant QTL) (Figure 2). These QTL explained 0.07–0.15 frac-
tions of the phenotypic variance for the method/dataset combinations
where they were observed. For EWD, both BLMM and mLASSO sug-
gested AFLP GGG191 (unmapped) to be significant (Table 4, part A) and
suggestive, respectively, in the A-set. Likewise, the SNP 0_11919_01-122
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at the maternal LG 14 was indicated to have a significant association with
FWr and to be suggestive for EFWr according to the mLASSO analysis
performed on the S+A-set (Figure 2). The AFLP AGG142 (unmapped)
was, however, only significantly associated with EFWr. The same QTL
markers (suggestive or significant) were shared between EWD and WD
in two instances and between FWr and EFWr in one instance. Because
the QTL effect signs of whole ring and earlywood components were the
same, these QTL should contribute to a positive genetic correlation be-
tween the whole ring and earlywood components for WD and FWr.

For all other traits assessed with functional mapping (RW, EP, LP,
LWD, LFWr, FWt, FTh, EFTh, and LFTh) QTL were fewer (in total eight
suggestive) (Figure 2) and were influencing their respective traits to a rel-
atively limited degree (H2

QTL in the ranges 0.00–0.02) (Table 3). However,
all three suggestive QTL markers for fiberwall thickness traits were also
suggestive of or significant for QTL (e.g., GGG191, unmapped) for the
corresponding wood density traits (Figure 2). The respective QTL effects
for FTh and WD had the same sign, thus suggesting a positive genetic
relationship. No QTL were observed for the intercepts of annual ring
width (RW), earlywood (EP), and latewood percentage (LP) (Table 3).

For the traits subjected to single-time-point LASSO analyses (GA,
MFA, and MOE), the results of only one time point is shown (Figure
3) because the QTL patterns observed for the other time points were
similar. Among these traits, grain angle (GA) exhibited the highest
number of QTL (three suggestive and two significant), explaining up
to 0.08 fraction of the phenotypic variation (Table 3). The SNP
Axs_47_502 (LG 3m) and the AFLP TCG51 (unmapped) were ob-
served to be significant QTL for GA in both the assessed years. The
latter QTL exhibited the strongest overall significance values (Table 4,
part A) being the only QTL significant with respect to the extremely
conservative multiple-split testing method (MST-p = 0.0014 in the
year 2006). This is also the reason why MST-p values were not in-
cluded in Table 4. In contrast, microfibril angle (MFA) and modulus
of elasticity (MOE) only exhibited two suggestive QTL each (Figure 3),
which were not consistently observed across time points (not shown)
and explained, at most, a 0.02 fraction of the phenotypic variation.

QTL detection for slopes
For trait slopes, 11 suggestive and four significant QTL were detected
(Figure 4). Interestingly, a substantial portion of the phenotypic variation

for earlywood percentage (up to 0.22) (Table 3) was explained by the
single QTL-AFLP GCG64 (unmapped) (Table 4, part B) significant in
the mLASSO analysis and exhibiting an effect size of 13% in comparison
with the trait mean (transformed scale). For the EWD slope, one signif-
icant (AFLP TGG57, unmapped) and four suggestive QTL jointly
accounted for up to 0.51 fraction of the phenotypic variation.

For the slopes of LWD and FWr, one significant and one
significant plus one suggestive QTL, respectively, were detected
(Figure 4), but the H2

QTL estimates for these associations were
0.02 at most (Table 3). Among those, the SNP 2_10306_01-354
(LG 1p) significantly associated with LWD nonetheless exhibited
a large effect of 3.2 kg/m3�yr (49% in comparison to the mean),
likely as a result of the considerable phenotypic variation for the
LWD slope [see SDðmi1Þin Table 2]. For all the other traits (LP,
WD, EFWr, LFWr, FTh, EFTh, and LFTh), QTL findings for
slopes were scarce (six suggestive QTL in total) (Figure 4) and
weak (H2

QTL # 0.03) (Table 3).

Comparing QTL mapping methods and datasets
For the statistically high-powered AFLP dataset, BLMM and mLASSO
methods both appeared to detect approximately equal numbers of
suggestive or significant QTL per trait (in the range of 0–5) (Figure 2,
Figure 3, Figure 4). The same set of A-set markers were also frequently
detected as significant QTL according to both modeling methods or
were at least observed as significant for one method and suggestive for
the other (Table 4). However, given that one or more QTL were
detected in the A-set, the estimated proportions of explained pheno-
typic variances of the BLMM method (Table 3) were usually higher
(0.01–0.15 and 0.22-0.51 for intercept and slope traits, respectively)
than the corresponding mLASSO H2

QTL estimates (#0.03). Moreover,
the BLMM effect estimates of the A-set were often higher than the
corresponding mLASSO estimates per se (Figure 2, Figure 3, Figure 4).
Such inconsistencies can be attributed to the different shrinkage pen-
alties or priors involved in the two methods. LASSO assumes the
shrinkage factor l to be equal across all markers, whereas the Bayesian
approach allows each marker to have its own individual indicator
variable. Therefore, the BLMM can estimate marker effects in a more
adaptive manner, i.e., by shrinking less if the unaltered effect of
a marker is already large.

n Table 2 Time-adjusted population means, average trends by increasing tree age, and individual (phenotypic) standard deviations for
means and trends of each trait

Traits Unit Population Mean,Eðmi0Þ Annual Ring Mean Ranges SDðmi0Þ Population Trend, Eðmi1Þ SDðmi1Þ
RW mm 3.3 2.9–4.0 0.5 20.1 0.1
EPa % 56.3 38.6–66.6 4.4 23.0 1.4
LPa % 16.9 10.0–30.8 2.7 2.1 1.1
WD kg m23 448.0 380–551 27.9 14.5 6.1
EWD kg m23 327.7 307–354 18.1 20.5 3.7
LWD kg m23 754.1 612–854 53.2 6.5 11.6
FWr mm 30.2 29.0–31.6 0.9 �0.0 0.2
EFWr mm 32.7 30.8–34.2 0.8 0.3 0.2
LFWr mm 23.1 20.1–26.4 1.1 0.5 0.3
FWt mm 25.9 24.7–26.6 0.7 0.2 0.1
FTh mm 2.2 1.9–2.8 0.2 0.1 ,0.1
EFTh mm 1.7 1.6–1.9 0.1 �0.0 ,0.1
LFTh mm 3.5 2.9–4.2 0.3 0.1 0.1
MFA � 21.2 18.9–22.3b 4.0
MOE GPa 10.6 9.1–13.4b 1.9
GA � 0.82 0.72–0.90 0.98
a

For the sake of illustration, nontransformed values are given.
b

The given ranges comprise means of three adjacent annual rings rather than single annual rings.
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In contrast to the observations made on the A-set, BLMM did not
even detect a single suggestive QTL in the statistically low-powered
SNP+AFLP dataset, whereas the mLASSO method detected similar
numbers of suggestive or significant QTL in both the S+A-sets and
A-sets (Table 3). To further dissect potential causes of this discrep-
ancy, we conducted additional analyses combining the Bayesian spike
and slab approach and BFDR testing with the two-step method.
Interestingly, this two-step Bayesian spike and slab model was,
similar to mLASSO, able to detect a number of QTL even in the
S+A-set (not shown), implying that the previously observed dis-
crepancies reflect differences in the modeling procedure (one-
step vs. two-step) rather than statistical approach (LASSO vs.

Bayesian). The Bayesian spike and slab model and LASSO should
thus have similar power for detecting QTL given that the same
model procedure is pursued.

Comparison between decision-making/hypothesis
testing methods
To have an approximate comparison between the testing methods, we
simply screened all the traits and counted the total number of
significant or suggestive QTL for the large A- and small S+A datasets,
respectively (for LASSO analyses of single time-point traits, only the
counts for GA measured in 2006 and MFA and MOE observed in
1998–2000 were included). For the A-set, the ranking of testing

Figure 2 Trait intercept marker
effects (b) for whole ring, early-
wood and latewood density,
whole ring radial, earlywood
radial, latewood radial, whole
ring tangential fiberwidths, whole
ring, earlywood and latewood
fiberwall thickness (WD, EWD,
LWD, FWr, EFWr, LFWr, FWt,
FTh, EFTh, LFTh) selected by
the multilevel LASSO model in
A datasets (black) and S+A data-
sets (gray) and of markers show-
ing LFDR ,0.5 for the Bayesian
linear mixed effect model in the
A datasets (red) and S+A data-
sets (magenta) are plotted against
their estimated locations onmater-
nal (m) and paternal (p) linkage
groups (LG); 1 Morgan is approxi-
mately the length of LG 1m.
Markers in section u were not
mappable to any LG. Significant
and suggestive QTL are shown
as diamonds and squares, respec-
tively, whereas all other selected
markers are shown as circles. All
markers in considerable linkage
(recombination frequency ,0.3)
with a significant or suggestive
QTL are highlighted within a
rectangle.
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methods based on the greatest total number of detected significant
and suggestive QTL fell in the order BFDR . Single-p . SSP .
COV-p . MST-p (Table 5). For the S+A-set with fewer numbers
of individuals, the ranking order was COV-p . Single-p . SSP .
MST-p . BFDR. The results for the BFDR of the extra two-step
Bayesian analysis were quite similar to that of the Single-p and SSP
tests of the mLASSO analysis (not shown).

DISCUSSION
To the knowledge of the authors, this study presents the first
functional/longitudinal QTL analysis of a conifer wood properties
dataset with repeated phenotype measurements made possible by
use of efficient measurement methods. Such analyses, so far, have
only been performed for growth trajectories (Sillanpää et al. 2012).
Compared with earlier QTL studies, functional mapping analyses

Figure 3 Marker effects (b) for
wood grain angle (GA), microfi-
bril angle (MFA), and dynamic
modulus of elasticity (MOE), se-
lected by the multilevel LASSO
model in A datasets (black) and
S+A datasets (gray) and of
markers showing LFDR ,0.5 for
the Bayesian linear mixed effect
model in the A datasets (red)
and S+A datasets (magenta) are
plotted against their estimated
locations on maternal (m) and pa-
ternal (p) linkage groups (LG). 1
Morgan is approximately the
length of LG 1m. Markers in sec-
tion u were not mappable to any
LG. Significant and suggestive
QTL are shown as diamonds
andsquares, respectively,whereas
all other selected markers are
shown as circles. All markers in
considerable linkage (recombina-
tion frequency ,0.3) with a sig-
nificant or suggestive QTL are
framed in a rectangle. The
mLASSO results are illustrated
for one time point only (year
2006 for GA and the period
1998–2000 for MFA and
MOE).

n Table 3 The ratios of phenotypic variance

H2
QTL for Intercept/Means (mi0) H2

QTL for Slopes (mi1)

Trait mLASSO A BLMM A mLASSO S+Ab mLASSO A BLMM A mLASSO S+Ab

RW 0 0 0 0 0 0
EP 0 0 0 0.02 0.22 0
LP 0 0 0 ,0.01 0 0
WD ,0.01 0.09 0 0.01 0 0
EWD 0.02 0.15 0 0.01 0.51 0
LWD 0 0 0.01 0 0 0.02
FWr 0 0 0.10 ,0.01 0 <0.01
EFWr 0 0 0.07 0 0 0.02
LFWr 0.02 0 0 0 0 0
FWt ,0.01 0.01 0.01 ,0.01 0 0
FTh ,0.01 0 0 0.03 0 0
EFTh 0.01 0 0 0 0 0
LFTh 0 0 0.01 0 0 0
MFAa 0–0.01 0.02 0–0.01 — — —

MOEa 0–0.01 0.01 0–0.01 — — —

GAa 0.03 0.08 0.06–0.07 — — —

Ratios of phenotypic variance explained by suggestive and significant QTL jointly for the means/intercepts and slopes of all traits using mLASSO and BLMM methods
for pure AFLP (A) and SNP+AFLP datasets (S+A). Trait/method/dataset combinations for which significant QTL were found are highlighted in bold.
a

Ranges are given for multilevel analyses that were performed during separate time points.
b

The BLMM analysis of the S+A dataset did not detect any QTL and is thus not shown.
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utilize all the longitudinal data for a trait simultaneously and may
better account for temporal trends and correlation structures across
years. It can thus detect QTL that are stable over time (i.e., the QTL
associated with intercept traits) with greater statistical evidence, but
it can also identify QTL that interact with time (e.g., the QTL asso-
ciated with slope traits) (Wu and Lin 2006). Summary statistics on
the wood properties of the studied Scots pine full-sib family (Figure
1, Table 2) showed levels and trends well in line with expectations of
young Scots pines (compare with Fries 2012) in the cambial age
range of approximately 5–13 yr. The tree age of this material (17 yr) is
also considered to be appropriate for assessment and selection in breed-
ing (Rosvall 2011), making the results of this study also relevant from
a breeding point of view. Given the cambial age range of the increment
cores, our wood trait slope parameters should illustrate the rate of the
biological transition from juvenile to mature wood by increasing cambial
age. Previous research on wood properties has indicated wood trait radial
trends of mature trees to be best-fitted by exponential or logistic models
(Burdon et al. 2004). However, the nine investigated annual rings only
partly cover the juvenile-to-mature wood transition phase, which in Scots
pine may extend over a time period as long as 20 yr (Hannrup et al.
2000). Moreover, wood properties are also known to be strongly influ-
enced by annual environmental fluctuations such as climate (Feng et al.
2012), which could have caused the deviations from linearity observed in
Figure 1 as readily as increasing cambial age. Therefore, a simple linear
function was chosen for the functional mapping of this study despite
the minor nonlinearities observed for the trait trajectories.

The functional mapping of this study moreover investigated two
advanced but closely related multi-locus model approaches: a multi-
level LASSO model (mLASSO) and a newly developed Bayesian linear
mixed model (BLMM). The use of multi-locus models with shrinkage
of QTL marker effects (LASSO and BLMM) could act as a safeguard
against the systematic effect overestimation associated with single-
locus models paired with conservative multiple significance testing
(Beavis 1994; Slate 2013). Compared with the approach of Sillanpää
et al. (2012), our new BLMM approach can be more efficient because
of the prior conjugacy and its fast implementation in Matlab. The
BLMM is also closely connected to many other Bayesian functional
mapping approaches such as those of Yang and Xu (2007) and Li and
Sillanpää (2013). However, those studies modeled the marker effects
as nonlinear curves over time, whereas the marker effects of our study
simply constitutes parameters that describe a linear trend per se. An-
other difference is that they assumed the effects of the same marker on
slope and intercept to be correlated in the priors, whereas we assume
them to be independent. The principle of the two-step mLASSO of
this study is similar to QTL mapping approaches introduced by Gee
et al. (2003), Heuven and Janss (2010), and Hurtado et al. (2011), even
though they used effect estimation methods other than LASSO.

QTL observed for the intercept of important
wood traits
Results from the wood intercept trait analyses, aimed at detecting QTL
stable over a specified period of time, largely indicated zero to five

n Table 4 Description of significant QTL

General QTL info Multilevel LASSO Statistics BLMM Statistics

QTL Markera Trait
Data
Set LGb

Position
(cM) Allelesc

Multilevel
Effectd Single-pe COV-pe SSPe

BLMM
Effect BFDRe

Part A. QTL for trait intercepts and single time points
1. GGG191A EWD A u — p/a 4.3 kg m23 0.0529 0.235 0.6889 7.7 kg m23 0.040�

1. GGG191A EWD S+A u — p/a n.s. — – — 0.5 kg m23 0.651
2. 0_11919_01-122S FWr S+A 14m 11.7 C/T 0.39 mm 0.0809 0.009� 0.664� 0.35 mm 0.429
2. — FWr A 14m — — No AFLPs in the same LG
3. AGG142A EFWr S+A u — p/a 0.27 mm 0.010� ,0.001� 0.682� 0.10 mm 0.624
3. AGG142A EFWr A u — p/a n.s. — — — 0.04 mm 0.690
4. TCG51A GAf A u — p/a 0.30 to 0.34� ,0.001� ,0.001� 0.88–0.91� 0.51� ,0.001�

4. TCG51A GAf S+A u — p/a 0.05� 1 0.902 0.187 0.07� 0.861
5. Axs_47_502S GAf S+A 3m 40.6 A/C 20.41 to

20.44�
0.002–0.006� ,0.001� 0.76–0.82� 20.52� 0.227

5. — GAf A 3m — — No AFLPs in the same LG
Part B. QTL for trait slopes
6. GCG64A EPg A u — p/a 0.23 y21 0.006� 0.006� 0.908� 0.32 y21 0.1459
6. GCG64A EPg S+A u — p/a n.s. — — — �0.00 y21 0.978
7. TGG57A EWD A u — p/a 1.0 kg m23 y21 0.1999 0.215 0.7129 1.6 kg m23 y21 0.047�

7. TGG57A EWD S+A u — p/a n.s. — — — 0.4 kg m23 y21 0.691
8. 2_10306_01-354S LWD S+A 1p 474.4 A/C 3.2 kg m23 y21 0.0719 0.033� 0.747� 3.0 kg m23 y21 0.623
8. — LWD A 1p — — Closest AFLP (AGC141) far away (33.6 cM)
9. 0_18350_01-393S FWr S+A 8p 0.0 A/G 20.02 mm y21 0.1609 0.035� 0.674� 20.02 mm y21 0.887
9. — FWr A 8p — — No AFLPs in the same LG

Data include the name of the QTL marker, the trait and dataset where it was found, its linkage group (LG) and position within the linkage group, the alleles conferring
and not conferring the effect, respectively, QTL effect estimates for multilevel LASSO and Bayesian linear mixed effect model (BLMM), and marker uncertainty
quantities for Bonferroni-adjusted single ordinary least squares re-estimated t-test (Single-p), covariance test (COV-p), stability selection (SSP), and Bayesian global
false discovery rates (BFDR), respectively. The primary QTL detections are marked in bold.
a

The marker type is shown in capital superscript after the marker name: A = AFLP; S = SNP.
b

m = maternal LG; P = paternal LG; u = unmappable.
c

p/a = presence/absence.
d

n.s. = not selected by LASSO.
e

9 = suggestive; � = significant.
f

In case the QTL was detected for both GA assessments, effect ranges are given.
g

Effects are given in the transformed scale.
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QTL per trait explaining a small fraction of the phenotypic variation
and with limited effects on the traits. This observation agrees with
many published conifer QTL and association mapping studies (Brown
et al. 2003; Pot et al. 2006; González-Martínez et al. 2007; Ukrainetz
et al. 2008; Dillon et al. 2010; Beaulieu et al. 2011) and, given that only
major QTL usually are detected, it suggests wood intercept traits to be
largely polygenic. In our study, EWD and FWr exhibited a greater
number of appreciably strong QTL stable over time in comparison
with the latewood proportion of those traits or to other wood traits
(Figure 2, Table 3). However, the three QTL markers significant for

EWD, FWr, and EFWr exhibited individual effects in a range of 0.8%–
2.3% in relation to the overall population mean of the respective traits.
Consequently, selection assisted by markers developed from these
QTL would likely not achieve any dramatic improvements if used
in isolation. The observations of numerous and stable EWD QTL
agree with previous results where separate annual ring QTL analyses
were performed on the wood of a full-sib family (Brown et al. 2003)
and a three-generation pedigree (Sewell et al. 2000) of loblolly pine.
Also, Ukrainetz et al. (2008) detected several QTL for both EWD and
LWD in several separate annual ring QTL analyses on eight full-sib

Figure 4 Trait slope marker
effects (g) for earlywood, late-
wood percentage ratio, whole
ring, earlywood and latewood
density, whole ring radial, early-
wood radial, whole ring tangen-
tial fiberwidths, whole ring, and
earlywood fiberwall thickness
(EP, LP, WD, EWD, LWD, FWr,
EFWr, FWt, FTh, EFTh) selected
by the multilevel LASSO model
in A datasets (black) and S+A
datasets (gray) and of markers
showing LFDR ,0.5 for the
Bayesian linear mixed effect
model in the A datasets (red)
and S+A datasets (magenta) are
plotted against their estimated
locations on maternal (m) and pa-
ternal (p) linkage groups (LG).
1 Morgan is approximately the
length of LG 1m. Markers in sec-
tion u were not mappable to any
LG. Significant and suggestive
QTL are shown as diamonds and
squares, respectively, whereas all
other selected markers are shown
as circles. All markers in consider-
able linkage (recombination fre-
quency ,0.3) with a significant
or suggestive QTL are framed in
a rectangle.
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families of Douglas fir [Pseudotsuga menziesii (Mirb) Franco var
menziesii].

The observed tendency of WD and FWr to exhibit sets of QTL
markers similar to those of EWD and EFWr, respectively, indicates
genetic regulation of the earlywood component of the annual ring to
be highly influential on properties of the annual ring as a whole. This
is not very surprising because earlywood constituted the major com-
ponent in most annual rings studied (Table 2). Similarly, the observa-
tion of three QTL markers suggestively or significantly associated with
both fiberwall thickness and wood density traits is consistent with the
strong phenotypic and genetic correlations repeatedly observed between
wood density and the thickness of the tracheid cell walls (for examples
of Scots pine, see Fries 2012; Hong et al. 2014). The apparent universal
applicability of these correlations therefore suggests that the QTL coloc-
alizations we observed for these trait pairs (WD/EWD, FWr/EFWr, and
WD/FTh) more likely stem from pleiotropy than from close linkage.

Also, for spiral grain angle, which is a trait closely connected to the
twist propensity of sawed timber during drying (Dinwoodie 2000;
Warensjö and Rune 2004), a number of influential QTL (two signif-
icant and three suggestive) were observed (Figure 3). To the knowl-
edge of the authors, no QTL for grain angle have been published for
any conifer species. In contrast to the estimated marker effects of the
intercept traits, effects of the significant GA QTL (0.30�–0.52�) (Table 4,
part A) indicate that an appreciable reduction of GA could be achieved
by marker-assisted selection in the material of this study and potentially
improve the shape stability of small sawed timber (Hallingbäck et al.
2010). However, it must still be cautioned that the GA measurements
were taken directly beneath the bark at breast height during two con-
secutive growth seasons (cambial age range of 12–14 yr) and the
detected QTL thus may not be stable over a wider range of cambial
ages. For other traits observed at few time points such as MFA and
MOE, only a limited set of suggestive QTL were observed.

QTL observed for the slopes of important wood traits
The slope of wood traits over cambial ages or the rate of juvenile-to-
mature wood transition has, to our knowledge, never been included in
any published QTL or association mapping analyses, even though one
association mapping study of radiata pine (Dillon et al. 2010) consid-
ered the transition in a different manner. They regarded the juvenile-
to-mature wood transition as a discrete phase change whose timing
could be predicted using latewood density as an indicator trait
(Gapare et al. 2006), and we have rather dissected the dynamics of
the transition process itself. In the results of this study, it was notable
that large portions of the phenotypic variation for the slopes of ear-
lywood percentage and earlywood density were explained by a limited
number of suggestive and significant QTL (Table 3 and Figure 4)
indicating the existence of major effect loci. Also, the effect of the
QTL marker significantly associated with the slope of LWD (SNP
2_10306_01-354) (Table 4, part B) was notably large despite the low

corresponding H2
QTL estimates. The results for EP and LWD are

particularly intriguing because these traits are well-known to exhibit
decreasing and increasing trends, respectively (Figure 1B, Table 2) as
a result of the wood maturation process (Zobel and Sprague 1998;
Burdon et al. 2004). Taking the significant EP QTL (GCG64) (Table 4,
part B) as an example and assuming conditions similar to those of this
study, trees with the band present genotype (heterozygote) are pre-
dicted to decrease their EP from 56.3% at cambial age 9 to 42.2% at
age 14 (5 yr later), whereas trees with the band absent genotype
(homozygote) would decrease their EP even faster (from 56.3% to
40.3%) during the same time period. Admittedly, this calculation
example may be oversimplistic and one should remember that QTL
observed in a single full-sib family are usually not generalizable to
other families, populations, or environments. However, the results of
this study nonetheless illustrate potential to regulate the speed of
certain aspects of wood maturation by marker-assisted selection.

Comparison between QTL mapping methods and
decision rules
As shown inMaterials and Methods, the mLASSO model and BLMM
model are in principle closely connected approaches. The mLASSO
model is a two-step approach because it estimates the temporal trends
and marker effects on those trends separately, whereas the BLMM is
a one-step approach estimating the temporal trends and marker coef-
ficients simultaneously. Furthermore, in mLASSO, the intercept and
slope latent parameters are treated independently. However, in
BLMM, intercepts and slopes are jointly analyzed in a bivariate model,
so the dependency between them may be more properly taken care of
(Piepho et al. 2012). In general, it is believed that BLMM should be
a more precise approach for analyzing this type of longitudinal data,
and that the mLASSO model can sometimes be used as an approxima-
tion to BLMM (Sikorska et al. 2012). In our work, mLASSO and BLMM
detected similar sets of QTL under conditions of higher statistical power
(the A-set with data for at least 250 individuals), whereas under con-
ditions of low statistical power (S+A-set with data for less than 100
individuals regardless of the trait) only the mLASSO was able to detect
any QTL (Figure 2, Figure 3, Figure 4 and Table 4). Supported by results
of additional two-step Bayesian analyses, it is possible that the one-step
BLMM, due to the simultaneous estimation of a higher number of
parameters than the mLASSO, provided estimates with larger variances
and lost power to detect QTL when sample sizes were insufficient.
However, it also cannot be excluded that the small sample size of the
S+A-set combined with the approximative behavior of the two-step
methods (like mLASSO) could have caused a greater-than-expected
number of falsely detected QTL. In any case, the inconsistency between
BLMM and mLASSO at low statistical power suggests that QTL ob-
served in the S+A dataset should be interpreted cautiously.

Another methodological objective of this study was to evaluate the
performance of several hypothesis-testing or uncertainty assessment

n Table 5 Counts of significant or suggestive QTL summed over all the traits for AFLP data and SNP+AFLP data

Data Type
Multilevel LASSO BLMM

Single-p MST-p COV-p SSP BFDR

Counts of significant QTL
AFLP 2 1 4 2 3
SNP+AFLP 2 0 5 4 0
Total number of suggestive or significant QTL
AFLP 17 1 12 14 18
SNP+AFLP 7 0 12 5 0
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methods for QTL identification. Regarding the mLASSO framework,
the Single-p is very similar to many single locus hypothesis testing
methods commonly used, whereas MST-p, COV-p, and SSP are more
specifically designed for multi-locus LASSO methods. One common
problem regarding these tests is their inconsistency with penalized
estimates of marker effects obtained at a specific value of tuning
parameter l in LASSO. The development of more reliable LASSO test
statistics is still an ongoing research topic (Lockhart et al. 2014). Under
the BLMM framework, it is possible to derive a BFDR-based decision
rule by relying on a single MCMC simulation without any extra effort
such as re-sampling. Given the results of this study, one can conclude
that MST-p was much more conservative than all other methods. This
was expected because MST-p relies on a stricter assumption than the
others (Bühlmann et al. 2014). In future research, simulation studies are
needed to perform more intensive comparisons between the BLMM
and the mLASSO approaches and between their associated significance
testing methods.

Potential links between QTL and candidate genes
Among the nine significant QTL observed in this study, four were
linked to SNP markers (Table 4), which would enable speculations
about the potential function of the candidate genes from which the
SNPs were developed. One should, however, note that none of these
QTL SNPs were mapped in the proximity to any of the AFLP
markers, which could have verified the QTL in the statistically high-
powered A-set. Moreover, because conifer genomes are very large, the
genetic linkage within our full-sib family likely extends over numerous
genes that, due to the limited statistical power of the S+A-set, all could
be considered as alternative loci for the QTL. Consequently, the inter-
pretations made here need to be taken with caution.

The significant SNP-QTL for the intercept of FWr (0_11919_01-122)
is situated in a gene coding for a F-box protein, an enzyme link to the
pathway of lignin precursor biosynthesis (Andersson Gunnerås 2005).
This suggests that a putative F-box association to fiber width may be
mediated through the control of lignin biosynthesis, an integral part of
the secondary cell walls of plants. The SNP-QTL (Axs_47_502) signifi-
cantly associated with GA is an UDP-D apiose/UDP-D-xylose synthase
(AXS) that catalyzes the conversion of UDP-D-glucuronicacid to UDP-
D-apiose and UDP-D-xylose. D-xylose is the second most common
component of hemicellulose abundant in the cell wall, particularly in
the S2 layer, which heavily influences the properties of the fiber cells
(Rowell 2005). By theoretically investigating mechanical aspects of fiber
cell division and maturation, Schulgasser and Witztum (2007) suggested
the S2 microfibril angle (i.e., MFA) to be involved in the development of
grain angle. An association between GA and AXS observed in this study
is thus conceivable.

Among the significant QTL for trait slopes, the SNP-QTL
2_10306_01-354 and 0_18350_01-393 were associated with LWD
and FWr, respectively. The SNP associated with LWD is located in
a gene coding the NINJA protein, which acts as a transcriptional
repressor and whose activity is mediated by a functional TPL-binding
EAR repression motif. Both NINJA and TPL proteins function as
negative regulators of jasmonate responses and are therefore involved
in the regulation of gene expression of proteins related to stress and
growth (Wasternack and Hause 2013). The significant association of
NINJA protein with WD in this study could be understood consid-
ering that wood density is a consequence of cell wall growth. The SNP
associated with FWr is located in a gene coding a lipase class 3 family
protein. Lipases are involved in the accumulation and storage of lipid
triglycerides and steryl esters into an organelle in the cell called the
lipid body (LB). Among other functions, LBs are involved in providing

building blocks for the enlargement of cell membranes (van der
Schoot et al. 2011), such as the plasma membrane of the cell walls
that form the wood. These speculations on the nature of the signifi-
cant SNPs control of certain traits will certainly require further re-
search advances in the molecular biology of wood development to be
confirmed. However, we do not doubt the value of our findings as
candidate targets for such studies.

Previous studies of QTL and association analysis for wood
properties resulted in the identification of multiple candidate genes,
some of which have been confirmed across several studies in conifers
(Brown et al. 2003; González-Martínez et al. 2007; Dillon et al. 2010;
Beaulieu et al. 2011). The majority of these previously assayed candi-
date genes were included in our array, but we found no significant
trait associations for them. The only exception is the finding made by
Kumar et al. (2009) that a gene coding for a lipid transfer protein was
differentially expressed between Scots pine juvenile and mature wood.
This is consistent with the SNP located in the lipid transfer protein
coding gene and associated with the slope of FWr in this study. The
authors argued about a possible gene role on cell wall deposition but
admitted that this interpretation was vague and required further re-
search for its validation.

Conclusions and future research
With respect to the genetic dissection of wood properties, the
functional QTL mapping approach appeared promising and produced
interesting results. Significant QTL were observed for the wood trait
intercepts of EWD, FWr, and EFWr that appeared fairly stable within
the studied cambial age range (approximately 5–13 yr). Two highly
significant QTL were also detected for GA, which has never been in-
cluded in wood property QTL studies. Furthermore, significant QTL
were detected for the wood trait slopes of EP, EWD, LWD, and FWr,
indicating marker associations with the rate of wood maturation. Four
of the significant QTL were observed using SNP markers developed
from candidate genes, thus making them interesting targets for further
linkage or association mapping efforts or for molecular biology studies
of the wood development in conifers.

In addition to the genetic implications of this study, two functional
mapping methods and several methods for quantifying certainty or
significance of QTL were compared. The one-step BLMM and two-
step mLASSO methods detected similar sets of QTL given that a large
number of individuals were studied and the adaptive shrinkage
method of BLMM appeared to allow reasonably large effect estimates
in case QTL were significant. When the number of individual studies
was small, however, the BLMM method did not detect any QTL
indicating greater requirements than mLASSO in terms of the number
of assessed individuals. Future research in this regard could use
simulated data to further elucidate the differences between the two
functional mapping approaches.
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