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Abstract
Background: The emergence of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and its disease CO-
VID-19 has strongly encouraged the search for antiviral com-
pounds. Most of the evaluated drugs against SARS-CoV-2 de-
rive from drug repurposing of Food and Drug Administra-
tion-approved molecules. These drugs have as target three 
major processes: (1) early stages of virus-cell interaction,  
(2) viral proteases, and (3) the viral RNA-dependent RNA 
polymerase. Summary: This review focused on the basic 
principles of virology and pharmacology to understand the 
importance of early stages of virus-cell interaction as thera-
peutic targets and other main processes vital for SARS-CoV-2 
replication. Furthermore, we focused on describing the main 
targets associated with SARS-CoV-2 antiviral therapy and the 
rationale of drug combinations for efficiently suppressing 
viral replication. Key Messages: We hypothesized that block-
ing of both entry mechanisms could allow a more effective 
antiviral effect compared to the partial results obtained with 

chloroquine or its derivatives alone. This approach, already 
used to achieve an antiviral effect higher than that offered 
by every single drug administered separately, has been suc-
cessfully applied in several viral infections such as HIV and 
HCV. This review will contribute to expanding the percep-
tion of the possible therapeutic targets in SARS-CoV-2 infec-
tion and highlight the benefits of using combination thera-
pies. © 2020 S. Karger AG, Basel

Introduction

In the last trimester of 2019 a new coronavirus, named 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) and responsible for coronavirus disease 2019 
(COVID-19), emerged in Wuhan, China. There is no yet 
an approved therapy to treat the infection by SARS-
CoV-2 and its associated disease, COVID-19, and the 
therapeutic approaches used have been changing from 
the beginning of the outbreak [1–3]. The standard care of 
patients with COVID-19 is mainly focused on symptom-
atic and respiratory support according to the diagnosis 
and treatment of pneumonia and coagulopathies caused 
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by COVID-19 [4]. Several research groups have been 
working to determine the possible targets to control the 
viral infection [5–7]. Three major targets have been iden-
tified and can be summarized in the following: early stag-
es of virus-cell interaction, viral proteases, and the viral 
RNA-dependent RNA polymerase (RdRp) [7–9]. The 
replication cycle of SARS-CoV-2 and the main targets for 
the antiviral therapy described in this review are shown 
in Figure 1.

Early Infection Stages: Blocking Viral Entry

After interaction with its receptor ACE2, SARS-CoV-2 
enters the cell through the fusion of its viral membrane 
with the cellular one (Fig. 1) [10]. The viral fusion protein 
is exposed by priming with a proteolytic enzyme. Three 
different types of proteases have been proposed for this 
cleavage: (1) Priming by the cellular transmembrane ser-
ine protease 2 (TMPRSS2) and also TMPRSS4 in entero-
cytes. This priming allows viral entry by the early endo-
somal pathway, although the exact mechanism of entry is 
unknown [8, 11, 12]. (2) Priming by cathepsin B in the 
late endosomes [13]. (3) Activation during virus egress 
from the cell by furin [14]. Furin-dependent pre-cleavage 
of the spike has been shown to be necessary for activation 
through the TMPRSS2 pathway [15].

In the early stages of infection, different therapeutic 
agents have been used, including hydroxychloroquine 
(HCQ) [16, 17], benzoic acid derivatives such as nafamo-
stat and camostat [18], and neutralizing antibodies [19]. 
The antiviral effect of HCQ is related to an elevation of 
the pH in endosomes/lysosomes, which is essential for 
the fusion between the viral and vesicle membranes. In 
addition, HCQ could inhibit SARS-CoV cellular entry by 
changing the glycosylation pattern of ACE2, the key re-
ceptor for SARS-CoV-2 entry [16, 17]. Furthermore, 
HCQ exerts immunomodulatory effects through attenu-
ation of cytokine production [20]. The effects of HCQ on 
cellular targets are considered nonspecific antiviral ef-
fects.

Another early target evaluated against SARS-CoV-2 is 
a cellular protease related to the priming of the spike pro-
tein (S), which exposes the fusion motive and allows the 
release of viral RNA into the cytosol. The proteolytic pro-
cessing of the viral spike protein is a key step during the 
infection process of SARS-CoV-2. This reaction is driven 
by TMPRSS2 and could be inhibited by camostat, nafa-
mostat, and bromhexine [18, 21]. Interestingly, some re-
ports showed that SARS-CoV-2 could gain entry into the 

host cell without using the late endocytic pathway. The 
processing of TMPRSS2 in the extracellular lumen could 
likely be sufficient to activate the fusion between the viral 
and host membrane [22, 23]. This alternative entry path-
way would explain the low success rates in the use of 
HCQ/chloroquine alone in COVID-19 therapy. In addi-
tion, chloroquine does not seem to prevent SARS-CoV-2 
entry into human lung cells, suggesting that the  
TMPRSS2-primed pathway predominates in the lung [24].

Arbidol (umifenovir) is an antiviral agent that targets 
S/ACE2 interaction, inhibiting membrane fusion of the 
viral envelope [2]. This compound could be considered 
as an early-stage inhibitor of SARS-CoV-2. Another ther-
apy for COVID-19 is the use of convalescent plasma or 
hyperimmune immunoglobulins (NAbs) [25]. Antibod-
ies from recovered patients or neutralizing monoclonal 
antibodies may neutralize the free virus and induce the 
immune clearance of infected cells. On March 24, 2020 
the Food and Drug Administration (FDA) released an 
emergency approval for the use of COVID-19 convales-
cent plasma. The development of neutralizing monoclo-
nal antibodies against SARS-CoV-2 infection is ongoing 
[19, 26].

Targeting Viral Enzymes

Other promising therapeutic targets against SARS-
CoV-2 infection are viral proteases (Fig. 1) due to their 
low homology with host protease and the structural 
knowledge available for SARS-CoV [7, 27]. SARS-CoV-2 
has two viral proteases related to the proteolytic process-
ing of the viral polyprotein into mature and functional 
proteins. These enzymes are the main protease (3CLpro) 
and the papain-like protease (PLpro), both belonging to 
the family of cysteine proteases. They exhibit a high struc-
tural and functional homology with SARS-CoV proteases 
[27–29]. The main protease is responsible for the prote-
olysis of pre-proteins associated with the viral replication 
machinery such as the RdRp, the helicase, and the exori-
bonuclease, among others [29]. Several groups have 
shown by using in silico and in vitro approaches that this 
protease may be blocked by protease inhibitors effective 
in HIV therapy [7, 27, 29, 30]. Furthermore, lopinavir/
ritonavir, an FDA-approved oral drug combination for 
treating HIV, exhibited in vitro activity against other 
coronaviruses. However, in the case of SARS-CoV-2 in-
fection, the timing of the administration of these drugs 
during the early peak of the viral replication phase (at ini-
tial 7–10 days) appears to be critical. Delayed initiation of 
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Fig. 1. SARS-CoV-2 replication. The viral cycle begins with the 
interaction between the viral spike and the cellular receptor. Sev-
eral membrane proteins have been proposed as possible receptors 
for SARS-CoV-2; however, ACE2 is likely to be the most important 
one [10]. After the viral spike has interacted with the receptor, the 
virus gains entry into the host cytosol by two mechanisms: (1) by 
late endocytosis, releasing the viral RNA after the fusion with the 
lysosome (this entry is blocked by HCQ), or (2) by early endocy-
tosis by fusion of the viral and host membrane without the par-
ticipation of the lysosome. In these early stages, the priming pro-
cessing by cellular proteases is the key for the exposure of the viral 
fusion motive. TMPRSS2 could act in both early and late endo-
some entry processes and could be inhibited by benzoic acid de-
rivatives such as nafamostat, camostat, and bromhexine [18, 21]. 
Furthermore, other proteases such as cathepsin B could mediate 
the entry in the late lysosomal pathway, while only TMPRSS2 has 
been related to the early entry endosome [11, 13, 15, 18]. After fu-
sion has occurred, the viral RNA is released into the cytoplasm and 
open reading frame 1 (ORF1) is translated to produce the RdRp. 
Subgenomic mRNAs are produced by discontinuous transcrip-

tion, a process characteristic of this RdRp, which favors recombi-
nation. Compounds such as remdesivir, favipiravir, and sofosbu-
vir block this enzyme [39–41, 45]. The subgenomic mRNAs are 
then translated into protein. The genome has eight ORFs. The gene 
segments that encode nonstructural polyproteins are processed 
first and translated into ORF1a and ORF1b producing pp1a and 
pp1ab proteins, respectively. Protein pp1a and pp1ab are cleaved 
by the viral proteases (3CLpro and PLpro). The main protease is also 
the target of protease inhibitors such as lopinavir/ritonavir [7]. 
The structural proteins – spike, envelope, and membrane pro- 
teins – enter into the endoplasmic reticulum/Golgi complexes. 
Then, the nucleoprotein combines with the (+) strand genomic 
RNA (nucleoprotein complex) and merges with the other struc-
tural proteins in the endoplasmic reticulum-Golgi apparatus com-
partment [64]. Finally, the virion is excreted to the extracellular 
region through the exosomal pathway [64]. HCQ, hydroxychloro-
quine; RdRp, RNA-dependent RNA polymerase; SARS-CoV-2, se-
vere acute respiratory syndrome coronavirus 2; TMPRSS2, trans-
membrane serine protease 2; ORF, open reading frame.
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therapy with lopinavir/ritonavir did not result in positive 
clinical outcomes mainly due to the high viral load [31]. 
Another important concern with lopinavir/ritonavir 
therapy against SARS-CoV-2 is related to the administra-
tion route. This drug combination is administered to pa-
tients with COVID-19 by the oral pathway, applicable for 
drugs with good gastrointestinal absorption and low vol-
ume of distribution (the volume of distribution for lopi-
navir/ritonavir is around 17 L) [32, 33]. However, these 
compounds bind tightly to plasma proteins (in the plas-
ma, > 98% of the drug is in bound form), which decreases 
the ability to reach tissues such as the lung [32]. This im-
portant pharmacological issue related to the pharmaco-
kinetic parameters of lopinavir/ritonavir needs to be ad-
dressed in order to improve the therapeutic outcome of 
treatment with this drug combination. The second prote-
ase related to the SARS-CoV-2 replication cycle, PLpro, is 
responsible for the cleavages of the N-terminus of the 
polyprotein to release Nsp1, Nsp2, and Nsp3, nonstruc-
tural proteins associated with viral replication [34–36]. In 
addition, PLpro also possesses de-ubiquitination and de-
ISGylation activities that could antagonize the host’s in-
nate immunity [37].

The SARS-CoV-2 genome replication is carried out by 
an RdRp and could be one of the best targets in the SARS-
CoV-2 replication (Fig. 1) [38]. This enzymatic activity 
has no parallel process in the eukaryotic cells. Thus, at-
tacking this target might reduce side effects that might 
occur by affecting any similar protein in the host. The 
sequences of RdRp in SARS-CoV and SARS-CoV-2 have 
a high homology and encode structurally similar pro-
teins. Remdesivir is a nucleotide analog inhibitor of RdRp 
and has shown a broad spectrum of antiviral activity 
against several RNA viruses [38, 39]. Remdesivir simi-
larly to sofosbuvir, a direct-acting antiviral used in HCV 
therapy, is a chain-terminating nucleotide analog. These 
drugs produce their therapeutic effect by directly inter-
acting with the RdRp and incorporating the active form 
of the inhibitor into the growing RNA strand, preventing 
the replication to continue [40, 41]. Several clinical trials 
have been conducted evaluating the activity of remdesivir 
and other direct-acting antivirals used in HCV against 
SARS-CoV-2 [42]. Only remdesivir reached the FDA 
emergency approval status for its use in patients with se-
vere COVID-19. However, the clinical improvements by 
using remdesivir alone in SARS-CoV-2 patients are mod-
est. Favipiravir, another antiviral agent with broad activ-
ity against other RNA viruses by inhibiting the RdRp, 
halting viral replication, was evaluated against SARS-
CoV-2, showing effects in vitro and in vivo [43–45].

Combined Therapy

Drug combinations that have been widely used in an-
tiviral therapy have become the leading choice for treat-
ing HIV and HCV, among other viral pathologies [46–
50]. The use of multiple drugs with different mechanisms 
of action increases the efficacy of the therapeutic effect. It 
also allows decreasing the dose of a single drug, thus pre-
venting host toxicity [51–54]. Moreover, one important 
advantage of combination therapies besides enhancing 
the selective effect over the target is that this approach 
minimizes or slows down the development of drug resis-
tance, which is the main issue in antiviral therapy of RNA 
viruses. Experimental conditions for drug combinations 
in vitro can be easily defined. Information for most indi-
vidual drugs used against SARS-CoV-2 is available, thus 
conducting in vitro assays for the effect of their combina-
tions could take a very short time (approximately < 2 
weeks) by using methods such as the combination index-
isobologram method of Chou [55]. However, there are 
some issues associated with the evaluation of drug com-
binations in clinical trials related to dose, timing, route of 
administration, efficacy, and toxicity, among others, that 
make the extrapolation of in vitro data difficult. These 
factors are associated with, but not limited to, variables in 
the patient population such as sex, age, race, and disease 
stage. Furthermore, drug combination trials need to ful-
fill all the ethical concerns to treat patients with placebo 
or suboptimal therapeutic doses as required for a drug 
combination study design according to the guidelines of 
regulatory agencies, such as the FDA.

As explained above, HCQ could produce a non-direct-
acting specific antiviral effect against SARS-CoV-2 by 
several mechanisms. However, the results obtained in the 
clinical trial by using HCQ alone were less satisfactory 
than expected [56]. Although HCQ affects the early stag-
es of the viral infection, i.e., the endosome-mediated en-
try, some reports showed that SARS-CoV-2 could enter 
the host cells bypassing the pathways blocked by HCQ 
[15]. Thus, we hypothesize that this could be avoided by 
combining HCQ and camostat or nafamostat [18] or 
bromhexine [21, 57]. These TMPRSS2 inhibitors could 
block the other mechanism associated with SARS-CoV-2 
entry. In addition to interfering with the different prote-
ases involved in the activation of the fusion peptide of S, 
a combined scheme might include an inhibitor of this do-
main [8]. Furthermore, we support the fact that other 
TMPRSS2 inhibitors such as bromhexine, a drug used as 
mucolytic, could be an important pharmacological tool to 
design prophylactic therapies. Bromhexine has a well-
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known drug safety profile and it is marketed as an over-
the-counter medication. Thus, the design of clinical trials 
and extrapolation into effective therapy should be less 
complicated in comparison with drugs as camostat or na-
famostat. Furthermore, some reports showed that brom-
hexine could overcome the main pharmacokinetic prob-
lem in SARS-CoV-2 therapy, reaching the pulmonary 
and bronchial epithelial cells in concentrations higher 
than those found in the plasma [58].

The above combination targets viral entry into the cell. 
Similarly, neutralizing antibodies and fusion inhibitors 
could be combined in a triple combination format. Most 
of the targets associated with the early stages of the viral 
infection are host targets that significantly decrease the 
probability of developing resistance in comparison with 
viral targets [51].

The early study published by Cao et al. [59] showed 
that lopinavir/ritonavir could produce a modest positive 
effect in comparison to the standard care in patients with 
SARS-CoV-2. However, several researchers have criti-
cized the structural design of the study of Cao et al. [59], 
suggesting that the antiviral effect of lopinavir/ritonavir 
against SARS-CoV-2 could be higher; thus, more studies 
are needed [60–62]. Nevertheless, the side effects associ-
ated with these protease inhibitors are important. Thus, 
antiviral therapy based on combining these protease in-
hibitors with another antiviral compound such as rem-
desivir could decrease the effective dose required to pro-
duce the antiviral effect and then decreasing the possibil-
ity of side effects. The possibility of the occurrence of viral 
resistance with this strategy should be kept in mind.

Of the 1,265 clinical trials based on drugs to treat 
SARS-CoV-2 registered in the National Institutes of 
Health Library, only 113 (< 10%) are based on drug com-

NIH clinical trials
(SARS-CoV-2/COVID-19)

n = 3,009

NIH clinical trials
including drugs

n = 1,265

NIH clinical trials
including combination of drugs

n = 113

Lopinavir
combination

n = 10

Remdesivir
combination

n = 5

HCQ/chloroquine
combination

n = 45

Table 1. Clinical trials registered in the United States National Library of Medicine that included drug combinations against SARS-CoV-2 
targeting early steps of viral replication or viral enzymes

Drug combination Clinical trial number (NIH) Country Registration date

Camostat mesilate, HCQ NCT04338906 Germany April 8, 2020
NCT04355052 Israel April 21, 2020

Baricitinib, HCQ, lopinavir/ritonavir, remdesivir NCT04373044 US May 4, 2020
HCQ, azithromycin, ivermectin, camostat mesilate NCT04374019 US May 5, 2020
Favipiravir, HCQ NCT04411433 Turkey June 2, 2020
Favipiravir, lopinavir NCT04499677 UK August 5, 2020

The studies shown were retrieved from the website ClinicalTrials.gov (see also Fig. 2). SARS-CoV-2/COVID-19 as condition or 
disease and the drug names and their combinations were used as keywords for the search. Drugs related to blocking early stages of viral 
replication or viral enzymes are shown in bold. COVID-19, coronavirus disease 2019; NIH, National Institutes of Health; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2.

Fig. 2. Clinical trials using a combination of drugs targeting early 
replication steps or viral enzymes. An exhaustive revision of the 
ongoing clinical trials related to SARS-CoV-2 was performed us-
ing the database of the National Institutes of Health (NIH) of the 
United States. The data were accessed from the NIH webserver 
ClinicalTrials.gov. The search terms were “COVID” or “SARS-
CoV-2,” resulting in 3,009 trials. Then, the search parameter drug 
was applied as a further term, retrieving 1,616 clinical trials. In 
each search, the trials included those not yet recruiting, recruiting, 
active, or completed. A visual inspection of each of the 1,616 trials 
was conducted and only 1,265 included drugs as the main inter-
vention. Moreover, the drug combination trials were also re-
viewed, and only 113 included a combination of pharmacological 
therapy for the treatment of COVID-19 patients. The database 
search was conducted on August 14, 2020. COVID-19, coronavi-
rus disease 2019; HCQ, hydroxychloroquine; SARS-CoV-2, severe 
acute respiratory syndrome coronavirus 2.
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binations. One-third of them include HCQ under combi-
nation therapy (Fig. 2). Table 1 summarizes the ongoing 
clinical trials combining drugs targeting early viral repli-
cation events or viral enzymes.

Conclusions

Altogether, the virology and pharmacological princi-
ples discussed in this review emphasize the importance of 
early stages of the infection as therapeutic targets and the 
advantage of simultaneously blocking alternative pro-
cesses critical for viral replication. The development of 
effective therapies against this new viral pathogen has 
proven to be a challenge. Useful in vitro and in vivo mod-
els are needed to address the effectiveness of drugs or 
their combination to be used as preclinical data, followed 
by randomized clinical trials. Prior studies with SARS-
CoV might help to develop and validate models for this 
new infection. More studies will help to fully understand 
the possible advantages of drug combinations against 
SARS-CoV-2 infection. Based on the experience obtained 
with the treatment of other viral infections, the combina-
tion of two or more antiviral drugs could produce a better 
effect than the one reached with a single drug. These an-
tiviral effects could be additive or synergistic, depending 
on the degree of inhibition of viral load. Furthermore, 
besides the improvement in the antiviral effect achieved, 

an eventual reduction of the dosage used could represent 
fewer side effects associated with the therapy. Thus, en-
hancing the antiviral effect and reducing side effects could 
represent a main change in SARS-CoV-2 therapy. There 
are at present many concerns because of the toxicity of 
chloroquine or its derivative [24]. Drug combination 
might help to reduce the dose or the time of application 
of this mixed therapy. Nasal administration is also a 
promising alternative that might overcome both toxicity 
effects and effective concentration challenges [63].
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