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1  | INTRODUC TION

Several spatial changes related to geography or environment, such 
as isolation, fragmentation or spatial reduction, may have pro-
found demographic and negative genetic consequences for spe-
cies. Landscape features, range boundaries, or environmental 

characteristics are well known to influence both population genetic 
differentiation and spatial genetic structure. The theory of isolation 
by distance (IBD) (Wright, 1943) expects that genetic differentiation 
increases with geographical distance, while that of isolation by en-
vironment (IBE) concerns that genetic differentiation increases with 
environmental differences, independent of geographical distance 
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Abstract
Pseudotaxus chienii, belonging to the monotypic genus Pseudotaxus (Taxaceae), is a 
relict conifer endemic to China. Its populations are usually small and patchily distrib-
uted, having a low capacity of natural regeneration. To gain a clearer understand-
ing of how landscape variables affect the local adaptation of P. chienii, we applied 
EST-SSR markers in conjunction with landscape genetics methods: (a) to examine 
the population genetic pattern and spatial genetic structure; (b) to perform genome 
scan and selection scan to identify outlier loci and the associated landscape variables; 
and (c) to model the ecological niche under climate change. As a result, P. chienii was 
found to have a moderate level of genetic variation and a high level of genetic dif-
ferentiation. Its populations displayed a significant positive relationship between the 
genetic and geographical distance (i.e., “isolation by distance” pattern) and a strong 
fine-scale spatial genetic structure within 2 km. A putatively adaptive locus EMS6 
(functionally annotated to cellulose synthase A catalytic subunit 7) was identified, 
which was found significantly associated with soil Cu, K, and Pb content and the com-
bined effects of temperature and precipitation. Moreover, P. chienii was predicted 
to experience significant range contractions in future climate change scenarios. Our 
results highlight the potential of specific soil metal content and climate variables as 
the driving force of adaptive genetic differentiation in P. chienii. The data would also 
be useful to develop a conservation action plan for P. chienii.
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(Orsini et  al.,  2013; Wang & Bradburd,  2014). Extensive research 
finds that a substantial number of species have independently or 
jointly experienced IBD and IBE patterns (Sexton et al., 2014). Hence, 
investigation on adaptive genetic variation of populations and their 
adaptability to environmental change are essential to forecast the 
persistence of endemic endangered plants in future climates.

Landscape genetics is one of the most promising approaches to 
explore how landscape pattern, structure, and composition affect 
spatial genetic variation of populations, continuity of gene flow, 
and local adaptation (Balkenhol et al., 2016; Manel et al., 2003). It 
can determine and quantify the relationship between complex and 
dynamic landscape and various genetic evolutionary processes 
(Storfer et  al.,  2007). Effects of geographical distance or environ-
mental configuration on among-population gene flow and genetic 
differentiation (e.g., IBD or IBE) have been revealed by using land-
scape genetics approaches (Chau et  al.,  2019; González-Martínez 
et  al.,  2010; Hübner et  al.,  2009; Tóth et  al.,  2019). Importantly, 
adaptive genetic differentiation and local adaptation processes are 
found to be possibly associated with multiple environmental vari-
ables (Hancock et al., 2011; Manel et al., 2012; Mosca et al., 2014; Pal 
et al., 2020; Shih et al., 2018). And candidate adaptive loci may func-
tion in growth, phenology, or stress resistance (Eckert et al., 2010; 
Namroud et al., 2008; Shih et al., 2018; Song et al., 2016).

Several genome scan methods have been developed to detect 
signatures of selection. By using FST-based tests, outliers can be de-
tected in genomic regions potentially under selection through com-
paring genetic differentiation at given loci with a neutral baseline 
distribution (Luikart et al., 2003). However, the major drawback of 
this method is the existence of false positives derived from null al-
leles, complex population genetic structure, and demographic his-
tory such as bottlenecks and allele surfing (Bierne et al., 2011; Foll 
& Gaggiotti,  2008; Jones et  al.,  2013; Strasburg et  al.,  2012). It is 
also difficult for this method to capture weak divergent selection (De 
Villemereuil et al., 2014; Narum & Hess, 2011) and other methods to 
detect selection by correlating genetic variation with environmen-
tal variables. They have the advantage to increase the probability 
of detecting weak selection and to provide evidence of adaptation 
to environmental change in association with functional genes (De 
Mita et  al.,  2013). Nevertheless, factors like pre-existing popula-
tion genetic structure (Novembre & Di Rienzo, 2009) and correla-
tions among environmental variables (De Villemereuil et al., 2014) 
may lead to false adaptive candidate loci. It is noteworthy that en-
vironmental selection requires enough time to trigger a change in 
the pattern of allele frequency differentiation (Joost et  al.,  2013), 
and neutral demography or migration history may also generate an 
environmental pattern that is irrelative to adaptation (Novembre & 
Di Rienzo, 2009). To ensure power and accuracy, researchers tend 
to simultaneously adopt more than two approaches to identify 
robust outlier candidates (Pal et  al.,  2020; Shih et  al.,  2018; Song 
et al., 2016).

Ecological niche modeling (ENM) has been widely applied: (a) to 
predict species distributions (Dakhil et al., 2019; Gilani et al., 2020), 
(b) to identify climate refugia (Leite et  al.,  2016; Liu et  al.,  2013), 

(c) to determine the impact of invasive species (Banerjee et al., 2019; 
Padalia et al., 2014), and (d) to evaluate the effects of climate change 
on species (Shao et al., 2017; Yan et al., 2017). Notably, it is reason-
able to integrate ENM within the landscape genetics framework, be-
cause the latter has the potential to identify environmental variables 
associated with adaptive genetic variation. As for endangered plants, 
the integration may facilitate the prediction of suitable ranges under 
climatic change and inform conservation measures. For instance, a 
combination of the two methods has been used to modeling the cli-
matically suitable areas of Pinus bungeana (Zhang et al., 2019).

Pseudotaxus chienii is a relict endangered conifer endemic to 
China, belonging to the monotypic genus Pseudotaxus (Fu et al., 1999; 
Kou et al., 2020). The species is a dioecious woody shrub or small tree 
up to 4 m tall (Fu et al., 1999). Its seeds are partly enclosed within 
a fleshy white aril at maturity, which may be dispersed by birds or 
small animals (Fu et  al.,  1999; Wang et  al., 2006). Natural popula-
tions of P. chienii occur in montane regions of southern Zhejiang, 
southwestern Jiangxi, northwestern and southern Hunan, northern 
Guangxi, and northern Guangdong, China (Figure 1; Fu et al., 1999). 
They are usually small and isolated, thought to have long been patch-
ily distributed (Fu & Jin, 1992). Pseudotaxus chienii plants primarily 
grow in the understory of evergreen and deciduous broad-leaved 
forests at altitudes of 700–1,500 m. They are usually found on sites 
with acidic (pH 4.2–4.5) and nutrient-rich soils, receiving an annual 
mean precipitation of 1,800–2,400 mm (Fu & Jin, 1992). Pseudotaxus 
chienii has undergone a population reduction of more than 30% 
over the past decades due to overexploitation and habitat loss (Su 
et al., 2009; Thomas & Yang, 2013), which is further aggravated by 
difficulty of reproduction and seedling establishment. Currently, P. 
chienii has been categorized as an endangered species in the Red List 
of Endangered Plants in China (Fu & Jin, 1992) and as a vulnerable 
(VU) species by the International Union for Conservation of Nature 
(IUCN) (Thomas & Yang, 2013).

Previous investigations show that P. chienii has low genetic di-
versity and high genetic differentiation (Su et  al.,  2009; Wang 
et  al.,  2006; Zhou et  al.,  1998). However, its adaptive adaptation 
to environment remains unclear. In particular, little is known about 
its genes or genomic regions under selection, which is essential for 
formalizing the conservation of P. chienii in complex heterogeneous 
landscapes like mountain ecosystems. Moreover, the knowledge 
is also a prerequisite for a successful migration of P. chienii from 
adversely environmental stresses. Of note, expressed sequence 
tag-simple sequence repeats (EST-SSRs) have been widely ap-
plied to examine adaptive genetic variation and local adaptation in 
both model and nonmodel species (Alcaide et  al.,  2019; Bradbury 
et al., 2013; Lind-Riehl et al., 2014; Saini et al., 2019).

In this study, we used EST-SSRs in junction with landscape genet-
ics statistical methods to explore the possible roles of geographical 
location and environmental factors played in shaping the population 
genetic variation of P. chienii. Our specific aims were to (a) character-
ize the level and pattern of genetic variation, genetic differentiation, 
and spatial genetic structure of P. chienii populations across its entire 
distribution range, (b) identify candidate outlier loci as well as their 
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association with environmental variables, and (c) model the distribu-
tion of P. chienii under future climate changes and estimate the major 
factors affecting the distribution. These investigations may provide 
new information to deepen our understanding of the adaptation of 
P. chienii populations and assist the development of conservation 
strategies.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and DNA extraction

A total of 134 P. chienii individuals were collected from 11 popula-
tions in Zhejiang, Guangxi, Jiangxi, and Hunan provinces (Figure 1; 
Table  S1), which covered its whole distribution in China. Fresh 
leaves were sampled randomly with 19 to 31 individuals for each 
population. The sampling interval was at least 30 m. Leaves were 
dried with silica gel and stored at −20°C until DNA extraction. 
Geographical and altitude information were acquired with GPS 
(Table S1).

Total genomic DNA was extracted using a modified cetyltrime-
thylammonium bromide (CTAB) protocol (Su et al., 1998). Its quality 

and quantity were measured by 0.8% (w/v) agarose gel electropho-
resis and a NanoDrop 2000c spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). DNA was diluted to 50  ng/μl and 
stored at −20°C for subsequent use.

2.2 | Genotyping using EST-SSR markers

All individuals of P. chienii were genotyped using 20 polymorphic 
EST-SSR markers previously developed by Xu et al. (2020) (Table S2). 
PCRs were performed in 25 μl volume containing 1 μl template DNA 
(50 ng/μl), 2.5 μl 10× PCR Buffer (with Mg2+), 1.6 μl dNTPs (2.5 mM), 
0.5 μl of each forward and reverse primers (10 μM), and 0.2 μl Taq 
DNA polymerase (5 U/μl) (Takara, Dalian, China). Negative control 
was set without genomic DNA. All forward primers were labeled 
with fluorescent dyes 5-FAM (Invitrogen, Shanghai, China). PCR 
amplifications were performed in a thermal cycler (Veriti, Applied 
Biosystems, Foster City, CA, USA) as follows: initial denaturation 
at 94°C for 5  min; followed by 35 cycles at 94°C for 40  s, varied 
annealing temperatures ranging from 55 to 62°C for 40  s with 
different primer pairs (Table S2), and extension at 72°C for 30 s; and 
a final extension at 72°C for 10 min.

F I G U R E  1   Sampling locations of 11 Pseudotaxus chienii populations and genetic boundaries (blue lines) identified by Monmonier's 
algorithm. The width of blue lines represents the “strength” of the boundaries
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Subsequent genotyping was performed by using capillary gel elec-
trophoresis on an ABI 3730xl automated Genetic Analyzer (Applied 
Biosystems). Allele sizes were determined with GeneMapper 4.0 
software (Applied Biosystems). Each genotype was visually checked 
and scored, and unclear samples were re-amplified. We randomly se-
lected two individuals per population to test reproducibility through 
two random primers. Genotyping error rate was detected as 5.3% 
using the sample function in R (R Core Team, 2013).

2.3 | Population genetic diversity and 
differentiation

Micro-Checker version 2.2.3 (Van Oosterhout et al., 2004) was used 
to check null alleles based on 1,000 Monte Carlo simulation. The ba-
sicStats function and divBasic function of R package diveRsity1.9.90 
(Keenan et al., 2013) were used to assess genetic parameters, includ-
ing the number of different alleles (A), allelic richness (Ar), observed 
heterozygosity (Ho), expected heterozygosity (He), unbiased ex-
pected heterozygosity (uHe), inbreeding coefficient (FIS), and fixation 
index (F). Allele frequency was calculated by the makefreq function 
of R package adegenet 2.1.1 (Jombart, 2008). Private alleles were 
estimated using the private_alleles function of R package poppr 2.8.3 
(Kamvar et al., 2014). We used the basic.stats function of R package 
hierfstat 0.04-22 (Goudet,  2005) to calculate observed heterozy-
gosity (Ho), gene diversity within population (Hs) and overall gene 
diversity (Ht). Multilocus linkage disequilibrium (LD) was assessed by 
index of association (Ia) (Brown et al., 1980) and standardized index 
of association (rD) (Agapow & Burt, 2001). Ia and rD of pairwise locus, 
each population, and all populations were calculated using the pair.
ia, poppr, and ia functions in the R poppr package with 999 permuta-
tions, respectively.

The departure from Hardy–Weinberg equilibrium for the loci 
was tested using test_HW function in the R package genepop 1.1.2 
(Rousset,  2008), with the Markov chain parameters set at 10,000 
dememorization steps, 20 batches, and 5,000 iterations per batch.

Linear mixed effect model (LMM) with reduced maximum-
likelihood estimation was used to assess the difference of mean uHe 
per locus at the population and province levels using the lmer func-
tion in the R package lme4 1.1-21 (Bates et al., 2015). In LMM, pop-
ulation or province was treated as a fixed effect, whereas locus as a 
random effect. A likelihood-ratio test using the ANOVA function in 
the R package car (Fox & Weisberg, 2011) was carried out to test the 
overall difference at the population and province levels. Tukey's HSD 
post hoc comparison was further conducted using the glht function 
in the R package multcomp 1.4-10 (Hothorn et al., 2008).

Due to the difference in population size, we assessed the cor-
relations between genetic parameters (Ar, Ho, He, uHe, and F) and 
population size (Ns) using the corr.tes function in the R package 
psych 1.8.12 (Revelle, 2018). Effects of population size on genetic 
diversity and differentiation and the association between variables 
were quantified by Pearson's correlation coefficient with the Holm 
method to adjust the p-value.

To investigate genetic differentiation, F-statistics (Weir & 
Cockerham,  1984) for each locus and pairwise FST at the popula-
tion, province, and species levels were evaluated using the diffCalc 
function in the R package diveRsity, with 95% confidence intervals 
(CI) and 1,000 bootstrap replicates. Analysis of molecular variance 
(AMOVA) was performed using the poppr.amova function in the R 
package poppr. And the following Φ indices were estimated: within 
individuals, ΦIT; among individuals within populations, ΦIS; and 
among populations, ΦST. The randtest function was used to assess 
the significance of the Φ indices.

Nei's distance (Nei,  1972, 1978) was calculated using the dist.
genpop function in the R package adegenet. A heatmap with UPGMA 
clustering was constructed using the hclust and the heatmap.2 func-
tions of the R package gplots 3.0.1.1 (Warnes et al., 2016).

2.4 | Population genetic structure

A Bayesian clustering approach was performed using STRUCTURE 
2.3.4 (Falush et al., 2003, 2007; Pritchard et al., 2000) to determine 
the number of genetically homogeneous groups of individuals and to 
assess the amount of admixture between individuals with the admix-
ture model and allele frequencies correlated. We ran the program 
with 100,000 burn-in, 100,000 Markov Chain Monte Carlo (MCMC) 
iterations, putative K ranging from 1 to 14, and 20 replicated runs. 
Based on the highest Delta-K value (Evanno et  al.,  2005), the op-
timal K was determined through an online program STRUCTURE 
HARVESTER (Earl & vonHoldt,  2012). K values were summa-
rized using CLUMPP 1.1.2.b (Jakobsson & Rosenberg,  2007) to 
obtain the cluster membership coefficient of each population 
(Q-matrix), and the final output was visualized using Distruct v 1.1 
(Rosenberg, 2004).

In order to estimate population divergence, we used the find.
clusters function of the R package adegenet to conduct principal 
component analysis (PCA) and define k clusters using the K-means 
clustering algorithm. Bayesian information criterion (BIC) value 
was used to determine the optimal cluster k. As a more powerful 
method, discriminant analysis of principal components (DAPC) 
(Jombart et  al.,  2010) was also conducted using the same func-
tion in R as PCA. To control for possible overfit, we used cross-
validation to determine the best PC numbers through the xvalDapc 
function in the same package with 90% data as training set and the 
remaining 10% as validation set. As a result, 40 PCs were used in 
DAPC analysis.

2.5 | Landscape variable dataset

Based on field survey, published and online data, we constructed a 
landscape variable dataset for P. chienii populations, which included 
geographical and environmental variables. The former contained 
longitude and latitude, whereas the latter included six ecological, 19 
bioclimate, and 20 soil variables (Appendix S2).
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2.6 | Landscape heterogeneity test

Population landscape variables were regarded as variables for its all 
individuals. Based on these variables of individuals, we performed 
permutational multivariate analysis of variance (PERMANOVA) 
to test landscape heterogeneity among 11 populations and four 
provinces using the adonis function of the R package vegan 2.5-5 
(Dixon,  2003). Euclidean distance matrices were generated as re-
sponse variables for PERMANOVA with 999 permutations. Using 
the same permutations, we also conducted pairwise comparisons be-
tween populations or provinces through the pairwise.perm.MANOVA 
function of the R package RVAideMemoire 0.9-73 (Hervé, 2018).

2.7 | Isolation pattern detection

We used three strategies to evaluate isolation by distance (IBD) and 
isolation by environment (IBE) for P. chienii populations. The geo-
graphical and environmental variables with variance inflation factor 
(VIF) below 5 were selected for analysis in the vifstep function of the 
R package usdm (Naimi et al., 2014). VIF was used to measure the 
correlation between two or more predictor variables (collinearity). 
The larger the VIF, the stronger linear relationship of the variables 
with at least one of the other variables. Before formal analysis, the 
selected geographical or environmental variables were scaled in the 
scale function, and the Euclidean geographical or environmental dis-
tance was subsequently calculated in the dist function.

Firstly, we conducted Mantel test to evaluate the relationship 
between genetic distance (pairwise FST) and Euclidean geographical 
or environmental distance using the mantel function in the R pack-
age vegan with 10,000 permutations. Secondly, a partial Mantel test 
was further used to distinguish which geographical or environmen-
tal variables may have affected genetic distance through controlling 
one of the two types of variables using the mantel.partial function of 
the R package vegan with 10,000 permutations. In the two tests, the 
association between variables was quantified by Pearson's correla-
tion coefficient. Finally, we applied a multiple matrix regression with 
randomization analysis (MMRR) to investigate the effects of geo-
graphical and environmental distance on genetic distance in the R 
script MMRR (deposited in the Dryad Data Repository under https://
doi.org/10.5061/dryad.kt71r) with 999 permutations (Wang, 2013).

2.8 | Effects of geography and environment on 
genetic variation

To quantify the contribution of IBD and IBE to the genetic dif-
ferentiation of P. chienii populations, we conducted redundancy 
analysis (RDA) using the varpart function of the R package vegan. 
Hellinger transformation was used to transform genetic data into 
response variables of RDA models using the decostand function in 
R. Predictor variables included the geographical and environmental 
variables with VIF below 5. We used the anova.cca and rda functions 

to estimate the contribution of a single and all predictor variables to 
the genetic variation with 999 permutations.

Associations between outliers and landscape variables were as-
sessed using two methods: Samβada v.0.8.1 (Stucki et al., 2017) and 
linear mixed-effects model (LMM). The latter was performed using 
the lmer function of the R package lmer4. Two geographical variables 
and 16 environmental variables with VIF  <  5 were used for envi-
ronmental association analysis. To preserve the diversity of environ-
mental factors as much as possible, we applied the vifstep function 
for three categories of environmental variables. Sixteen selected 
environmental variables included five ecological variables (altitude; 
percent tree cover, percent tree cover (PTC); enhanced vegetation 
index, EVI; leaf area index, LAI; and fraction of absorbed photosyn-
thetically active radiation, fPAR), four bioclimate variables (Bio10, 
Bio11, Bio13, and Bio14), and seven soil variables (K, Na, Fe, Mn, 
Zn, Cu, and Pb). A multiple univariate logistic regression approach 
was employed to test correlations between allele frequencies and 
environmental variables. We compared models with and without en-
vironmental variables, and the significance was determined based on 
both Wald and G scores with a false discovery rate (FDR) cutoff of 
10–6. As for the allele frequencies of outliers, LMM was constructed 
using the lmer function with landscape variables as the fixed effect 
and provinces as the random effect. The significance of difference 
was determined through a likelihood-ratio test using the ANOVA 
function in R.

2.9 | Investigation of spatial genetic structure

We assessed the fine-scale spatial genetic structure (FSGS) using 
SPAGeDi v1.3 (Hardy & Vekemans,  2002). Generally, genetic dif-
ferentiation is expected to increase with the spatial distance under 
limited dispersal (Vekemans & Hardy, 2004). Kinship coefficients (Fij) 
(Loiselle et al., 1995) between pairwise individuals were calculated 
at six distance intervals: 0–2 km, 2–4 km, 4–6 km, 6–8 km, 8–10 km, 
and 10–12 km. The regression slope (bLd) was acquired through Fij 
regressing on the natural logarithm of the spatial distance (ln(dij)). 
The Sp values were calculated using Sp = b/(F1−1), based on the Fij 
of the first distance class, to quantify the strength of the fine-scale 
spatial genetic structure (Vekemans & Hardy, 2004).

We also used software SAM v4.0 to determine the spatial auto-
correlation at the large scale, whose strength was further quantified 
using Moran's I statistic based on geographical coordinates and uHe 
of each population (Rangel et al., 2010). Moran's I was estimated at 
eight distance intervals with 9,999 permutations.

2.10 | Demographic history

BOTTLENECK 1.2.02 (Piry et al., 1999) was used to test bottleneck 
effect through assessment of heterozygosity excess, which corre-
lated the expected heterozygosity (He) and observed heterozygosity 
(Ho) at mutation-drift equilibrium. The analysis was conducted under 

https://doi.org/10.5061/dryad.kt71r
https://doi.org/10.5061/dryad.kt71r
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two mutation models: the stepwise mutation model (SMM) and the 
two-phase mutation model (TPM) which were suitable for microsat-
ellite data (Di Rienzo et al., 1994; Piry et al., 1999). Wilcoxon sign-
rank test was used to obtain the statistical significance with 1,000 
simulations. In addition, the “mode-shift” of allele frequency distri-
bution was applied to distinguish bottlenecked populations (Luikart 
et al., 1998).

In view of the heterogeneity of P. chienii distribution, we em-
ployed Monmonier's maximum difference algorithm (Manni 
et al., 2004; Monmonier, 1973) to assess its genetic discontinuities 
based on the Euclidean distance of genetic dataset and geographical 
coordinates of populations, using the monmonier function of the R 
adegenet package. The Gabriel graph was used to construct con-
nection network for P. chienii populations using the chooseCN func-
tion. To reduce noise, we performed a principal component analysis 
(PCA) for the Euclidean distance of genetic data using the dudi.pco 
function in the R ade4 1.7-13 package (Dray & Dufour, 2007), whose 
first eigenvalue was further adopted for the Monmonier algorithm. 
The default threshold (d, third quartile of all the distances between 
neighbors) was used in the monmonier function. Assessments of 
migration level between populations and the construction of a 
weighted network were obtained using the divMigrate function of 
the R package diveRsity (Sundqvist et al., 2016). Only relative migra-
tion values over 0.1 were considered, which was obtained using the 
Nm statistic with 1,000 replicates.

2.11 | Test for FST outliers

BAYESCAN (Foll & Gaggiotti,  2008) and FDIST (Beaumont 
& Nichols,  1996) were used to identify FST outliers (Foll & 
Gaggiotti,  2008). BAYESCAN implements reversible jump Markov 
chain Monte Carlo algorithm to estimate the ratio of posterior prob-
abilities of selection over neutrality, namely the posterior odds 
(PO). In this study, we used 10 pilot runs of 5,000 iterations and a 
sample size of 50,000 with a thinning interval of 20. Only loci with 
log10PO > 0.5 were considered as outliers, which could be visualized 
by using the plot_bayescan function in R. FDIST detected outliers by 
the comparison of observed FST and uHe to those derived from sim-
ulated neutral distributions under a 99.5% confidence interval (CI) 
and 1% FDR. Parameters were set as follows: critical frequency 0.99, 
level of differentiation (target average θ) 0.06, 5,000 resamplings, 
Zhivotovsky parameters 0.25, trimmed mean P 0.3, and smoothing 
proportion 0.04.

2.12 | Construction of ecological niche modeling

We employed a maximum entropy model in MaxEnt 3.4.1 (Phillips 
et al., 2006) to simulate the distribution of P. chienii under current 
(1950–2000), near-future at 2050 (2041–2060), and far-future 
at 2070 (2061–2080) periods. Species occurrence records were 
collected from the fieldwork, literature, the Global Biodiversity 

Information Facility (GBIF, https://www.gbif.org/), and Chinese 
Virtual Herbarium (CVH, http://www.cvh.ac.cn/). In total, 51 occur-
rence points were obtained after removing duplicate geographical 
records.

The climatic layers of 19 bioclimatic variables under current 
and future periods were downloaded from the WorldClim database 
(http://www.world​clim.org/) with a resolution of 2.5 arc-minutes. 
We predicted future distributions based on four RCPs (representa-
tive concentration pathways) scenarios from the Community Climate 
System Model (CCSM4): RCP2.6, RCP4.5, RCP6.0, and RCP8.5 sce-
narios. RCP4.5 and RCP6.0 scenarios exhibit stable scenarios for 
the greenhouse gas emission, whereas RCP2.6 and RCP8.5 repre-
sent lower and higher greenhouse gas emission, respectively (Moss 
et al., 2010; Van Vuuren et al., 2011). To avoid redundancy, variables 
with VIF ≥5 were removed. Five variables (Bio2, Bio7, Bio10, Bio14, 
and Bio18) were used in the MaxEnt with 10 cross-validation rep-
licates for each model of three periods. We estimated the contri-
bution of environmental variables to the P. chienii distribution using 
Jackknife test in MaxEnt (Elith et al., 2006). The area under the re-
ceiver operating characteristic curve (AUC) (Phillips et al., 2006) was 
used to evaluate the performance of the models.

3  | RESULTS

3.1 | Genetic diversity within populations

Based on 20 polymorphic EST-SSR markers, we obtained 164 al-
leles with an average of 8.2 alleles per locus. Except for loci EMS1, 
EMS3, EMS4, EMS16, EMS18, and EMS20, the other loci were found 
to have null alleles in P. chienii populations (Table S3). The null al-
lele frequencies varied from 0.0951 to 0.4142, with the highest 
value in DMS for locus EMS15. A significant departure from Hardy–
Weinberg equilibrium was detected in majority of the populations 
for 20 EST-SSR loci (Table S4).

Allelic richness in each population ranged from 2.329 (LHS) to 
3.406 (LMD), with an average of 2.868 (Table 1). We identified a total 
of 49 private alleles in populations. Compared to population MS (the 
number of samples, Ns = 31; the number of private alleles, Np = 3) 
and population LMD (Ns  =  31, Np  =  7), population ZJJ displayed 
disproportionately many private alleles in relation to population size 
(Ns = 19, Np = 10), while populations SMJ, LHS, and ZZB had the 
lowest private alleles (Ns = 30, Np = 2). Observed heterozygosity 
(mean Ho = 0.341) was lower than expected heterozygosity (mean 
He  =  0.370) across populations. The mean inbreeding coefficient 
(FIS = 0.076) of each population indicated slight homozygote excess. 
Except for populations LHS and YS, the other populations exhibited 
a heterozygote deficit based on FIS (Table 1).

No significant difference was found in uHe per locus at the pop-
ulation or province level. Likewise, no significant correlation was de-
tected between population size (Ns) and Ar (r = .34, adjusted p = 1), 
Ho (r = .67, adjusted p = .23), He (r = .36, adjusted p = 1), uHe (r = .34, 
adjusted p = 1), and F (r = −.38, adjusted p = 1), respectively. Based 

https://www.gbif.org/
http://www.cvh.ac.cn/
http://www.worldclim.org/
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on the multilocus LD, and Ia and rD, LD was detected among EST-SSR 
loci across all populations (Ia = 0.741, p < .05; rD = 0.0401, p < .05); 
particularly, in DMS (Ia = 0.233, p < .05; rD = 0.016, p < .05) and ZJJ 
(Ia = 0.336, p < .05; rD = 0.023, p < .05) (Table 4).

3.2 | Genetic differentiation among populations

High genetic differentiation was found across P. chienii populations 
(FST = 0.31; Table 2). Similarly, high genetic differentiation was also 
detected between populations or provinces, with FST ranging from 
0.02 to 0.48 and 0.098 to 0.353 (Tables S5 and S6), respectively.

Using STRUCTURE, the optimal clusters were identified as 
three, nine, and eleven (Figure S1). We selected K = 3 as the opti-
mal scenario (Figure 2a). Cluster 1 included populations MS, DXG, 
LMD, SMJ, SQS, and ZJJ, cluster 2 contained populations LHS, YS, 
and DMS, and cluster 3 comprised populations BJS and ZZB. When 
K = 9 and 11, only populations LMD and SMJ, or LHS and YS were 
clustered into the same group as K = 3. Populations MS, DXG, LMD, 
SMJ, and SQS were found highly mixed regardless of K value. Certain 

individuals in population ZJJ were moved from cluster 1 (K = 3) into 
population BJS (K = 9) and formed a group themselves (K = 11).

All P. chienii populations were clustered into three groups based 
on UPGMA (Figure 2b): populations from Guangxi (GX), populations 
from Zhejiang (ZJ) and Jiangxi (JX), and the single population ZZJ 
from Hunan (HN). Moreover, Hunan and Guangxi populations were 
also distinct from the other populations by DAPC (Figure 2c). Forty 
PCs explained 91.1% of the variance of allelic differences. Based on 
the membership probability using K-means (Figure S2), populations 
YS, DMS, and ZJJ were the most distinct with no admixed individ-
uals, while populations MS, DXG, LMD, SMJ, and SQS were highly 
admixed.

3.3 | Landscape heterogeneity

Based on PERMANOVA, landscape variables were shown signifi-
cant difference across the whole distribution of P. chienii (p = .001). 
Pairwise comparison of variables between provinces also revealed 
significant difference, such as between Zhejiang (ZJ) and Guangxi 

TA B L E  1   Genetic parameters based on 20 EST-SSR markers of 11 Pseudotaxus chienii populations

Pop Ns A Ar Np Ho He uHe FIS F Ia rD

MS 31 67 2.878 3 0.382 0.386 0.392 0.009 0.038 0.056 0.004

DXG 23 65 2.885 5 0.315 0.343 0.351 0.082 0.138 −0.088 −0.006

LMD 31 80 3.406 7 0.352 0.404 0.410 0.129 0.180 0.017 0.001

SMJ 30 69 3.033 2 0.380 0.407 0.414 0.067 0.104 −0.170 −0.010

LHS 30 52 2.329 2 0.277 0.271 0.276 −0.021 0.029 0.158 0.012

YS 30 68 2.910 6 0.358 0.354 0.360 −0.012 0.101 0.158 0.010

DMS 30 61 2.795 5 0.372 0.393 0.400 0.055 0.158 0.223* 0.016*

BJS 30 73 3.010 3 0.350 0.381 0.388 0.082 0.309 −0.078 −0.004

ZZB 30 60 2.704 2 0.333 0.399 0.406 0.167 0.281 0.132 0.009

SQS 30 69 3.020 4 0.358 0.390 0.397 0.081 0.098 0.097 0.006

ZJJ 19 57 2.570 10 0.272 0.340 0.349 0.199 0.294 0.336* 0.023*

Mean — 65.545 2.868 4.455 0.341 0.370 0.377 0.076 0.157 — —

Total 314 — — — — — — — — 0.741* 0.040*

Abbreviations: A, the number of different alleles; Ar, the allelic richness; F, fixation index; FIS, inbreeding coefficient; He, the expected heterozygosity; 
Ho, the observed heterozygosity; Ia, the index of association; Np, the number of private alleles; Ns, the number of samples; rD, the standardized index 
of association; uHe, the unbiased expected heterozygosity.
*p < .05.

Source of variance df
Variance 
components

Percentage of 
variation (%) Phi

Among populations 10 3.416 31.042 (Φst)
0.310*

Among individuals within 
populations

303 0.705 6.402 (Φis)
0.093*

Within individuals 314 6.884 62.555 (Φit)
0.374*

Total 627 11.005 100

TA B L E  2   The partition of EST-SSR 
variation of Pseudotaxus chienii by analysis 
of molecular variance (AMOVA) (*p < .05)
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(GX), Zhejiang (ZJ) and Jiangxi (JX), Hunan (HN) and Jiangxi (JX), and 
Hunan (HN) and Guangxi (GX). Similarly, Pairwise comparisons of 
variables between populations also showed significant difference, 
except for populations DXG versus LM and BJS versus YS.

3.4 | Isolation by distance (IBD) and isolation by 
environment (IBE)

Mantel test (Table  3; Figure  3) showed that P. chienii populations 
conformed to the pattern of isolation by distance (IBD) but did not to 
that of isolation by environment (IBE). A significant positive relation-
ship was found between geographical and genetic distance (r = .706, 
p <  .05), but was not between environmental and genetic distance 
(r =  .153, p =  .222). Partial Mantel tests (Table 3) showed pairwise 
FST was significantly correlated with geographical distance when 
controlling for environmental distance (r =  .698, p <  .05); but such 
a significant correlation was not found with environmental distance 

when controlling for geographical distance (r =  .055, p =  .398). As 
for MMRR analysis (Table  3), when considering geography or en-
vironment independently, genetic variation showed a significant 
correlation with geography (IBD: βD = 0.706, p <  .05) but not with 
environment (IBE: βE = 0.153, p = .482). When considering geogra-
phy and environment simultaneously, a similar result was obtained 
(IBD: βD = 0.699, p < .05; IBE: βE = 0.040, p = .792).

3.5 | Genetic variation explained by geographical/
environmental factors

RDA showed that both geographical and environmental factors had 
a significant impact on genetic variation, and the environmental fac-
tors were more important (Table 4). The combined effects of geo-
graphical and environmental factors (i.e., IBD∪IBE) accounted for 
38.4% of the total genetic variation, while their intersection (i.e., 
IBD∩IBE) explained 8.3%. Environmental factors alone contributed 

F I G U R E  2   (a) Individual and population memberships to genetic clusters for K = 3, 9, and 11 using STRUCTURE. (b) Heatmap of Nei's 
genetic distance with UPGMA tree between Pseudotaxus chienii populations. (c) Clustering results of Pseudotaxus chienii populations 
obtained by discriminant analysis of principal components (DAPC, PCs = 40). (d) The relative migration networks among Pseudotaxus chienii 
populations. Only Nm values over 0.1 are shown in the graph



9506  |     LI et al.

more to genetic variation (22.2%) in comparison with geographical 
factors (8.0%).

3.6 | Spatial genetic structure

Pseudotaxus chienii populations displayed strong fine-scale spatial 
genetic structure within 2 km (Sp = 0.048; blog = −0.044, p <  .05). 
The Fij for pairwise individuals was greater or less than zero when 
geographical distance was less or greater than 4 km, respectively. 
A decline tendency of Fij indicated that the similarity between in-
dividuals became lower with the increase of distance (Figure  4). 
However, Fij was found to be significantly positive only at the intra-
group level and within the first distance class (0–2 km; F0 = 0.286, 
p < .05; F1 = 0.083, p < .05), but became significantly negative within 
the fifth distance class (8–10 km; F5 = −0.083, p < .05).

Except for having positive values in the first and the fifth dis-
tance class, Moran's I had negative values in all other distance 
classes (Figure S3). As shown by the result at the fifth distance class 
(Moran's I = 0.696, p =  .043), the spatial autocorrelation among P. 
chienii populations may extend to 600 km.

3.7 | Demographic change

The migration networks showed a low level of migration among the 
11 P. chienii populations (Figure 2d; Table S7). Except for populations 

SMJ and LMD, frequent but relatively low levels of gene flow were 
detected among populations MS, DXG, LMD, SMJ, and SQS. By con-
trast, almost negligible gene flow was detected between populations 
YS and ZJJ and the other populations.

Genetic bottleneck signal was detected in several popula-
tions with a significant heterozygosity excess (p  <  .05) (Table  S8). 
It is of note that no population were found to undergo bottle-
neck under SMM model; by contrast, populations DMS and ZZB 
were detected to experience a population size reduction under 
TPM model. Moreover, the lack of bottleneck effect was also 
indicated by the normal L-shaped distribution of allele frequency of 
“mode-shift” test.

We detected genetic discontinuities in the geographical distribu-
tion area of P. chienii. Three potential spatial boundaries were iden-
tified between populations YS and ZZB, YS and ZJJ, and LHS and 
DMS, respectively (Figure 1).

3.8 | Candidate selective loci associated with 
environmental variables

Loci EMS3 and EMS6 were identified as under balance selection 
and positive selection, respectively (Figure S4). The former was 
found similar to AtERF054 (Arabidopsis thalian ethylene-responsive 
transcription factor ERF054; Evalue = 1.5E-21), while the latter to 
OsCESA7 (cellulose synthase A catalytic subunit 7 of Oryza sativa 
subsp. japonica; Evalue = 0) through BLASTN search.

Test R p βD (p) βE (p)

Mantel Gen ~Geo .706 .001

Gen ~Env .153 .222

Partial Mantel Gen ~Geo | Env .698 .001

Gen ~Env | Geo .055 .398

MMRR Gen ~Geo 0.706 (.001)

Gen ~Env 0.153 (.482)

Gen ~Geo + Env 0.699 (.001) 0.040 (.792)

Note: Bold font, significant probability.
Abbreivations: Env, environmental distance; Gen, genetic distance; Geo, geographical distance; βD, 
the effects of geographical distance on genetic distance; βE, the effects of environmental distance 
on genetic distance.

TA B L E  3   Results of standard/partial 
Mantel test and MMRR analysis of 
Pseudotaxus chienii

F I G U R E  3   (a) The relationship 
between genetic distance and 
geographical distance of Pseudotaxus 
chienii. (b) The relationship between 
genetic distance and environmental 
distance of Pseudotaxus chienii
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We investigated associations between the two loci and 18 
selected landscape variables (Table 5). Eight loci were found to 
be associated with geographical variables, 13 with soil variables, 
ten with bioclimatic variables, and eight with ecological vari-
ables. The majority of loci were associated with longitude (5), 
Cu (4), and percent tree cover (PTC, 4). EMS3 alleles of 439 bp 
and 452 bp were detected significantly associated with six land-
scape variables: longitude, altitude, PTC, Cu, Bio10 (annual mean 
temperature of the warmest quarter, and Bio13 (precipitation of 
the wettest month). EMS6 alleles of 263  bp and 270  bp were 
detected significantly associated with eight landscape variables: 
longitude, latitude, PTC, K, Cu, Pb, Bio11 (annual mean tempera-
ture of the coldest quarter), and Bio14 (precipitation of the driest 
month).

Longitude, Cu, and PTC were the most important variables, 
associated with the largest number of EMS3 and EMS 6 alleles. 
Overall, longitude had effects on both loci (although had rela-
tively weak effect on EMS3), while latitude only imposed effects 
on EMS6. PTC and Cu affected both loci. Altitude had strong ef-
fects on EMS3 but relatively weak effects on EMS6. There were 
four temperature- and precipitation-related variables constituting 
two combinations having effects on each locus (EMS3: Bio10 and 
Bio13; EMS6: Bio11 and Bio14), respectively. Moreover, there were 

more environmental variables associated with EMS6 (e.g., K, Pb, 
fPAR) than EMS3.

3.9 | Ecological niche modeling of P. chienii

An accurate model performance was obtained as indicated by the 
average AUC 0.967 ± 0.029 for the potential distribution prediction 
of P. chienii. Bio14 (the precipitation of driest month) and Bio10 (the 
mean temperature of warmest quarter) were found to be the key 
factors in determining the distribution (Table S9), with contribution 
rates of 64.4% and 20.7%, respectively.

The predicted current suitable area of P. chienii was consis-
tent with its actual distribution, involving large areas of Guangxi, 
Guangdong, Hunan, Jiangxi, Fujian, Zhejiang, and Taiwan, and small 
region of Jiangsu, Anhui, Hubei, Chongqing, Sichuan, and Guizhou 
(Figure 5). The predicted future distribution showed significant con-
tractions on a small or large scale under different RCP scenarios. Of 
note, the predicted distribution changes were not consistent in 2050 
and 2070 (Figure 6).

4  | DISCUSSION

This study aims to gain a clearer understanding of how landscape 
variables affect the local adaptation P. chienii populations. EST-SSRs 
have been applied to investigate the landscape genetics of P. chie-
nii, a conifer endemic to China. We have examined the population 
genetic diversity, genetic differentiation, and the spatial genetic 
structure, performed genome scan to detect outlier loci, conducted 
selection scan to measure locus-landscape variable correlations, and 
dissected the relative effects of landscape factors and demographic 
history. Moreover, the ecological niche of P. chienii has been mod-
eled under climate change.

4.1 | Genetic diversity of P. chienii

This study has detected a moderate level of EST-SSR variation 
(He  =  0.370) in P. chienii at the species level. In comparison with 
other coniferous species (Table S10), its average expected heterozy-
gosity is lower than Torreya grandis (He = 0.432) (Zeng et al., 2018), 
Pinus massoniana (He  =  0.5717) (Zhang et  al.,  2014), Picea abies 
(He = 0.616) (Stojnić et al., 2019), and P. likiangensis (He = 0.7186) 
(Cheng et  al.,  2014); close to P. dabeshanensis (He  =  0.36) (Zhang 
et  al.,  2016) and Amentotaxus argotaenia (He  =  0.39) (Ruan et al., 
2019); and higher than A. formosana (He = 0.1993) (Li et al., 2016), 
P. bungeana (He  =  0.205) (Duan et  al.,  2017), and A. yunnanensis 
(He = 0.3343) (Li et al., 2016). It has been suggested that levels of 
genetic variation in conifers are influenced by a variety of factors 
including lifespan, reproductive system, seed dispersal mecha-
nisms, geographical distribution range, life forms, demographic 

TA B L E  4   Proportion of genetic variation explained by 
environmental variables (Env, [a]), shared environmental and 
geographical factors [c], geographical (Geo, [c]), and undetermined 
component [d]

Adjusted R2 F p

Env [a] 0.222 17.013 .001

Geo +Env [b] 0.083 — —

Geo [c] 0.080 20.774 .001

[a + b+c] 0.384 22.691 .001

Residuals [d] 0.616 — —

F I G U R E  4   The fine-scale spatial autocorrelation analysis of 
Pseudotaxus chienii
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history, natural selection, and mutation rate (Hamrick et al., 1992; Su 
et al., 2009; Wang et al., 2020).

Our analysis indicates that P. chienii populations enable to main-
tain moderate level of EST-SSR variation although they are impacted 
by inbreeding. Nine of 11 (81.82%) of the populations have the 
estimated inbreeding levels ranging from 0.009 to 0.199 (Table 1). 
These results are not unexpected considering the current P. chienii 
populations are usually of small size (several to tens) and geograph-
ically scattered and isolated (Su et al., 2009). Importantly, because 
Pseudotaxus chienii plants tend to grow in the understory of forests 
(Fu & Jin, 1992), this may hinder long-distance pollen dispersal and 
enhance inbreeding as well. Similar results have been observed in 
other related yews like T. baccata (Chybicki et al., 2011), Taxus wal-
lichiana var. mairei (Zhang & Zhou, 2013), and T. yunnanensis (Miao 
et al., 2016). In addition, a significant fine-scale spatial genetic struc-
ture was detected within 2 km (Figure 4), which also implies gene 
flow occurring between individuals from adjacent populations. Our 
results suggest that P. chienii, as an “old rare species” which has long 
been naturally fragmented (Fu et al., 1999; Hilfiker et al., 2004; Su 
et al., 2009), appears to have the potential to maintain its functional 
genetic variation. In this respect, the detection of outlier locus EM3 
underlies the implication of balancing selection to preserve EST-SSR 
variation (Figure S4).

As a tertiary relict species, the distribution of P. chienii may have 
been seriously affected by the Quaternary glacial–interglacial cli-
mate changes (Xu et al., 2008). In the meanwhile, its populations may 

have undergone both expansion and shrinkage (Table  S8) (Zhang 
et  al.,  2020). Hence, it cannot be excluded that population demo-
graphic history is relative to the EST-SSR variation.

4.2 | High levels of population genetic 
differentiation of P. chienii

P. chienii populations exhibit a high level of genetic differentiation 
across the distribution range (FST = 0.31; Table 2), in comparison with 
results observed in other conifers like P. resinosa (FST = 0.280) (Boys 
et al., 2005), T. chinensis (FST = 0.189), and T. wallichiana (FST = 0.156) 
(Vu et  al.,  2017). The high among-population genetic differentia-
tion of P. chienii populations has also been revealed by using RAPD 
(Wang et  al.,  2006) and ISSR markers (Su et  al.,  2009). Possible 
factors contributing this high genetic differentiation may include 
a low level of migration among populations (Figure  2d; Table  S7); 
spatial barriers (Figure 1); bottlenecks (Table S8); small population 
size (Fu & Jin, 1992); a long evolutionary history, and genetic drift 
(Su et al., 2009); limited pollination (Fu & Jin, 1992); a wide and dis-
junct distribution (Fu & Jin, 1992; Su et al., 2009); and IBD (Table 3; 
Figure 3).

It is of note that a relatively weak genetic differentiation was de-
tected between populations LMD and SMJ (FST  =  0.02; Table  S5). 
FSGS analysis reveals a significant spatial genetic structure within 
2 km in P. chienii populations. More importantly, their FSGS intensity 

F I G U R E  5   Potential geographical distribution of Pseudotaxus chienii in China under current climate condition
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F I G U R E  6   Potential geographical distribution of Pseudotaxus chienii in China under future climate condition (a: RCP2.6 to the year 2050; 
b: RCP2.6 to the year 2070; c: RCP4.5 to the year 2050; d: RCP4.5 to the year 2070; e: RCP6.0 to the year 2050; f: RCP6.0 to the year 2070; 
g: RCP8.5 to the year 2050; and h: RCP8.5 to the year 2070)
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(Sp = 0.0483) was much higher than that of other conifers including 
T. baccata (Sp = 0.006, 0.009) (Chybicki et al., 2011), T. yunnanensis 
(Sp = 0.001) (Miao et al., 2016), and P. omorika (Sp = 0.009) (Aleksić 
et al., 2017). Given that the geographical distance LMD and SMJ is 
less than 2 km, one possible explanation for their weak between-
population genetic differentiation is that a short-distance dispersal 
of pollen or seed remains to be effective for P. chienii.

4.3 | Important landscape variables potentially 
driving the adaptive genetic differentiation of 
P. chienii

Two (10%) EST-SSR loci EMS3 and EMS6 were simultaneously iden-
tified as candidate outliers by running BAYESCAN and FDIST; and 
they have also been detected significantly associated with landscape 
variables. The consistent identification by three different methods 
strongly supports that EMS3 and EMS are loci potentially under se-
lection. EMS3 shows sequence similarity to AtERF054 (Arabidopsis 
thalian ethylene-responsive transcription factor ERF054) and EM6 
to OsCESA7 (cellulose synthase A catalytic subunit 7 of Oryza sativa 
subsp. japonica). Notably, EMS6 is inferred to be positively selected, 
whose alleles are significantly associated with (1) eight individual 
variables: longitude, latitude, PTC, K, Cu, Pb, Bio11 (annual mean 
temperature of the coldest quarter), and Bio14 (precipitation of the 
driest month), and (2) the combined effects of Bio11 and Bio14.

Our results highlight the potential of specific soil metal content as 
the driving factor of local adaptation for P. chienii populations. First, 
Cu was found to be crucial. Cu is an essential nutrient element, func-
tioning as a cofactor in more than 100 metalloproteins (Yruela, 2009) 
and participating in many physiological processes including photo-
synthesis, respiration, carbon and nitrogen metabolism, protection 
against oxidative stress, hormone signaling, and cell wall metabolism 
(DalCorso et al., 2014). Cu deficiency may reduce the rates of pho-
tosynthesis and carbohydrate synthesis, whereas excess suppresses 
the root absorption of Mn and Fe (Ivanov et al., 2016). Second, plants 
require K in relatively large amounts. K has a high mobility in plant 
cells and in long-distance transport through the xylem and phloem 
(Meena et al., 2016). It is essential for plant growth and metabolisms, 
functioning in the control of water status, promotion of water ab-
sorption, maintenance of osmotic tension and turgor, and regulation 
of the activity of stomata cells. K also has a critical role in photosyn-
thesis, in the production and translocation of carbohydrate, and in 
stress responses (El Sayed et al., 2019; Wang et al., 2013). Third, Pb 
represents a harmful nonessential element, posing serious threats to 
plant growth (Patra et al., 2004). In these contexts, it is reasonable 
to postulate that selective pressures from soil metal contents may 
contribute to the genetic structuring of P. chienii populations.

The adaptive genetic differentiation of EMS6 is also associated 
with longitude, latitude, PTC, Bio11 (annual mean temperature of the 
coldest quarter), Bio14 (precipitation of the driest month), and the 
combined effects of Bio11 and Bio14. Particularly, Bio14 has been 
identified as the factor contributing the most (64.4%) in determining 

the distribution of P. chienii. These results are consistent with the 
ecological characteristics of P. chienii (i.e., preferentially growing 
under dense canopies in montane forests and mainly occurring in 
humid habitats) (Fu & Jin, 1992). Nevertheless, of longitude and lati-
tude it cannot be excluded that the association is caused by the col-
linearity with other landscape variables.

Ecological niche modeling of P. chienii predicts that P. chienii 
may experience significant range contractions under future climate 
change scenarios (Figure  6). This information, in junction with the 
identified landscape variables potentially driving the adaptation, 
provides useful data to develop a conservation action plan for P. 
chienii.

5  | CONCLUSION

This study firstly integrated EST-SSRs and landscape genetics anal-
yses to investigate the population genetic pattern of P. chienii. P. 
chienii was found to maintain a moderate level of genetic variation 
and a high level of genetic differentiation. Its populations showed a 
IBD pattern and a strong fine-scale spatial genetic structure within 
2 km. A putatively adaptive locus EMS6 was identified, functionally 
annotated, and found to present significant associations with soil 
Cu, K, and Pb content and the combined effects of temperature and 
precipitation. In addition, P. chienii was predicted to experience sig-
nificant range reductions in future climate change scenarios. These 
results lend support to the implication of landscape variables in the 
adaptive genetic differentiation in P. chienii. They would also be use-
ful for developing a conservation action plan for the plant.
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