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We analyse how migration from a large mainland influences genetic load
and population numbers on an island, in a scenario where fitness-affecting
variants are unconditionally deleterious, and where numbers decline with
increasing load. Our analysis shows that migration can have qualitatively
different effects, depending on the total mutation target and fitness effects
of deleterious variants. In particular, we find that populations exhibit a gen-
etic Allee effect across a wide range of parameter combinations, when
variants are partially recessive, cycling between low-load (large-population)
and high-load (sink) states. Increased migration reduces load in the sink
state (by increasing heterozygosity) but further inflates load in the large-
population state (by hindering purging). We identify various critical
parameter thresholds at which one or other stable state collapses, and discuss
how these thresholds are influenced by the genetic versus demographic
effects of migration. Our analysis is based on a ‘semi-deterministic’ analysis,
which accounts for genetic drift but neglects demographic stochasticity. We
also compare against simulations which account for both demographic sto-
chasticity and drift. Our results clarify the importance of gene flow as a key
determinant of extinction risk in peripheral populations, even in the absence
of ecological gradients.

This article is part of the theme issue ‘Species’ ranges in the face of
changing environments (part I)’.
1. Introduction
Most outcrossing populations carry a substantial masked mutation load owing
to recessive variants, which can contribute significantly to inbreeding
depression in peripheral isolates or after a bottleneck. The extent to which the
increased segregation (or fixation) of deleterious mutations due to drift (drift
load) exacerbates extinction risk in isolated populations has been a subject of
long-standing interest [1–4]. Theory predicts that moderately deleterious
mutations contribute the most to genetic load and extinction in small popu-
lations [2,5]; however, the prevalence of such deleterious variants of mild or
moderate effect and their dominance values remain poorly characterized,
except for a few model organisms [6,7].

The relative risks posed bymutation accumulation and demographic stochasti-
city to a population depend crucially on its size, with theory suggesting that these
may be comparable for populations in their thousands [1]. Additionally, environ-
mental stochasticity—catastrophic events, as well as fluctuations in growth rates
and carrying capacities, may dramatically lower extinction times [8]. Both demo-
graphic and environmental fluctuations, in turn, reduce the effective size of a
population, making it more prone to fix deleterious alleles; the consequent
reduction in fitness further depresses size, pushing populations into an ‘extinction
vortex’, which is often characterized bya complex interaction between the effects of
genetic drift, demographic stochasticity and environmental fluctuations [9].
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Peripheral populations at the edges of species’ ranges
receive dispersal from the core to an extent which varies
over space and time. Moreover, ranges may be fragmented
owing to habitat loss and individual sub-populations
connected to each other via low and possibly declining
levels of migration. Under what conditions are such extinc-
tion vortices arrested by migration, and what are the
genetic and demographic underpinnings of this effect,
when it occurs?

Migration boosts numbers, mitigating extinction risk
owing to demographic and environmental stochasticity, or at
the very least, allows populations to regenerate after chance
extinction. The demographic consequences of migration are
especially important in fragmented populations with many
small patches [10]: above a critical level of migration, the
population may survive as a whole over long timescales
even if individual patches frequently go extinct [11,12].

Migration also influences extinction risk by shifting the
frequencies of fitness-affecting variants: the resultant changes
in fitness may decrease or increase population size, thus
further boosting or depressing the relative contribution of
migration to allele frequency changes within a population,
setting in motion a positive feedback which may culminate
in extinction (when gene flow is largely maladaptive; e.g.
[13,14]) or evolutionary rescue (if gene flow supplies vari-
ation necessary for local adaptation, or reduces inbreeding
load; e.g. [5,15,16]).

The maladaptive consequences of migration have largely
been explored for extended populations under spatially vary-
ing environments: here, gene flow typically hinders local
adaptation, especially at range limits, leading to ‘swamping’
and extinction [17]. However, the consequences of gene flow
for fitness, and consequently survival, are not always intui-
tive when the fitness effects of genetic variants are
uniformly deleterious (or beneficial) across populations. For
example, while gene flow may alleviate inbreeding load by
preventing the fixation of deleterious alleles in small popu-
lations, it may also render selection against recessive
mutations less effective by increasing heterozygosity. A strik-
ing consequence is that under a range of conditions, the
fitness of metapopulations is maximized at intermediate
levels of migration [18] and more generally, at intermediate
levels of population structure [19].

A key consideration is whether or not gene flow is sym-
metric, i.e. whether some sub-populations are merely
influenced by the inflow of genes from the rest of the habitat
or if all sub-populations influence the genetic composition of
the population as a whole [20]. Asymmetric dispersal is
common at the geographical peripheries of species’ ranges
or on islands. Moreover, populations occupying small
patches within a larger metapopulation with a wide distri-
bution of patch sizes, or sub-populations with lower-than-
average fitness (and consequently, atypically low numbers)
may also experience predominantly asymmetric inflow of
genes. Asymmetric gene flow allows for allele frequency
differences across the range of a population even in the
absence of environmental heterogeneity, e.g. when popu-
lation sizes (and hence the efficacy of selection relative to
drift) vary across the habitat. This, in turn, may generate het-
erosis or outbreeding depression across multiple loci, when
individuals from different regions hybridize.

From a conceptual viewpoint, the consequences of asym-
metric gene flow are typically simpler to analyse as we can
focus on a single population, while taking the state of the rest
of the larger habitat as ‘fixed’. Such analyses are key to under-
standing more general scenarios where genotype frequencies
and population sizes across different regions co-evolve.

Here, we analyse the eco-evolutionary dynamics of a
single island subject to migration from a larger mainland in
a scenario with uniform selection across the two populations,
i.e. where fitness is affected by a large number of variants
that are unconditionally deleterious. We ask: under what con-
ditions can migration from the mainland alleviate inbreeding
load, thus preventing ‘mutational meltdown’ and extinction
of the island population? Further, how are the effects of
migration mediated by the genetic architecture of load, i.e.
by the genome-wide mutation target and fitness effects of
deleterious variants? A key focus is to understand the
coupled evolution of allele frequencies (across multiple loci)
and population size: to this end, we consider an explicit
model of population growth with logistic regulation, where
growth is reduced by an amount equal to the genetic load.

While the effects of maladaptive gene flow on marginal
populations have been studied under various models
[21,22], there has been little work (under genetically realistic
assumptions) on the (possibly) beneficial effects of migration
on inbreeding load and survival. In particular, modelling the
polygenic nature of fitness variation is crucial, as changes in
load (e.g. owing to migration) at any locus can affect all other
loci by effecting changes in population size, which in turn
influences the efficacy of selection across the genome.

2. Model and methods
Consider a peripheral island population subject to one-way
migration from a large mainland. Individuals are diploid
and carry L biallelic loci that undergo bidirectional mutation
between the wild-type and deleterious state at rate u per gen-
eration per individual per locus in either direction. Mutations
have the same fitness effects on the mainland and island, i.e.
there is no environment-dependent fitness component.

Deleterious variants across loci affect fitness multiplica-

tively (no epistasis): individual fitness is e�
PL

j¼1
sjðXjþhjYjÞ,

where Xj (Yj) equals 1 if the jth locus is homozygous (hetero-
zygous) for the deleterious allele, and is zero otherwise. Here,
sj is the homozygous selective effect and hj the dominance
coefficient for the deleterious allele at locus j. We assume
0≤ hj≤ 1/2, so that deleterious alleles are (partially) recessive.
In individual-based simulation (see the electronic supplemen-
tary material, appendix A), we use the form (1− hs)n(1− s)m1m

0

(which is equivalent to the above fitness function for small s)
where n represents the number of heterozygous loci, m rep-
resents the number of loci homozygous for the deleterious
allele and m0 represents the number of homozygous loci for
the wild-type allele with n +m +m0 = L.

In each generation, a Poisson-distributed number of individ-
uals (withmeanm0)migrate from themainland to the island. For
simplicity, we assume that the mainland population is large
enough that deleterious allele frequencies among migrants
(denoted by fpðmÞ

j g) are close to the deterministic predictions
for a single locus under mutation–selection equilibrium.

We assume density-independent selection on individuals
on the island and density-dependent population growth
with logistic regulation, where the baseline growth rate is
reduced by the genetic load: the population size nt in any gen-
eration t is then Poisson-distributed with mean equal to
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nt�1 exp½r0ð1� nt�1=KÞ�W , where nt−1 is the population size in
the previous generation, r0 the baseline growth rate, K the car-
rying capacity, and W the mean genetic fitness. The nt
individuals in the tth generation are formed by randomly
sampling 2nt parents (with replacement) from the nt−1 individ-
uals in the previous generation with probabilities equal to
their relative fitnesses, followed by free recombination
between parental haplotypes to create gametes. Diploid
offspring are then formed by randomly pairing gametes.

(a) Simulations
We carry out two kinds of simulations: individual-based
simulations that explicitly track multi-locus genotypes of
all individuals on the island, and simulations that assume
linkage equilibrium (LE) and neglect inbreeding. The latter
kind of simulations are computationally less intensive as
they only track allele frequencies at the L loci and the size
of the population. However, they make two simplifying
assumptions: first, that genotypes at any locus are in
Hardy–Weinberg proportions (i.e. no inbreeding); second,
that any statistical associations, e.g. between the allelic
states of different loci (linkage disequilibria; LD) or between
the probability of identity by descent, and consequently
homozygosity, at different loci (identity disequilibria; ID)—
are negligible. Then, individual genotypes are simply
random assortments of deleterious and wild-type alleles,
and can be generated, e.g. in a simulation, by independently
assigning alternative allelic states to different loci with prob-
abilities equal to the allele frequencies. Details of the
simulations are provided in the electronic supplementary
material, appendix A.

Because selection pressures are identical on the mainland
and island, systematic differences in allele frequencies or homo-
zygosity between the two populations across multiple loci
(which would generate LD and ID, respectively) must arise
solely owing to differences in population size, which would
cause the efficacy of selection to be different on the mainland
and island. In general, we expect LD and ID to be negligible
when all ecological and evolutionary processes are slower
than recombination [14]: this may not hold, however, when
populations are small (and drift significant), making it necess-
ary to evaluate how associations between deleterious variants
affect extinction thresholds. In the rest of the paper, we will
only show results of the allele frequency simulations (assuming
LE and zero inbreeding); we compare these with individual-
based simulations anddiscuss howLDand IDaffect population
outcomes in the electronic supplementarymaterial, appendix B.

(b) Joint evolution of allele frequencies and population
size

Assuming LE and no inbreeding, the evolution of the island
population is fully specified by how allele frequencies {pj} and
the population size n co-evolve in time t. If all evolutionary
and ecological processes (except recombination) are slow, we
can describe this co-evolution in continuous time. We rescale
all rates by the baseline growth rate r0 and population sizes by
the carrying capacity K. This yields the following dimensionless
parameters: τ = r0t, S = s/r0, M0 =m0/(r0K), U = u/r0, Nt = nt/K
and an additional parameter ζ = r0Kwhich governs the strength
of demographic fluctuations. The joint evolution of allele fre-
quencies {pj} and the scaled population size N in continuous
time is described by the following equations (see also [14]):

dpj
dt

¼ � pjqj
2

@Rg

@pj
þUðqj � pjÞ þM0

N
ðpðmÞ

j � pjÞ þ l pj ,

q j ¼ 1� p j

and
dN
dt

¼ N[1�N � Rg]þM0 þ lN ,

where Rg ¼
XL
j¼1

Sjpjð2hjqj þ p jÞ:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
ð2:1Þ

The random processes λN and l pj satisfy E½l pj � ¼ E½ln� ¼ 0,
E½lNðtÞlNðt0Þ� ¼ ðNðtÞ=zÞdðt� t0Þ and E½l pjðtÞl pjðt0Þ� ¼
ð1=zÞð pjðtÞqjðyÞ=NðtÞÞdðt� t0Þ, where E denotes the mean.

The four terms in the first equation correspond (in order of
appearance) to changes in allele frequency due to selection,
mutation,migrationanddrift.Note that the strengthofmigration
is inversely proportional to population size N, reflecting the
stronger (relative) effect ofmigration on the genetic composition
of smaller, as opposed to larger, island populations. The second
equation describes the evolution of population size N: the first
term describes changes in N under logistic growth, where the
growth rate is reduced by a factor proportional to the log mean
fitness (i.e. the genetic load); the second term captures the
effect of migration; the third term corresponds to demographic
fluctuations (whose variance is proportional to N, the size of
the population). These equations capture a key feature of poly-
genic eco-evolutionary dynamics—namely, that the evolution
of allele frequencies at different loci is coupled via their depen-
dence on a common N, which in turn is influenced by the
degree ofmaladaptation at all loci viaRg. Thus, allele frequencies
do not evolve independently, even if allelic states at different loci
are statistically independent at any instant (under LE).

For fixed N and under LE and IE, the joint distribution
of allele frequencies at mutation–selection–migration-drift
equilibrium is a product of the single-locus distributions.
This was given by Wright [23], and for a given locus j is (in
terms of scaled parameters):

cðpjjNÞ/ p
4zNUþ4zM0p

ðmÞ
j �1

j ð1� pjÞ4zNUþ4zM0ð1�pðmÞ
j Þ�1

e�2zNSpj½pjþ2hð1�pjÞ�: ð2:2Þ
Integrating over this distribution yields the expected
allele frequency EðpjjNÞ and the expected heterozygosity
Eð2pjqjjNÞ at any locus, and thence the expected total load
EðRgjNÞ ¼ P

j Sj½EðpjjNÞ � ð1=2� hÞEð2pjqjjNÞÞ� (scaled by
the baseline growth rate r0) for fixed N.

However, in reality, N is not fixed and will fluctuate—both
owing to random fluctuations in fitness (due to the underlying
stochastic fluctuations of {pj} at equilibrium) as well as in the
reproductive output of individuals (demographic stochasticity).
Thus,N itself followsadistribution.Whilewecanwritedownan
equation for the stochastic co-evolution ofN and {pj}, no explicit
solution for the joint equilibrium distribution is possible unless
mutation rates are strictly zero (as assumed by Szép et al. [14]).
Thus, we must employ various approximations to describe the
coupled dynamics of population sizes and allele frequencies.

(c) Approximate semi-deterministic analysis
We expect the population size distribution to be sharply
peaked around one or more values {N*} if demographic fluc-
tuations are weak (i.e. for ζ = r0 K≫ 1) and if fluctuations in
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Figure 1. Population outcomes with zero migration. (a) Scaled critical selection threshold Ksc, above which populations are metastable, as a function of the scaled
mutation target 2LU = 2L(u/r0) for different values of Ku (different colours) for nearly recessive (h = 0.02; solid lines) and additive (h = 0.5; dashed lines) alleles.
A non-zero equilibrium population size N� ¼ 1� E½RgjN�� exists for Ks > Ksc but not for Ks < Ksc. This selection threshold is calculated using equation (2.3) by
neglecting demographic stochasticity, and thus strictly provides a criterion for stable populations in the limit ζ = r0 K→∞. (b) The scaled extinction half-time
T1/2 = r0 t1/2 (see text for definition) as a function of 2LU for various K (different colours) for nearly recessive (h = 0.02; main plot) and additive alleles (inset).
(c) The average scaled population size N = n/K of metastable populations versus 2LU for various K (different colours) along with the semi-deterministic prediction
N� ¼ 1� E½RgjN�� (dashed black line) for nearly recessive (h = 0.02; main plot) and additive alleles (inset). In both (b) and (c), the carrying capacity is increased
while proportionately decreasing s, u and increasing L, such that Ks = 25, Ku = 0.01 and 2LU = 2L(u/r0) remain unchanged; increasing K thus has the sole effect of
weakening demographic stochasticity. Extinction times and the average population sizes in the metastable state are computed from allele frequency simulations
(under LE and IE) of 1000 replicates with r0 = 0.1.
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mean fitness are also weak (i.e. for large L). Such sharply
peaked distributions correspond to populations that tran-
sition only rarely between alternative peaks, i.e. where the
alternative peaks {N*} of the size distribution represent ‘meta-
stable’ states, allowing allele frequencies sufficient time to
equilibrate at any N*. Then, the genetic load would be close
to the expected value EðRgjN�Þ under mutation–selection–
drift–migration balance (given N*) when populations are
in one of the alternative metastable states, though not
necessarily while they transition between states. In order
to determine {N*}, we postulate that these must represent
stable equilibria of the population size dynamics, neglect-
ing demographic stochasticity and assuming that mean
fitness (given N*) is close to the expectation under
mutation–selection–drift–migration balance for that N*.
Then we have:

0 ¼ N�(1�N� � E½RgjN��)þM0

1� 2N� � E½RgjN�� �N�
dE½RgjN�

dN

����
N¼N�

, 0:
ð2:3Þ

The equality follows from equation (2.1), by setting
the third (noise) term to zero and assuming that Rg is
close to its equilibrium expectation EðRgjN�Þ, given N*. The
second inequality is the condition for N* to be a stable
equilibrium: this means that populations starting at an arbi-
trary N in the vicinity of N* would evolve towards this
equilibrium size. Equation (2.3) can be solved numerically
to obtain the equilibria {N*}, which, under the above assump-
tions, will be close to the peaks of the population size
distribution. As we see below, depending on the parameter
regime, there may be one or two stable equilibria of equation
(2.3), corresponding to population size distributions that are
unimodal or bimodal. Bifurcations (i.e. critical parameter
thresholds where one of the two stable equilibria vanishes)
thus correspond to qualitative transitions in the state of
the population.

We will refer to the analysis above as a ‘semi-determinis-
tic analysis’ as it accounts for the stochastic effects of genetic
drift on allele frequencies and load (via the expectation
E½RgjN��) but neglects demographic stochasticity. In general,
we expect the semi-deterministic analysis to become more
accurate for larger ζ = r0K (see also the electronic supplemen-
tary material, appendix B), since increasing ζ, which implies
higher number of births per generation, results in weaker
demographic fluctuations [14].
3. Results
(a) Metastable populations and extinction times in the

absence of migration
We first consider peripheral populations in the absence of
migration. Such populations necessarily become extinct in
the long run: however, depending on the mutation target
for deleterious mutations (relative to the baseline growth
rate r0), the fitness effects of mutations and the carrying
capacity of the island, extinction times may be very long
and populations metastable.

We can use equation (2.3) to gain intuition for the
conditions for metastability under zero migration. Setting
M0 = 0, it follows that there is always an equilibrium at
N = 0 (corresponding to extinction): this equilibrium is
stable for L(S/2) > 1 where S = s/r0, and unstable otherwise
(see the electronic supplementary material, appendix B for
details). There may exist a second equilibrium at
N� ¼ 1� E½RgjN�, M0 ¼ 0�; the population size N* is positive
(i.e. the population is not extinct) only if
E½RgjN�, M0 ¼ 0� , 1, i.e. if the equilibrium genetic load is
lower than the baseline growth rate.

Because the equilibrium load E½RgjN�, M0 ¼ 0� depends
on four independent parameters (which we choose as ζS =
Ks, ζU =Ku, h and 2LU = 2L(u/r0)), mapping the conditions
for metastability boils down to asking: in the absence of
demographic fluctuations, where in this four-dimensional
parameter space, can we find populations with a non-zero
equilibrium size or sufficiently low load (figure 1a)? In reality,
there is a fifth parameter ζ = r0K, which governs demographic
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stochasticity: thus, all other parameters being equal, extinction
times will be longer when demographic stochasticity is
weaker, i.e. r0K larger (figure 1b).

For simplicity,we assume that deleterious alleles anywhere
on the genome have the same selective effects and dominance
coefficients; this assumption is relaxed in the electronic sup-
plementary material, appendix D. We use Ksc to denote the
critical selection strength per homozygous deleterious allele
(scaled by the carrying capacity K), such that a non-zero equi-
librium N* exists for Ks > Ksc but not for Ks <Ksc. Figure 1a
shows Ksc as a function of 2LU = 2L(u/r0), the total mutation
rate relative to the baseline growth rate, for differentKu (differ-
ent colours) for nearly recessive (h = 0.02; solid lines) and
additive (h = 0.5; dashed lines) alleles.

For populations to be metastable, the total genetic load
must be less than the baseline growth rate. The total load
scales with the mutation target L; the load per locus is
approximately 2u for strongly deleterious variants (u/hs≪
1 and Ks≫ 1). For smaller Ks, drift will typically inflate
load above this deterministic expectation when deleterious
alleles are additive (h∼ 1/2) but may also reduce load (via
more efficient purging) when alleles are recessive (h∼ 0).
This is reflected in figure 1a: the threshold Ksc required for
metastable populations is higher for additive deleterious
alleles (dashed lines) than recessive alleles (solid lines).
Moreover, because genetic load in this drift-dominated
regime depends only weakly on the mutational input Ku,
the threshold Ksc is largely independent of Ku (different col-
ours). Finally, for all parameter combinations, the threshold
Ksc increases as the mutation target becomes larger: this
simply reflects the fact that for the total load to be less than
the baseline growth rate, the load per locus must be lower
(requiring stronger selection) if deleterious variants segregate
at a greater number of loci. Accordingly, for very large
mutation targets 2LU ¼ 2Lðu=r0Þ * 1, the total load will
exceed r0 (and populations will fail), irrespective of the
strength of selection against deleterious mutations.

The critical selection thresholds for metastability shown in
figure 1a are computed by neglecting demographic stochasti-
city, i.e. by assuming ζ = r0K to be very large. However, for
moderate ζ, stochastic fluctuations in reproductive output
from generation to generation may accelerate extinction: this
effect can be especially significant in smaller populations as
these tend to fix more deleterious alleles, which further
reduces fitness and size, thus rendering populations even
more vulnerable to stochastic extinction.

To investigate how demographic stochasticity contributes
to extinction, we compare populations residing on islands
with different carrying capacities K, but characterized by
the same values of Ks, Ku, 2LU = 2L(u/r0) and h. Mathemat-
ically, this involves taking the limit s→ 0, u→ 0, K→∞,
L→∞, while holding Ks, Ku, 2LU constant: then, increasing
K has the sole effect of weakening demographic stochasticity
(by increasing r0K). Populations are initially perfectly fit, but
accumulate deleterious variants over time, eventually becom-
ing extinct owing to the combined effects of genetic load and
demographic stochasticity. Figure 1b shows the extinction
‘half-time’ T1/2 = r0t1/2 (scaled by the baseline growth rate
r0)—the time by which precisely half of all 1000 simulation
replicates are extinct, as a function of 2LU for various K for
nearly recessive (main plot) and additive alleles (inset). All
results are from allele frequency simulations (assuming LE
and zero inbreeding). Dashed vertical lines indicate the
threshold 2LU above which metastable populations (with
N* = 1− E[Rg|N*] > 0) cannot exist (even for large r0K).

We find that extinction times increasewith increasingK for
all parameters. However, for parameter combinations that cor-
respond to extinction in the large r0K limit (i.e. to the right of the
dashed lines), this increase is approximately linear in K, while
for parameters leading to metastability in the large r0K limit
(left of dashed lines), this increase is faster than linear. In fact,
in the metastable regime, even with a carrying capacity K of a
few thousand individuals, demographic stochasticity will be
sufficientlyweak and extinction times large enough that isolated
populations can persist over geological timescales: for these
parameter regimes, it is environmental fluctuations (which our
model ignores), rather than mutation load or demographic
stochasticity, that will primarily influence extinction risk.

We also compute the average (scaled) population size N =
n/K in the metastable state (figure 1c). This declines with
increasing 2LU, i.e. as we approach the threshold for loss of
metastability, and is close to the semi-deterministic prediction
(dashed black lines) for all values of K.

(b) Effect of migration on equilibrium population sizes
and genetic load

We now consider how migration from a large mainland influ-
ences population dynamics on the island, for different genetic
architectures of load, i.e. given certain selective effects and
dominance coefficients of deleterious alleles. As before, we
assume that all deleterious alleles have equal selective effects
and dominance values, relegating the discussion of more gen-
eral scenarios, where alleles with different fitness effects
segregate, to the electronic supplementary material, appendix
D. We first identify critical parameter thresholds associated
with qualitative changes in population outcomes for the
two extremes: nearly recessive (h = 0.02 in figure 2) and addi-
tive (h = 0.5) alleles. We then consider how these thresholds
depend on the dominance of deleterious alleles (figure 3).

Figure 2 illustrates the effect of migration on population
sizes and load on the island for three parameter combi-
nations, corresponding to weakly deleterious (Ks <Ksc; left
column), moderately deleterious (Ks * Ksc; middle) and
strongly deleterious (Ks≫Ksc; right) nearly recessive alleles
(h = 0.02). Recall that Ksc is the selection threshold (obtained
by neglecting demographic stochasticity) such that popu-
lations rapidly go extinct in the absence of migration for
Ks <Ksc, but can be metastable (even without migration) for
Ks >Ksc and r0 K→∞ (figure 1).

Figure 2a–c shows population sizes corresponding to stable
equilibria of equation (2.3) versus m0, the number of migrants
per generation, for Ks <Ksc, Ks * Ksc and Ks≫ Ksc. The
insets show the equilibrium load versusm0. Since these equili-
bria are calculated by numerically solving equation (2.3), they
represent semi-deterministic predictions, i.e. they neglect demo-
graphic stochasticity but account for the effects of drift,
assuming that populations spend enough time in any meta-
stable state that the distribution of allele frequencies can
equilibrate. Figure 2d–f shows the stochastic distribution of
the scaled population sizeN = n/K, as obtained from allele fre-
quency simulations (assuming LE and zero inbreeding) after
the population has equilibrated, for various m0, in the three
parameter regimes. Figure 2g–i shows the corresponding
time series N(t) over an arbitrary period, after equilibration,
for a single randomly chosen stochastic realization.
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Figure 2. Effect of migration on equilibrium population sizes and load for weakly deleterious (Ks < Ksc; left column), moderately deleterious (Ks * Ksc ; middle)
and strongly deleterious (Ks≳ Ksc; right) nearly recessive (h = 0.02) alleles. (a–c) Population size (main plots) and genetic load (inset), corresponding to one or
more stable equilibria, versus m0, the number of migrants per generation. Equilibria are obtained by numerically solving equation (2.3) (semi-deterministic pre-
dictions). Blue lines represent the sink equilibrium (with an associated population size that tends to zero as m0→ 0); red lines represent the large-population
equilibrium (with non-zero population size in the m0→ 0 limit). The thresholds mc,2 (2b) and mc,1 (2c) represent critical migration thresholds at which the
sink or the large-population equilibrium vanishes. The threshold mc,3 (2b) is the critical migration level at which the (scaled) load associated with the sink
state becomes less than 1. (d–f ) Equilibrium probability distributions of the scaled population size N = n/K for various values of m0, as obtained from simulations
(under LE and IE) in the three parameter regimes. The filled and empty triangles indicate the population sizes corresponding to alternative equilibria as predicted by
the semi-deterministic analysis. (g–i) Time series N(t) versus t over an arbitrary period after equilibration, for a single randomly chosen stochastic realization in each
of the three regimes. All plots show results for: Ku = 0.01, 2LU = 2L(u/r0) = 0.5, ζ = r0 K = 50, h = 0.02 and Ks = 5, 20, 50 for the left, middle and right columns,
respectively (the critical threshold is Ksc∼ 7.65). In addition, for the simulations (plots (d–i)), we use r0 = 0.1.
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(c) Weakly deleterious recessive alleles
For Ks <Ksc, there exists a single stable equilibrium at all
migration levels (figure 2a), with the corresponding popu-
lation size approaching zero as migration becomes rarer.
Accordingly, the stochastic distribution of N exhibits a
single peak for all m0 (figure 2d ). An increase in migration
causes the genetic load to decrease (inset, figure 2a) and the
equilibrium population size to increase. The stochastic distri-
bution of population sizes is approximately exponentially
distributed for low m0 (corresponding to a sink state), but
shifts towards higher N as m0 increases, and is approximately
normally distributed about the deterministic equilibrium N*

(indicated by empty triangles in figure 2d ) for large m0.
Increasing migration has two effects in this case: it reduces

genetic load, typically by reducing homozygosity—a genetic
effect, but also increases population numbers—a demographic
effect. The genetic effect of migration, i.e. the dependence
of the expected load EðRgjNÞ ¼ P
j Sj½EðpjjNÞ � ð1=2� hÞ

Eð2pjqjjNÞ� on m0, can be further decomposed into effects on
the expected frequencies EðpjjNÞ and expected heterozygosity
Eð2pjqjjNÞ of deleterious alleles. For weakly deleterious reces-
sive alleles, the expected frequency decreases with increasing
migration for low m0, is minimum at intermediate m0, and
then increases as m0 increases further (not shown). However,
genetic load still decreases monotonically with increasing
migration (inset, figure 2a), owing to the much sharper increase
in heterozygosity with migration.

(d) Strongly deleterious recessive alleles
For Ks≫Ksc, there exist two stable equilibria of the semi-
deterministic population size dynamics (equation (2.3)) at
low levels of migration: population sizes and values of load
corresponding to these two equilibria are shown in blue
and red in figure 2c. One equilibrium (blue lines in figure



0

20

40

60

80

100

0.2 0.4 0.6 0.8 1.0 1.2

h = 0.02 Ku = 0.01

sc
al

ed
 s

el
ec

tio
n

th
re

sh
ol

ds
 K

S
c 

an
d 

K
S

c,
2

r0K = 50

r0K Æ •
r0K = 100

r0K = 50

r0K Æ •
r0K = 100

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bimodal (Allee effect)

unimodal
(large-population)

unimodal
(sink)

mc,1mc,2
mc,3

cr
iti

ca
l m

ig
ra

tio
n

th
re

sh
ol

ds
cr

iti
ca

l m
ig

ra
tio

n
th

re
sh

ol
ds

0

20

40

60

80

100

bimodal

unimodal
(large-population)

unimodal
(sink)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

scaled genome-wide mutation rate 2LU = 2L(u/r0)

r0K = 50

r0K Æ •
r0K = 100

h = 0.02Ku = 0.01 Ks = 50

h = 0.1 Ku = 0.01 h = 0.1Ku = 0.01 Ks = 50

sc
al

ed
 s

el
ec

tio
n

th
re

sh
ol

ds
 K

S
c 

an
d 

K
S

c,
2

0.2 0.4 0.6 0.8 1.0
scaled genomewide mutation rate 2LU = 2L(u/r0)

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8

mc,1mc,2
mc,3

r0K = 50

r0K Æ •
r0K = 100

(b)(a)

(c) (d )

Figure 3. Semi-deterministic predictions for critical thresholds with and without accounting for demographic effects of migration. (a,c) Critical selection thresholds
Ksc (dashed line) and Ksc,2 (solid lines) as a function of the scaled mutation target 2LU = 2L(u/r0) with (a) h = 0.02 and (c) h = 0.1, for r0 K = 50, r0 K = 100 and
for r0 K→∞ (in which limit migration has negligible demographic effects). The parameter r0 K, which governs the magnitude of the demographic effect of
migration (via the term M0 = m0/(r0 K )) is varied by changing K, while simultaneously varying s, u and L such that Ks, Ku and 2LU = 2L(u/r0) are constant
(so that the genetic effects of migration remain unchanged). The threshold Ksc is such that populations rapidly go extinct for Ks < Ksc in the limit of zero migration,
but are metastable for Ks > Ksc, if starting from large but not small sizes (so that there is a genetic Allee effect). The second threshold Ksc,2 is such that increasing
migration destabilizes the sink state for Ks > Ksc,2, but destabilizes the large-population state for Ksc < Ks < Ksc,2. The threshold Ksc is independent of migration, but
Ksc,2 increases as r0 K increases, i.e. as the demographic effect of migration becomes weaker. (b,d ) The critical migration thresholds mc,1 (solid lines), mc,2 (dashed
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with load greater than or less than the baseline growth rate r0, increases with increasing r0K. All predictions are for Ku = 0.01.
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2c) corresponds to a sink state with the associated population
size approaching zero as m0→ 0. The other equilibrium
(depicted in red) corresponds to a large population, which
can persist at a finite fraction of carrying capacity even as
migration becomes exceedingly rare, i.e. has size N*, which
approaches 1� E½RgjN�, M0 ¼ 0� . 0 as m0→ 0.

The existence of two stable equilibria at low m0 translates
into bimodal population size distributions (in black and
brown in figure 2f), with one peak close to extinction and
the other at the semi-deterministic N* (depicted by filled
triangles). Population size N(t) also exhibits characteristic
dynamics (see time series in black and brown in figure 2i):
populations tend to remain ‘stuck’ in either the sink state or
the large-population state for long periods of time, typically
exhibiting rather small fluctuations about the characteristic
size associated with either state, and only transitioning rarely
between states.

The sink and large-population states can also be thought
of as ‘high-load’ (i.e. genetic load rg greater than the baseline
growth rate r0) and ‘low-load’ (rg < r0) states. Thus, in this
parameter regime, populations exhibit a genetic Allee
effect, wherein load is sufficiently low and net growth rates
positive only above a threshold population size: therefore,
starting from an initially empty island, populations cannot
grow deterministically (and persist instead as migration-
fed sinks), even though large populations can maintain them-
selves, at least in the absence of demographic fluctuations.
Transitions between the sink (high-load) and large-popu-
lation (low-load) states are thus inherently stochastic,
arising owing to demographic fluctuations (which are aided
by higher migration) rather than owing to a systematic
drive towards the alternative state.

Changes in m0 have qualitatively different effects on the
two states: at low m0, increasing migration reduces load and
thus increases numbers in the sink state (blue curve), but has
the opposite effect on the large-population equilibrium (red
curves). This is owing to the non-monotonic dependence of
the frequency of deleterious recessive alleles on population
size: increasing size causes drift to become weaker relative to
selection but also reduces homozygosity, so that fewer
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deleterious alleles are exposed to selection; frequencies are thus
minimum at intermediate population sizes, reflecting the ten-
sion between these two opposing effects. In small sink
populations, migration from the continent reduces homozygos-
ity as well as deleterious allele frequencies, thus reducing load.
However, in larger populations, increasing migration reduces
the homozygosity but raises the frequency of deleterious alleles
(since deleterious alleles are purged less efficiently in very large
mainland populations than in intermediate-sized or large
island populations); the overall effect of migration is thus to
increase load in the large-population state.

Above a critical migration threshold, which we denote by
mc,1, the sink equilibrium vanishes. Thus, for m >mc,1, popu-
lations always have a positive growth rate and reach a finite
fraction of carrying capacity, regardless of starting size. As
before, this qualitative change in the (semi-deterministic)
population size dynamics at a critical migration level has its
analogue in a qualitative change in the stochastic distribution
of population sizes (figure 2f): increasing migration causes
the population size distribution to change from bimodal to
unimodal (with a sole peak at the large-population equili-
brium N� ¼ 1� E½RgjN��). At higher migration rates, i.e. as
we approach the critical migration threshold mc,1 starting
from low m0, turnover between the sink and large-population
states becomes more rapid—note the shorter intervals between
transitions in the brown versus black time series in figure 2i.
(e) Moderately deleterious recessive alleles
Consider now the case where selection is stronger than the
threshold Ksc but not too strong, i.e. Ks * Ksc (middle
column in figure 2). As in the Ks≫Ksc case, there exist two
alternative stable equilibria at low migration levels, one corre-
sponding to the sink state (blue lines in figure 2b) and the
other to the large-population state (red lines). As before,
increasing migration alleviates inbreeding load and increases
population size in the sink state but elevates load (by hinder-
ing purging) and decreases population size in the large-
population state. Unlike in the Ks≫Ksc state, the latter
effect is much stronger: thus, above a critical migration
threshold, which we denote by mc,2, it is the large-population
equilibrium that vanishes, so that there is only a single (sink)
equilibrium for m >mc,2.

The analogous change in the population size distribution
with increasing migration (figure 2e) is somewhat subtle: for
the lowest value of m0 (black), the distribution is clearly
bimodal, with most of the weight close to N = 0 (sink state)
and a very small peak at the large-population equilibrium.
As migration increases, the distribution of sizes associated
with the sink state widens, while the peak corresponding to
the large-population equilibrium shifts towards lower N
(e.g. brown plot). At high migration levels (orange and
blue plots), there is no distinct second peak and only the
sink state persists. In this state, the genetic load exceeds r0
on average; however, its distribution and the corresponding
distribution of N is quite wide.

If migration increases further, then the average load
associated with the sink state continues to fall; at a third
threshold (denoted by mc,3; here approx. 1.33), the load
again becomes lower than the baseline growth rate r0 or,
alternatively, scaled load Rg = rg/r0 less than 1 (depicted by
a dashed line in figure 2b). Thus, for m0 >mc,3, populations
can grow, starting from small numbers, and reach a finite
fraction of carrying capacity. However, unlike the large-popu-
lation state that emerges at higher Ks, in this case,
populations are highly dependent on migration and would
rapidly collapse (owing to the fixation of deleterious alleles)
if cut off from the mainland.

Population size dynamics (figure 2h) are characterized, as
in the Ks≫Ksc case, by occasional transitions between the
sink state and the large-population state for low values of
m0 (black), with transitions becoming more frequent with
increasing m0 (orange). Transition times are much longer
than in the Ks≫Ksc case (note the values on the x-axis);
thus transitions are unlikely to occur over realistic timescales,
and populations will typically be observed in the sink state.
At higher migration levels, there are no obvious transitions,
with population sizes and load fluctuating (with some
skew) about a mean value.
( f ) Additive alleles
With additive effects (h∼ 0.5), any deleterious allele experien-
ces the same selective disadvantage, irrespective of whether it
appears in the heterozygous or homozygous state: thus, there
is no purging in smaller populations (which have higher
homozygosity) and allele frequencies decrease monotonically
with increasing population size. As a result, migration from
the larger mainland always decreases load (by decreasing
the deleterious allele frequency) and increases the size of
the island population.

This implies that there are only two qualitatively distinct
regimes: with weakly deleterious alleles (Ks less than the cor-
responding Ksc; figure 1a), populations tend to extinction as
migration declines. There is a single equilibrium of the semi-
deterministic population size dynamics for all m0 or analogou-
sly, a single peak of the stochastic population size distribution,
which shifts towards higher sizes as m0 increases.

For strongly deleterious alleles (Ks >Ksc), population size
N and load Rg are largely insensitive to migration, since
populations can always grow, starting from small numbers,
at least when demographic stochasticity is unimportant (i.e.
for r0 K≫ 1). With smaller r0 K, population sizes and load
depend weakly on migration, since demographic stochasti-
city may depress N and inflate the effects of drift (even
with Ks >Ksc). Moreover, in this regime, populations are
also prone to stochastic extinction for m0 < 1/2 [14], such
that the distribution of N is inherently bimodal. Thus,
where demographic stochasticity is significant, a low level
of migration may be needed for stable populations even
with strong selection against additive alleles.

The analysis outlined here (based on equation (2.3)) also
applies to loci with a distribution of effects: in the electronic
supplementary material, appendix D, we consider examples
where a fraction of deleterious mutations are additive and
the remaining fraction recessive. We also compare the results
of allele frequency simulations with those of individual-based
simulations with unlinked loci (electronic supplementary
material, appendix C). These show fairly close agreement,
suggesting that LD and ID do not significantly affect allele
frequency dynamics, at least for the typical parameter
values considered here: this is also consistent with earlier
work, which suggests only a modest effect of disequilibria
on background selection in sub-divided populations under
soft selection [19].
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(g) Disentangling genetic versus demographic effects
of migration on recessive alleles

In summary, given a mutation target 2LU & 1 and assuming
equal-effect loci, there is a critical selection threshold Ksc,
such that large populations are metastable in the m0→ 0
limit for Ks >Ksc but not for Ks <Ksc. For Ks <Ksc, there is a
genetic Allee effect at low migration levels and with partially
recessive alleles: populations cannot grow subsequent to reco-
lonization of an initially empty island, and persist only as
demographic sinks until a chance fluctuation increases num-
bers sufficiently that load can be purged and the alternative
(large-population) equilibrium attained; such large popu-
lations can then be maintained over long periods of time
(figure 2i). For very low dominance values (h & 0:15), there
is a second threshold Ksc,2 with Ksc,2 >Ksc (see below), which
separates parameter regimes characterized by qualitatively
different effects of migration on population outcomes: for
Ks>Ksc,2, increasing migration destabilizes the sink state, so
that only the large-population state persists above a migration
threshold mc,1, whereas for Ksc <Ks<Ksc,2, increasing
migration destabilizes the large-population state, so that only
the sink state persists above a threshold mc,2. However, such
migration-fed sink populations can be quite large: above a
third threshold mc,3, populations may even have sufficient
heterozygosity to again attain a low-load (rg < r0) state.

To what extent can we attribute such qualitative changes
in population outcomes to the genetic versus demographic
effects of migration? As before, one approach is to compare
critical thresholds for populations with the same scaled par-
ameters Ks, Ku, 2LU = 2L(u/r0) and h, while increasing the
carrying capacity K (simultaneously increasing L and lower-
ing u, s). Then, as K increases, the demographic effects of
migration (which depend on the dimensionless parameter
M0 =m0/(r0K); see equation (2.1)) can be neglected, while
its genetic effects on load (which depend on Ks, Ku and m0)
remain important.

Figure 3 shows these comparisons for two dominance
values—h = 0.02 (figure 3a,b) and h = 0.1 (figure 3c,d ). Note
that we only consider predictions of the semi-deterministic
analysis (equation (2.3)), which assumes that population
sizes are sharply clustered around the peaks of the distribution
and transitions between peaks are infrequent. This assump-
tion clearly breaks down close to transition thresholds (e.g.
see figure 2e,f ); thus, thresholds observed in simulations may
differ somewhat from semi-deterministic predictions (details
in the electronic supplementary material, appendix B). More-
over, the semi-deterministic analysis neglects all
demographic stochasticity, and thus does not account for the
fact that changes inKwill affect not just the (systematic) demo-
graphic effect of migration but also the (stochastic) effect of
demographic fluctuations. Nevertheless, the semi-determinis-
tic analysis is useful as it allows us to explore qualitative
dependencies of critical thresholds on the underlying
parameters without resorting to time-consuming simulations.

Figure 3a,c show the critical selection thresholds Ksc (as in
figure 1a) and Ksc,2 versus the scaled mutation target 2LU =
2L(u/r0) for the two values of h, for various carrying
capacities (with Ks, Ku, 2LU = 2L(u/r0) held constant, as K
is varied). The threshold Ksc, which relates to population out-
comes in the zero migration limit, is (by definition)
independent of K in the semi-deterministic setting, as increas-
ing K merely weakens the demographic effects of migration.
The threshold Ksc,2 decreases as K decreases, i.e. as the demo-
graphic effects of migration become stronger. This means that
when alleles are moderately deleterious, i.e. characterized by
a certain intermediate value of Ks, populations are stabilized
(i.e. rescued from recurrent collapse into the high-load sink
state) by increasing migration more easily on smaller islands,
where the demographic effects of migration are stronger.

Figure 3b,d shows the critical migration thresholds mc,1,
mc,2 and mc,3 versus 2LU for a given Ks value (chosen to be
50). Here, with h = 0.02 for example (figure 3b), increasing
migration causes the sink state to vanish for 2LU & 0:5,
but degrades the large-population (low-load) state for
2LU * 0:5. The threshold mc,1 (solid lines) is highly sensitive
to K: populations can be stabilized at a finite fraction of carry-
ing capacity at much lower levels of migration on smaller
islands (given Ks, Ku), suggesting a key role of the demo-
graphic effects of migration. We can obtain an explicit
expression for the threshold mc,1 in the limit K→∞ (so that
M0 =m0/(r0 K), which governs the demographic effects of
migration, is negligible):

mc,1 ¼ LSpðmÞ � 1
4½1� LSpðmÞðpðmÞ þ 2hð1� pðmÞÞÞ� as K ! 1: ð3:1Þ

Interestingly, this threshold depends only on the load,
LSp(m)( p(m) + 2h(1− p(m))), and breeding value, LSp(m),
among migrants, and is independent of Ks and Ku: this
simply reflects the fact that the growth rate of a very small
population (just after recolonization) depends primarily on
the genetic composition of founders (and not selection on
their subsequent descendants). Thus, the critical level of
migration required to prevent a genetic Allee effect in the
limit of very large carrying capacities is also independent of
Ks and Ku.

The threshold mc,2, which signals the collapse of the large-
population state, is less sensitive to K: this is consistent with
our expectation that demographic effects of migration should
be less important when numbers are larger. There is, never-
theless, a moderate decrease in mc,2 with K, which can be
rationalized as follows: the (detrimental) genetic effects of
migration on the large-population state are more effectively
compensated by its demographic effects when islands
are smaller (lower carrying capacity), allowing the large-
population state to persist despite higher levels of migration
on such islands. Finally, the third threshold mc,3, which sig-
nals the emergence of a migration-dependent low-load state
(at large 2LU) is also highly sensitive to the demographic
effects of migration, and becomes unrealistically high in the
large K limit, where increasing migration can only shift
allele frequencies but has little effect on population numbers
(relative to carrying capacity).

A comparison of the top and bottom rows in figure 3,
which correspond respectively to h = 0.02 and h = 0.1, shows
that as deleterious alleles become less recessive (larger h), the
parameter regime in which increasing migration eliminates
the large-population equilibrium shrinks drastically, and only
emerges for very high genome-wide mutation rates—with
h = 0.1, the second threshold Ksc,2 exists only for 2LU * 0:8
in figure 3c. This is consistent with the fact that purging of
recessive mutations in smaller populations (which allows
them to evolve significantly lower load than mainland popu-
lations) is only effective for very low h; thus, gene flow from
the mainland is less detrimental to the large-population
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equilibrium in island populations for less recessive alleles. In
fact, for h * 0:15, increasing migration always causes the
sink equilibrium to vanish, irrespective of Ks. Moreover, the
migration threshold mc,1 at which the sink state vanishes
falls with increasing h (compare figure 3b,d). Thus, we observe
a genetic Allee effect only at very low migration rates for mod-
erately recessive alleles. This is consistent with the fact that
inbreeding load in small populations (owing to excess homo-
zygosity) becomes lower as alleles becomes less recessive,
and is alleviated by even low levels of migration.
rnal/rstb
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4. Discussion
A key parameter governing the fate of peripheral populations
is 2LU = 2L(u/r0), the genome-wide deleterious mutation rate
relative to the baseline rate of population growth: low-load
(large-population) states are possible only for 2LU & 1, pro-
vided selection against deleterious variants is sufficiently
strong and/or migration high. Conversely, for 2LU * 1,
populations exist only as demographic sinks, irrespective of
selection strength. The parameter 2LU is a measure of
the ‘hardness’ of selection and can be small either if the
total mutation rate 2Lu (which determines total load in the
absence of drift) is small or, more realistically, if the growth
rate r0, i.e. the logarithm of the baseline fecundity, is high
(corresponding to the soft selection limit).

Our analysis highlights qualitatively different effects of
migration on population outcomes, depending on fitness
effects and the total mutation target of deleterious variants
(figures 2 and 3). For example, with 2LU = 0.5 (which corre-
sponds to a �50% reduction in growth rate owing to
genetic load in a deterministic population), typical Ks must
be at least approximately 5 for recessive and approximately
10 for additive alleles, if populations are to be metastable in
the absence of migration. For weaker selection, gene flow
from the mainland is beneficial, and aids population survival
by hindering the fixation of deleterious alleles. However, for
stronger selection and with recessive alleles, the fitness and
size of ‘low-load’ island populations actually declines with
increasing migration from the mainland (owing to higher
deleterious allele frequencies in the latter). In the most
extreme scenario, where load is primarily owing to segre-
gation of recessive alleles of moderate effect, intermediate
levels of migration may actually increase load so much that
populations degenerate into high-load demographic sinks
(figure 2b; electronic supplementary material, figure S4).

We identify two regimes in which peripheral populations
can maintain stable numbers at a substantial fraction of carry-
ing capacity, with qualitatively different roles of migration in
the two. When selection is strong, i.e. Ks≫ Ksc (for additive
alleles) or Ks >Ksc,2 (for recessive alleles) for a given 2LU,
genetic load is low and populations stable, largely indepen-
dently of migration. In this case, low levels of migration
(typically &1 migrant per generation; note typical values of
mc,1 in figure 3) are sufficient to prevent a genetic Allee
effect, should demographic stochasticity or chance fluctu-
ations in load drive population numbers down. On the
other hand, with weakly or moderately deleterious alleles,
stable populations rely on rather high levels of migration
(≫1 migrant per generation; note typical mc,3 in figure 3)
and are only weakly differentiated with respect to the
mainland. Here, migration is essential for maintaining
heterozygosity and preventing fixation of deleterious alleles,
even though numbers are relatively large.

Both classical quantitative genetics and analyses of allele fre-
quency spectra suggest that most mutation load is owing to
weakly deleterious alleles [24,25]. Theweak selection ondeleter-
ious mutations may be strong relative to random drift in the
species as a whole [24], but is likely to be dominated by
random drift within local demes (i.e. Ks< 1 in our notation). If
this is so, then extinction can be avoided only if many migrants
enter demes in each generation. Fortunately, this is generally the
case: FST is typically small, implying thatm0 is between 0.5 and 5
([26]; note that m0 is the number of migrant genes,
corresponding to 2Nm in the usual diploid notation). Thus,
while selection can act effectively to suppress the mutation
load in a well-connected metapopulation, demes that receive
few migrants will be vulnerable to the accumulation of load
owing to weakly selected mutations. Moreover, when fitness
has additional environment-dependent components, local
adaptation must depend on alleles of intermediate effect and
is hindered by high migration, especially for marginal habitats
within the metapopulation [14].

What implications might our work have for the conserva-
tion of natural populations? Provided that several migrants
are exchanged per generation, selection against deleterious
alleles can be effective across the whole population. Indeed,
subdivision into small subpopulations can help purge dele-
terious recessives, making selection more effective than
with panmixia. Thus, random drift would lead to a severe
load only if local demes are highly isolated—in which case
environmental fluctuations are more likely to cause extinction
than the gradual accumulation of weakly deleterious
mutations [9]. Our work implies that an intermediate rate
of migration minimizes mutation load, by preventing extinc-
tion of local populations, and yet still allowing some purging.
However, the extinction risk arising from environmental
fluctuations (which we underestimate by including only
demographic stochasticity) favours higher migration. Con-
versely, local adaptations require selection that is stronger
than drift within local demes (Ks > 1) [14]; if this is a concern,
then substantial deme sizes are required in the long term.

Our model makes various assumptions: first, we take
mutation rates to and from the deleterious state to be equal.
Asymmetry in mutation rates would not qualitatively alter
our conclusions as long as there is even weak migration
(m0 * 0:1), as load is then alleviated primarily by migration
rather than reverse mutation. However, with zero migration
and no reverse mutation, selection must be strong enough
to prevent long-term ratchet-like accumulation of deleterious
variants, resulting in a much higher threshold Ksc for
metastability.

Second, we assume deleterious allele frequencies on the
mainland to be close to deterministic. This assumption is
not crucial: our qualitative conclusions remain unaltered as
long as mainland frequencies are much lower than typical
island frequencies. However, if mainland populations are
small enough to harbour deleterious alleles at high frequen-
cies at a subset of loci (which would, in general, be
different from the loci fixed for deleterious alleles on the
island), then we expect heterosis and the beneficial effects
of migration to be weaker (with one-way migration between
the mainland and island). More generally, extending this
analysis to the co-evolution of load and population sizes
in a metapopulation, where each sub-population may be
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close to fixation for different deleterious alleles, remains an
interesting direction for future work.

Third, we assume a rather simple genetic architecture of
load: loci are assumed to be unlinked, and load additive
across loci. Deviations from additivity, e.g. synergistic epista-
sis between deleterious variants can lower load [27,28], and
may arise, for example, if multiple traits are under stabilizing
selection. However, linkage between deleterious variants can
inflate load by compromising selection efficacy at individual
loci via Hill–Robertson interference [29], making it difficult
to arrive at general predictions for the effects of selective
interference (owing to linkage and epistasis between selected
variants) on the eco-evolutionary dynamics of marginal popu-
lations. Fourth, we ignore environmental stochasticity and
demographic Allee effects, which may strongly influence out-
comes [8,30], especially in parameter regimes where mutation
accumulation anddemographic stochasticity in themselves are
unlikely to cause extinction.

Finally, our analysis relies on a semi-deterministic analysis,
which accounts for genetic drift but neglects demographic sto-
chasticity. While this approximation captures qualitatively
different population states across parameter space, it gives
little insight into the dynamics. In particular, where alternative,
i.e. low-load and high-load states are possible, the key assump-
tion underlying the semi-deterministic analysis—namely, that
allele frequencies have sufficient time to equilibrate at any
given population size—is satisfied only when populations
are in one or other state, and not while they transition between
states. This makes it challenging to describe the complex co-
evolution of load and population size during transitions and
arrive at a complete understanding of transition timescales.

Our aim has been to base our analysis on as few par-
ameters as possible, in the hope that these can be related to
observations from nature. We have reasonably good esti-
mates of the fitness effects of deleterious mutations, and
their degree of dominance—albeit largely from Drosophila
[24]. We also now have accurate measures of the total
mutation rate; the total rate of deleterious mutations is still
uncertain [31], but may be substantial in complex organisms
[32]. Population structure is less well understood: we have
very many estimates of FST [26], which reflects the numbers
of incoming migrants, but local effective deme size is
harder to estimate, even if demes can be defined at all.
However, the common observation of heterosis implies that
different deleterious recessives are common in different
populations, suggesting a substantial drift load.

The rather complex effects of migration observed even in
this relatively simple model with unconditionally deleterious
alleles suggest that a comprehensive understanding of the
effects of gene flow on eco-evolutionary dynamics at range
limits must account for both environment-dependent (local)
and environment-independent (global) components of fit-
ness. These may be influenced by (partially) overlapping
sets of genetic variants, so that genetic load is shaped funda-
mentally by pleiotropic constraints. Such extended models
are key to understanding when, for example, assisted gene
flow is beneficial, and whether its mitigatory effect on inbreed-
ing depression may be outweighed by any outbreeding
depression that it might generate.

From a conceptual viewpoint, our analysis highlights the
importance of considering explicit population dynamics
when analysing the influence of gene flow on the efficacy
of selection in sub-divided populations. Simple predictions,
e.g. that a sub-divided population under hard selection
should behave as a single population with an inbreeding
coefficient equal to FST [18,33], may break down when sub-
populations can undergo local extinction. In this case,
purging may be ineffective and the efficacy of selection
reduced relative to undivided populations, in contrast to
standard predictions that subdivision always reduces load
when selection is hard. We regard the framework proposed
here as a starting point for detailed studies in specific meta-
populations, which take into account the joint evolution of
population size and mutation load.
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