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A B S T R A C T   

In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the 
development of food production, consumption, and management. The common analytical methods used to 
determine food authenticity present challenges, such as complicated analysis processes and time-consuming 
procedures, necessitating the development of rapid, efficient analysis technology for food authentication. 
Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based 
technology have gradually been applied for food authentication due to advantages such as rapid analysis and 
simple operation. This paper summarizes the current research on rapid food authenticity analysis technology 
from three perspectives, including breeds or species determination, quality fraud detection, and geographical 
origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to 
promote the development of rapid analysis technology in the food authenticity field.   

1. Introduction 

In recent years, economically motivated adulteration (EMA) has 
occurred frequently, which has interfered with the stability of the food 
industry and damaged the interests of consumers, resulting in a crisis of 
consumer confidence in the food industry and the government. There-
fore, EMA has now been included in the category of food safety super-
vision. Most countries have taken corresponding countermeasures 
regarding policies, regulations, and standards while establishing adul-
teration analysis methods and constructing food fraud databases and 
traceability platforms to further maintain the stable development of the 
food market (Manning and Soon, 2016). Continuously exploring anal-
ysis technology based on food characteristics provides theoretical basis 
for the entire regulatory process. Commonly used research methods 
include stable isotope techniques, mineral element analysis, fatty acid 
analysis, and traditional DNA techniques (Wang et al., 2022c). Never-
theless, with the complexity of the food adulteration problem, analytical 
methods need to be continuously updated and improved, while result 

accuracy and timeliness must be considered (Xing et al., 2019a). 
Therefore, rapid analysis technologies are necessary to improve the 
current situation in the food authenticity field. 

Recently, spectroscopy, mass spectrometry, electronic sensor tech-
nology and DNA technology have been widely used in food analysis. The 
rapid and non-destructive analytical characteristics of spectroscopic 
techniques and the low analytical cost and high analytical efficiency of 
electronic sensor techniques are compatible with the technological 
needs in the food authenticity field, and have been used to identify the 
authenticity of a wide range of food products in recent years (Kharbach 
et al., 2023; Tan and Xu, 2020). Mass spectrometry and DNA analysis 
have the advantages of high sensitivity and wide range of application 
(Huang et al., 2010; Scarano and Rao, 2014). Their more mature ap-
plications have been reported in food authenticity studies. Recently, 
under the background of pursuing timeliness in food analysis, scholars 
have developed many kinds of rapid analysis techniques based on mass 
spectrometry and DNA technology, which do not affect the analysis ef-
fect but improve the efficiency, and these rapid analysis techniques have 
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also been gradually explored in the food authenticity field. However, the 
data collected through these techniques are often characterized by large 
data volumes, high data dimensions, and complex data structures, so the 
selection of chemometrics methods appropriate to the analytical tech-
niques to aid authenticity analysis is also crucial for the food authen-
ticity field (Agriopoulou et al., 2022). 

The current research on the rapid analytical techniques for food 
authentication mainly involves breeds or species identification (differ-
entiating between different species or different breeds of the same spe-
cies), quality fraud identification (identifying illegal addition, food 
grading, content falsification, food feeding or cultivation methods, food 
storage or processing methods) and geographical origin identification. 
Therefore, this paper summarizes the status of the rapid analysis tech-
nology for food authentication from these three perspectives, and in-
troduces the representative chemometrics methods adapted to rapid 
analysis techniques. It aims to provide a reference for the development 
of rapid analysis technology in the food authenticity field. 

2. Principle and research progress in rapid analysis technology 

2.1. Spectroscopic technology 

The fast advancement of contemporary optical technology served as 
the foundation for the creation of spectroscopic technology, which is 
now comparatively well-established in food analysis. It is commonly 
used for the non-destructive determination of food authenticity due to 
its high accuracy, fast response, good stability, and intuitive results 
(Dong, 2017). The range of applications of spectroscopic technologies 
varies due to their principle and characteristic differences, which also 
affect parameters like penetration, accuracy, analytical speed, and 
organic matter resolution (Table 1). Mid-infrared (MIR), near-infrared 
(NIR), and Raman spectroscopy and nuclear magnetic resonance 
(NMR) are frequently used for food authentication, while hyperspectral 
imagery (HSI) is often employed for breeds or species and geographic 
origin identification. Terahertz (THz) application for food authentica-
tion is still in its infancy. 

2.1.1. Breeds or species 
Breeds or species identification is most commonly used for food 

authentication. Most studies on spectroscopic technologies for breeds or 
species identification focus on plant-derived products, such as fruits, 
cereals, and oils, while minimal research is available involving animal- 
derived products, such as meat and dairy products. Extensive research 
has been performed on NIR and NMR. Relevant literatures are summa-
rized in Table 2. 

Recent research has focused on using NIR to identify plant-derived 

breeds and species in food products, with fewer studies concentrating 
on determining animal-derived. NIR is mainly applied to oils, fruits, and 
cereals in plant-derived products. Studies on oils primarily concentrate 
on differentiating between high-value pure oils and contaminated oil 
combined with low-value oils. In a study examining pumpkin seed oil for 
sunflower oil adulteration, NIR combined with orthogonal partial least- 
squares discriminant analysis (OPLS-DA) completely distinguished pure 
pumpkin seed oil from the adulterated version, with an accurate 
discrimination rate of 100% (Balbino et al., 2022). Similarly, the dif-
ferentiation between olive oil and soy oil was achieved by NIR, and NIR 
combined with partial least squares regression (PLSR) algorithm could 
predict the amount of olive oil adulterated with soy oil, with a coeffi-
cient of determination (R2) as high as 0.975 (Santos et al., 2020). NIR for 
fruits has been studied mainly to distinguish their breeds in terms of 
breeds or species identification. NIR combined with linear discriminant 
analysis (LDA) distinguished two lemon breeds with 66 % accuracy 
(Ruggiero et al., 2022), and combined with quadratic discriminant 
analysis (QDA) identified five apple breeds with 85 %–98 % accuracy 
(Cortes et al., 2019). The accuracy differences may be related to the 
chemometrics method used to analyze the data. NIR is also capable of 
breeds differentiation in cereal-based products. Five wheat breeds were 
distinguished based on their kernels with an 80 %–100 % accuracy. The 
wheat flour was also analyzed, distinguishing the five wheat breeds with 
a 92.4% to 100 % accuracy (Ziegler et al., 2016). The increased accuracy 
could be attributed to higher sample homogeneity when wheat is milled 
into flour. Furthermore, NIR was combined with one-class partial least 
squares (OCPLS) to distinguish between pure almond flour and adul-
terated samples mixed with peanut flour, yielding an accuracy of 91%– 
100% (Karacaglar et al., 2019). Although minimal research is available 
regarding the utilization of NIR for breeds or species identification in 
animal-derived products, it has been applied to meat, milk, and oil 
products. In studies reported with meat, the animal origin of both intact 
and ground meat could be identified by NIR spectroscopy. A study using 
duck meat instead of beef used FT-NIR spectroscopy to identify raw beef, 
beef-duck mixtures, and raw duck meat at a 100% accuracy rate (Han 
et al., 2022). NIR spectroscopy combined with SIMCA identified cattle, 
pig, and sheep species sources in minced meat at a 100 % discrimination 
accuracy (Pieszczek et al., 2018). In addition, the substitution of 
high-value goat milk and butter with low-value products can be recog-
nized by NIR. NIR in combination with PLS-DA can differentiate be-
tween cow milk adulterated goat milk with 100% identification 
accuracy (Teixeira et al., 2021a). Soybean oil doped in butter can also be 
quantitatively characterized by NIR combined with PLSR (Pereira et al., 
2019). 

NMR represents the second most popular method for distinguishing 
food breeds or species, displaying the same application range as NIR. For 

Table 1 
Principles and characteristics of spectroscopic technologies.  

Spectral 
classification 

Generation principle Wavelength/ 
Wavenumber 

Characteristics References 

MIR Based on the characteristics of light such as scattering, emission 
and absorption 

4000 cm− 1–400 
cm− 1 

Simple analysis process, low cost, high speed 
and high reproducibility 

Mehltretter 
et al. (2017) 

NIR Hydrogen-containing groups cause molecular vibration 14286 
cm− 1–4000 cm− 1 

High analysis efficiency, wide sample 
application range, multi-component continuous 
detection and online analysis 

Hao et al. 
(2019) 

Raman Based on the scattering of light and the vibration and rotation 
energy levels of matter molecules 

4000 cm− 1–50 
cm− 1 

Simple sample processing, fast detection speed, 
simple instrument operation and high sensitivity 

He and Sun 
(2018) 

HSI Imaging the target area at the same time in tens to hundreds of 
continuous and subdivided spectral bands. 

– Fast, efficient, non-invasive, accurate results 
and comprehensive coverage 

Cubero et al. 
(2010) 

THz Photoconductive generation of broadband pulse, optical 
rectification generation of broadband pulse, narrow band 
continuous terahertz pulse generation technology, etc 

0.03–3 mm Electronics and optics with dual properties Moon et al. 
(2019) 

NMR Based on the absorption of radio frequency radiation by atomic 
nucleus 

Low-field NMR in 
pulse mode 

Short test time, easy operation, no radiation, 
safety, high efficiency, strong penetration and 
no damage 

Lenz and 
Wilson (2007) 

MIR, mid-infrared; NIR, near-infrared; HSI, hyperspectral image; THz, Terahertz; NMR, nuclear magnetic resonance. 
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Table 2 
Application progress of spectroscopic technology in breeds or species identification of food.  

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate 

References 

MIR Animal Aquatic 
product 

Tuna, 4 Breeds: yellowfin, skipjack, 
bigeye and albacore 

4000–700 cm− 1 NORM PLS-DA, FDA 93.3–100% Boughattas and 
Karoui (2021) 

Oil 2 Species: butter and soybean 4000–400 cm− 1 NORM PCA, PLSR – Pereira et al. 
(2019) 

Plant Oil 8 Breeds: olive, sunflower, 
pumpkin, hempseed, soybean, 
walnut, linseed and sea buckthorn 

3600–650 cm− 1 – PLS-DA, CA, RF – Socaciu et al. 
(2020) 

Olive oil, 4 Breeds: Moroccan 
Picholine, Languedoc Picholine, 
Arbozana and Arbequina 

4000–700 cm− 1 NORM, 2nd, 
MSC 

PCA, FDA 91.87% Zaroual et al. 
(2021) 

Honey 3 Species: canola, acacia, 
honeydew 

3050–960 cm− 1 BLC PCA-LDA, 
SIMCA 

91.3% Brendel et al. 
(2021) 

3 Breeds: monofloral, polyfloral, 
and honeydew 

4000–650 cm− 1 SG, SNV PCA, SIMCA, 
HCA 

100% Ozbay et al. 
(2022) 

Cereal Barley, 8 Breeds: Admiral, 
Commander, Compass, Fathom, 
Navigator, Schooner, Buloke and 
Scope 

4000–375 cm− 1 SNV, 2nd PLS-DA, LDA 91%–100% Porker et al. 
(2017) 

Quinoa flour, 3 Species: soybean, 
maize and wheat 

4000–600 cm− 1 NORM PLS-DA 94%–97% Rodriguez et al. 
(2019b) 

Red wine Grape, 11 Breeds: Sangiovese, 
Nebbiolo, Nerello Mascalese, 
Primitivo, Raboso, Cannonau, 
Teroldego, Sagrantino, 
Montepulciano and Corvina 

4000–700 cm− 1 – SVM 96% Parpinello et al. 
(2019) 

NIR Animal Meat 2 Species: beef and duck 10,000–4000 cm− 1 SNV, 2nd ELM, PCA 100% Han et al. (2022) 
4 Species: lamb, beef, pork and 
chicken 

900–1700 nm NORM, MSC, 
OSC 

SVM 97% Dashti et al. 
(2022) 

Ground meat, 3 Species: beef, pork 
and lamb 

960–1960 nm MSC, ISC OPLS-DA, 
SIMCA 

100% Pieszczek et al. 
(2018) 

Milk Goat dairy products, 2 Species: 
goat and cow milk 

10,000–4000 cm− 1 MSC, SNV, SG PLS-DA 100% Teixeira et al. 
(2021a) 

Oil 2 Species: butter and soybean 12,000–4000 cm− 1 NORM PCA, PLSR – Pereira et al. 
(2019) 

Plant Oil 2 Species: pumpkin seed and 
sunflower 

904–1699 nm – PCA, OPLS-DA 100% Balbino et al. 
(2022) 

2 Species: olive and soy 908–1676 nm – PCA, PLSR – Santos et al. 
(2020) 

6 Species: sesame, corn, rice, 
peanut, rapeseed and blend 

10,000–4500 cm− 1 – ECR – Chen et al. 
(2018) 

4 Species: camellia, corn, rpeseed 
and sunflower 

10,000–4200cm-1 SG PLS-DA 96.7% Du et al. (2021) 

Fruit Apple, 5 Breeds: Fuji, Red 
Delicious, Royal Gala, Golden 
Delicious, Golden Rosé 

900–1700 nm SG QDA 85%–98% Cortes et al. 
(2019) 

Lemon, 2 Breeds: Ovale di Sorrento 
and Sfusato Amalfitano 

10,000–4000 cm− 1 – LDA 66% Ruggiero et al. 
(2022) 

Cereal Wheat, 5 Breeds: bread, spelt, 
durum, emmer and einkorn wheat 

1200–2400 nm SG, 1st PLS-DA 80%–100% Ziegler et al. 
(2016) 

Almond 
powder 

2 Species: almonds and peanuts 1000–2500 nm SNV OCPLS 91%–100% Faqeerzada et al. 
(2020a) 

Coffee 2 Breeds: arabica and robusta; 6 
Species: corn, barley, soybean, rice, 
coffee husks and coffee 

10,000–4000 cm− 1 SNV, SG PCA – de Carvalho 
Couto et al. 
(2022) 

Honey 8 Species: Acacia, Bastard indigo, 
Chestnut, Honeydew, Linden, 
Rape, Milkweed and Sunflower 

740–1700 nm SG PCA, LDA 99% Bodor et al. 
(2021) 

Raman/FT- 
Raman 

Animal Milk 3 Species: goat, ewe, cow 2000–200 cm− 1 BLC PLS-DA 93% Yazgan et al. 
(2020) 

Milk fat, 6 Species: 3 vegetable fat 
blends, sunflower, corn and 
margarine oil 

2000–200 cm− 1 1st, SG PCA – Karacaglar et al. 
(2019) 

Oil Ghee, 2 Breeds: cow and buffalo 1830–600 cm− 1 SG, NORM, 
BLC 

PLSR – Ahmad and 
Saleem (2019) 

2 Species: butter and lard 2000–200 cm− 1 1st, 2nd PLSR, PCR 99% Taylan et al. 
(2020) 

Aquatic 
product 

Fish, 13 Breeds: Chilean Salmo 
salar L., Norwegian Salmo salar L., 
Danish Salmo salar L, Thunnus 
obesus, Thunnus alalunga, 
Oncorhynchus keta, Anoplopoma 
fimbria, Trichiurus lepturus, 
Cynoglossus semilaevis, 

3700–500 cm− 1 BLC, NORM CNN 98.2% Ren et al. (2023) 

(continued on next page) 
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Table 2 (continued ) 

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate 

References 

Pleuronichthys cornutus, 
Oncorhynchus mykiss, Pangasius 
bocourti and Pagrus major. 
Salmon, 2 Breeds: atlantic salmon 
and rainbow trout 

2000–500 cm− 1 MSC, BLC, 
SNV 

PLSR 87% Chen et al. 
(2019) 

Meat Sausage, 6 Species: cattle, sheep, 
goat, buffalo, chicken and pig 

2000–200 cm− 1 3rd PCA 96.26% Boyaci et al. 
(2014) 

Plant Cereal Cereal flour, 4 Species: barley, rye, 
spelt and wheat 

1750–450 cm− 1 SG PLS-DA 97.7%–99.2% Kniese et al. 
(2021) 

Rice, 3 Breeds: ndica, japonica and 
sticky 

3900–100 cm− 1 BLC SIMCA 100% Zhu et al. (2018) 

Fruit Grape, 4 Breeds: Nebbiolo, Barbera 
and Dolcetto 

4000–200 cm− 1 SG PCA 90% Mandrile et al. 
(2016) 

Coffee 5 Breeds: BRS Ouro Preto: C73, 
C83, C91, C79 and C91 

2000–200 cm− 1 SG, MSC SIMCA 100% Luna et al. 
(2019) 

Honey 3 Species: fir, pine and thyme 2000–200 cm− 1 SG, BLC LDA 92.2%–93.8% Xagoraris et al. 
(2021) 

Pistachio 
nuts 

2 Species: green peas and pistachio 
nuts 

2000–200 cm− 1 NORM GILS – Eksi-Kocak et al. 
(2016) 

HSI Animal Meat 3 Species: lamb, beef and pork 467–693 nm – 3D-CNN 96.9%, 97.1% Al-Sarayreh 
et al. (2020) 

Mutton roll, 3 Species: mutton, 
pork and dark 

400–1000 nm SNV, NORM, 
1st, 2nd 

SPA, PLS-DA 98.3%–100% Jiang et al. 
(2021) 

Kebab, 4 Species: chicken, duck, 
pork and mutton  

380–1012 nm – PLS-DA 100% Jiang et al. 
(2022) 

Colla 
coriiasini 

2 Species: colla coriiasini and 
pigskin gelatin 

388–1045 nm MSC, SG GRNN 92.5% Wang et al. 
(2018) 

Plant Cereal Coarse grain flour, 3 Species: 
millet, corn and soybean 

865–1711 nm – PLS-DA-SPA 94.8%–100% Shao et al. 
(2019) 

Maize, 5 Breeds: ND633, ND675, 
ND678, ND689 and XY335 

382.2–1026.7 nm SG, MSC RBF-BPR 96%–100% Zhang et al. 
(2022a) 

Almond 
powder 

2 Species: apricot and peanut 900–2494 nm SG, 2nd DD-SIMCA 89%–100% Faqeerzada et al. 
(2020b) 

Black 
pepper 

2 Species: papaya seeds and black 
pepper 

900–1710 nm SG, 2nd SIMCA 100% Orrillo et al. 
(2019) 

Pistachio 2 Species: green peas and pistachio 3700–200 cm− 1 BLC, 2nd PLSR – Eksi-Kocak et al. 
(2016) 

6 Species: edible and inedible 
pistachio nuts, pistachio shells, 
pistachio husks, twigs and stones 

1000–2500 nm SNV, MC PCA, KNN – Bonifazi et al. 
(2021) 

THz Plant Cereal Corn, 2 Breeds: High-oil 5598 and 
Zhengdan 958 

0.5–3.5 THz – LDA, SVM 100% Yang et al. 
(2021a) 

Soybean seed, 3 Breeds: 
glyphosate-resistant and 
conventional seeds and their 
hybrid descendants 

0.5–1.5 THz SNV LS-SVM 88.33% Liu et al. (2016a) 

Rice, 2 Breeds: non-transgenic and 
transgenic 

0 ~ 5 THz 1st RF 96.67% Liu et al. 
(2016b) 

Honey 3 Species: Medlar, Vitex, and 
Acacia 

0.5–1.5 THz – PLS-DA 88.46% Liu et al. 
(2018b) 

NMR Animal Milk Cheese, 3 Breeds: Cheddar, 
Kefalotyri and Halloumi 

– BLC OPLS-DA 90.54% Tarapoulouzi 
and Theocharis 
(2022) 

2 Species: caprine and bovine 1H 500.23 MHz BLC, NORM OPLS-DA 80%–100% Rysova et al. 
(2021) 

Meat Frankfurter, 4 Species: beef, 
chicken, turkey and pork  

1H 22.34 MHz – PLS – Uguz et al. 
(2019) 

Oil 3 Species: cod liver, sunflower and 
canola 

1H 400 MHz BLC ANN – Giese et al. 
(2019) 

Plant Oil Olive oil, 3 Breeds: Arbequina, 
Picual and Verdial  

1H 500 MHz – LDA 100% Sayago et al. 
(2019) 

7 Species: olive, sunflower, high 
oleic sunflower, hazelnut, avocado, 
soybean and corn 

1H 500.13 MHz – PLS-DA 88%–100% Alonso-Salces 
et al. (2022) 

2 Species: argan and sunflower 1H 60 MHz BLC nearest- 
neighbor type 
classifier 

– Gunning et al. 
(2020) 

2 Species: perilla and soybean 1H 43 MHz BLC – – (Kim et al., 
2018), 

3 Species: camellia, oriental olive 
and corn 

1H 850 MHz – OPLS-DA 84.1%–90.3% Xing et al. 
(2021a) 

(continued on next page) 
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example, research on plant-derived foods also focuses on identifying 
high-value vegetable oils, including perilla oil, argan oil, olive oil, 
camellia oil, and avocado oil, with discrimination accuracy ranging from 
84% to 100% (Table 2). NMR can access differential substances to 
identify adulterated oils. For example, the primary distinction between 
argan and sunflower oils is the composition of their mixed triglyceride 
esters (TAGs) (Gunning et al., 2020). NMR-based non-targeted analysis 
methods have also been used to differentiate between species or breeds 
of fruit. Delpino-Rius et al. (2019) developed an identification method 
for peach puree and pear juice based on primary metabolites and 
phenolic compounds, identifying two kinds of peaches (Spring Lady and 
Miraflores) and three kinds of pears (Alejandrina, Conference and 
Blanquilla). Hu et al. (2020) combined NMR with multivariate statistical 
analysis to analyze the metabolite content changes in three dry red 
wines. Although the results showed similar metabolite types in different 
wines the content levels differed significantly. Therefore, the compound 
content differences could be used to differentiate between dry red wines. 
Although studies using NMR to analyze animal-derived food are less 
common than those involving plant-derived food, this technology has 
been effectively used for dairy and meat products. In meat products, 
NMR was used to analyze the pork components in Frankfurt meat 
products. NMR relaxation was used to identify pork and three otherkinds 
of meat (beef, chicken, and turkey) using different relaxation times, 
while their physical properties were measured and analyzed in relation 
to the relaxation time. The results showed that the optimal frequency for 
identifying pork in meat products was 22.34 MHz (Uguz et al., 2019). In 
dairy products, NMR can be used for species identification in raw milk 
and to analyze cheese samples from different breeds. By combining NMR 
and Fourier-transform infrared (FTIR) spectroscopic data, the OPLS-DA 
model showed a 90.54 %t accuracy for identifying halloumi cheese and 
its two common substitutes (Cheddar and Kefalotyri) (Tarapoulouzi and 
Theocharis, 2022). Furthermore, a cod liver oil certification study 
discriminated between cod liver oil and adulterated oils (sunflower and 
rapeseed oil) with 100% accuracy by combining NMR and support 
vector machine (SVM) modeling (Giese et al., 2019). 

Although MIR is not frequently used, it is mainly utilized for plant- 
derived products, such as vegetable oil, honey, cereals, and wine. 

Studies showed that MIR could differentiate between olive oil breeds 
(Zaroual et al., 2021), while successfully distinguishing between eight 
edible vegetable oils to address indiscriminate and mislabeled com-
mercial labels (Socaciu et al., 2020). Additionally, MIR can distinguish 
between different honey and grain species, as well as between different 
varieties of a single species, with discrimination accuracies ranging from 
91% to 100 % (Table 2). MIR also shows potential for species differen-
tiation in aquatic products. A discriminant model capable of dis-
tinguishing between four tuna breeds (Yellowfin, Skipjack, Bigeye, and 
Albacore) was established based on MIR and factorial discriminant 
analysis. The model assessed the certification of 40 commercial canned 
tuna products at a discrimination accuracy rate of 93.3–100% (Bough-
attas and Karoui, 2021). The application of MIR in studying food breeds 
or species differentiation is relatively mature despite the recent relative 
paucity of MIR studies. 

Raman technology has been used for breeds or species identification 
in plant-derived products, including grapes, rice, and coffee, and plant 
sources, such as honey and cereal flour. It is worth mentioning that a 
study analyzed Raman spectra using SIMCA after pre-processing via 
multiplicative scattering correction to distinguish between five raw 
coffee varieties with 100% accuracy. Chlorogenic acid, lipids, and pro-
teins represented the main components responsible for spectral differ-
ences (Luna et al., 2019). When applying Raman for cereal flour species 
classification, spectral differentiation was mainly based on the starch, 
protein, and arabinoxylan signals, distinguishing between barley, rye, 
pelt wheat, and wheat flour samples with an accuracy rate of 88% 
(Kniese et al., 2021). Milk, oil, fish, and meat products are among the 
animal-derived food products analyzed via Raman spectroscopy for 
breeds or species differentiation, of which the species origin of milk is 
the most frequently examined. It can also differentiate milk fats and 
their low-value substitutes, showing that principal component analysis 
(PCA) can distinguish between six different non-milk fats. A recent study 
used Raman spectroscopy to characterize Desi ghee from buffalo and 
cow milk. The β-carotene, conjugated linoleic acid (CLA), lipid, and fatty 
acid differences extracted from the spectral data were used to success-
fully differentiate the Desi ghee species origin (Ahmad and Saleem, 
2019). Raman-based aquatic product certification is primarily 

Table 2 (continued ) 

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate 

References 

4 Species: avocado, soybean, corn 
and rapeseed 

1H 43 MHz – SIMCA 98% Jin et al. (2022) 

Fruit peach puree, 2 Breeds: Spring Lady 
and Miraflores; pear juice, 
3 Breeds: Alejandrina, Conference 
and Blanquilla 

1H 400 MHz BLC PCA – Delpino-Rius 
et al. (2019) 

Mango puree, 2 Breeds: alphonso 
and non-alphonso 

1H 400 MHz SG LOF 88% Strecker and Ara 
(2022) 

Dry red wine, 3 Breeds: Cabernet 
Sauvignon, Merlot and Cabernet 
Gernischt 

1H 600.23 MHz NORM PLS-DA – Hu et al. (2020) 

Grape wine, 8 Breeds: Syrah, 
Muscat, Xinomavro, Assyrtiko, 
Malagouzia, Agiorgitiko, Debina 
and other wine 

13C 125 MHz – KNN, PLS-DA 83.6% Mannu et al. 
(2020) 

Coffee 2 Breeds: Robusta and Arabica 1H 400 Hz – LDA 100% Badmos et al. 
(2019) 

Honey 7 Species: monofloral buckwheat, 
clover, heather, linden, rapeseed, 
willow, and polyfloral 

1H 300 Hz BLC, NORM PCA, OPLS-DA – Labsvards et al. 
(2022) 

MIR, mid-infrared; NIR, near-infrared; FT-Raman, fourier transform Raman; HSI, hyperspectral image; THz, Terahertz; NMR, nuclear magnetic resonance; NORM, 
normalization; SNV, standard normalized variate; 1st, first derivative; 2nd, second derivative; 3rd, third derivative; SG, savitzky-golay; BLC, baseline correction; MSC, 
multiple scattering correction; MC, mean centering; ISC, inverse scatter correction; PLS-DA, partial least squares discrimination analysis; FDA, factorial discriminant 
analysis; HCA, hierarchical cluster analysis; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; OCPLS, one-class partial least squares; PCR, 
principle component regression; RBF-BPR, radial basis function-biomimetic pattern recognition; PCA, principal component analysis; SVM, support vector machine; 
OPLS-DA, orthogonal partial least-squares discrimination analysis; RF, random forest; CNN, convolutional neural network; KNN, K-Nearest Neighbor; PLSR, partial 
least squares regression; SPA, successive projection algorithm; GRNN, generalized regression neural network; DD-SIMCA, data-driven soft independent modeling of 
class analogy; 3D-CNN, three-dimensional convolutional neural network; LOF, local outlier factor; LS-SVM, least square support vector machine. 
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concerned with the differentiation of fish breeds. Raman spectroscopy 
was used to distinguish between two salmon species (rainbow trout and 
Atlantic salmon) with 87% accuracy (Chen et al., 2019). It was also used 
to differentiate seven kinds of meat (cattle, sheep, goat, buffalo, chicken, 
and pork) from salami products in a study on the source identification of 
raw sausage materials, with an accuracy of 96.26% (Boyaci et al., 2014). 

As a special spectroscopic technique, HSI is also gradually being 
developed in the food authenticity field, primarily employing NIR and 
VIS-NIR for breeds or species identification in plant-derived products in 
recent years. Shao et al. (2019) used NIR-HSI to identify millet, corn, and 
soybean binary mixtures and their pure samples. The PLS-DA results 
based on the selected effective wavelengths and full spectra showed that 
the discrimination rates of all the models exceeded 94.8%. Papaya seeds 
and black pepper can also be identified using NIR-HIS. In a study 
involving maize seed identification, Zhang et al. (2022a) successfully 
distinguished five maize breeds using an HSI system based on VIS-NIR 
spectroscopy, obtaining accuracy rates of 96%–100% after algorithm 
analysis. VIS-NIR-HSI has achieved varying degrees of success in iden-
tifying plant-derived products, including almonds and peanuts, and the 
identification of the plant origin of honey. Moreover, recent studies have 
employed spectral modules based on VIS-NIR-HSI to identify breeds or 
species and the animal origin in meat products, such as pork, pork, lamb, 
chicken, and duck, with discrimination rates exceeding 95% (Al-Sar-
ayreh et al., 2020; Jiang et al., 2021, 2022). 

THz research mainly focuses on plant-derived foods, including corn, 
rice, and other cereals. In a study identifying maize breeds, the predic-
tion accuracy of the model with a 0.2–1.6 THz spectrum reached 92.08% 
(Yang et al., 2021a). THz has also been used to distinguish the botanical 
origin of honey and identify transgenic soybean seeds (Liu et al., 2016a, 
2018b). These two studies focused on chemometric method selection. 
The PLS-DA model was more suitable for identifying the botanical origin 
of honey, with a verification set accuracy of 88.46%, while the LS-SVM 
model, was more appropriate for transgenic soybean identification, with 
a verification set discrimination accuracy of 88.33%. This demonstrates 
that selecting the appropriate chemometrics techniques also affects the 
outcome, in addition to selecting the correct analytical technology. 

2.1.2. Quality fraud 
Quality fraud identification is also a part of practical significance in 

the food authenticiy field, and the market demand is stronger. There-
fore, the application of spectral technology with the main advantage of 
rapid has been continuously explored in recent years, with specific ap-
plications focusing on the identification of illegal additives, farming or 
seed cultivation methods, and content falsification. MIR, NIR, Raman, 
and NMR are relative maturity technologies in quality fraud identifi-
cation. Relevant literatures are summarized in Table 3. 

Regarding the quality fraud identification of animal-derived foods, 
the application of NIR in recent years has been mainly for meat and meat 
products, but for different purposes of differentiation, including differ-
entiation of storage methods, differentiation of processing methods and 
differentiation of quality levels. Combining a handheld NIR with the 
Random Subspace Discriminative Ensemble (RSDE) method effectively 
differentiated between fresh and frozen chicken and classified chicken 
fillets according to the different farming conditions, with a classification 
accuracy exceeding 95% (Parastar et al., 2020). The presence or absence 
of irradiated samples in sausage samples can also be identified via NIR 
with 100% accuracy (Varra et al., 2020). Furthermore, NIR shows 
considerable potential for distinguishing ham grades. NIR was used for 
the in situ measurements of carcass fat to differentiate between premium 
and non-premium hams, with a classification accuracy of more than 
95% (Piotrowski et al., 2019). In addition, NIR was used to identify the 
quality of eggs to differentiate the feeding practices of hens. Egg whites 
and yolks were classified to trace the egg sources (free range and cage) 
based on the spectral analysis of the protein, carbohydrate, and ash 
content differences, providing a theoretical reference for evaluating egg 
quality (Hoffman et al., 2022). Nevertheless, for quality fraud 

identification of plant-derived foods, NIR focuses on the identification of 
the growth and feeding system of the product. It was used to trace 
product cultivation systems, successfully differentiated between con-
ventional and organic rice, tomatoes and bell peppers with classification 
accuracies of 87.5%, 98.5%, 96.3% (de Andrade et al., 2023; Xiao et al., 
2019). Additionally, NIR could distinguish between specialty coffee 
beans produced using the standard procedure and non-specialty coffee 
beans produced with inadequate control over the production process, 
with a classification accuracy of 87% (Manuel et al., 2022). 

MIR is a spectroscopic technology second only to NIR for quality 
fraud studies. Recent food quality fraud identification research 
involving MIR mainly focuses on plant-derived foods to identify the 
presence of illegal additives. MIR identified illegal additives in paprika 
powder, such as Sudan I, Sudan IV, and lead chromate, with a sensitivity 
and specificity exceeding 80% (Horn et al., 2018). Syrup added to 
samples as an adulterant was also accurately identified. MIR recognized 
four types of adulterated syrups in honey (glucose, fructose, sucrose, and 
high syrup fructose corn syrup)with detection limits as low as 10% 
(Skaff et al., 2022). The combination of MIR and K-nearest neighbor 
(KNN) identified syrup or water in Guava pulp with 100% classification 
accuracy (Alamar et al., 2020). In both these studies, the MIR discrim-
ination accuracy was higher than NIR, suggesting that MIR displayed 
higher potential for analyzing syrup adulteration scenarios. MIR was 
also used to classify chocolate samples with different cocoa content 
levels with 99.67% accuracy (Santos et al., 2021). MIR is mainly used to 
identify illegal additives when determining the quality of animal prod-
ucts, such as beef and bird’s nests. The chemical components, such as 
NaCl, phosphates, carrageenan, and maltodextrin, doped in beef sam-
ples were characterized by selecting specific infrared bands, with the 
doping identification rate reaching 91% (Nunes et al., 2016). For the 
study on bird’s nests, MIR identification model correctly classified 100% 
carrageenan adulteration, followed by the nutrient agar class at 98.2%, 
gelatine class at 97.3%, and collagen class at 94.4% (Ng et al., 2022). 

Using Raman, NMR, and Thz techniques to identify quality fraud in 
animal-derived products focuses on dairy products, such as milk, cheese, 
and milk powders. These methods aim to identify illegal additions and 
differentiate feeding practices. Raman spectroscopy successfully iden-
tified illegal additives (margarine, corn and palm oils) in cheese, with 
detection limits as low as 4% (Genis et al., 2021). The H-1-NMR 
metabolomics method was used to collect the non-volatile metabolite 
profiles of organic and conventional liquid milk. Metabonomic data 
analysis indicated that 13 potential biomarkers, such as formate and 
betaine, could be used to identify liquid milk production systems 
(Phuenpong et al., 2021). Quality fraud identification in dairy products 
based on THz focuses onidentifying melamine in milk powder. Com-
bined with the analysis algorithm, the maximum absorption peak 
reached 2.04 THz, while the absorption coefficient increased at a higher 
melamine concentration. The mixed logistic regression (MLR) model 
based on THz displays significant potential or quantitatively analyzing 
melamine in milk powder (Sun et al., 2019). Furthermore, THz tech-
nology has also been applied for quality fraud identification in 
plant-derived foods. It was combined with PCA and SVM to differentiate 
edible oils with similar appearance and physical properties from swill 
dirty oils, displaying a classification accuracy of 100% (Zhan et al., 
2016). Compared with THz, Raman spectroscopy and NMR are 
well-established methods for analyzing plant-derived food samples. 
Raman spectroscopy can identify diluted coconut water, syrup-doped 
honey, and rapeseed oil squeezed in different ways, with an accuracy 
ranging from 93% to 100 % (Aykas et al., 2020; McDowell et al., 2018; 
Richardson et al., 2019). NMR can identify quality fraud in a variety of 
plant-derived foods, such as liquid honey, solid coffee, and chili powder. 
Regardless of whether identifying syrup in honey, coffee from different 
cultivation systems, or chemical synthetic adulterants in paprika pow-
der, NMR uses baseline correction (BLC) for pre-processing, which at 
least shows that BLC is the first spectral pre-treatment method that can 
be considered when using NMR to identify adulterations in 
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Table 3 
Application progress of spectroscopic technology in quality fraud identification of food.  

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter 
range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate/limits of 
detection 

References 

MIR Animal Meat Beef, Illegal addition: sodium 
chloride, phosphate, 
carrageenan, maltodextrin 

4000–525 cm− 1 2nd, SG, MSC PCA, PLS-DA 91% Nunes et al. 
(2016) 

Edible 
bird’s 
nests 

Illegal addition: Melamine, 
karaya gum, nutrient agar, 
collagen, gelatine 

16,667–2500 
nm 

– PCA, OPLS-DA 94.4% Ng et al. (2022) 

Plant Vegetable Paprika, Illegal addition: gum 
arabic, lead chromate, lead (II, 
IV) oxide, polyvinyl chloride 
(PVC), silicon dioxide, Sudan I, 
and Sudan IV 

4000–400 cm− 1 SNV, SG, 1st, 2nd SIMCA – Horn et al. 
(2018) 

Honey Illegal addition: glucose, 
fructose, sucrose, and high 
syrup fructose corn syrup 

4000–500 cm− 1 SG PCA – Skaff et al. 
(2022) 

Guava 
pulp 

Illegal addition: sugar and 
water 

4000–400 cm− 1 MSC, SNV, SG KNN 100% Alamar et al. 
(2020) 

Chocolate Content falsification: cocoa 
content in chocolates 

4000–600 cm− 1 SNV PLSR 99.67% Santos et al. 
(2021) 

NIR Animal Meat Chicken, Storage methods: 
fresh and frozen-thawed 

908–1676 nm – RSDE ＞95% Parastar et al. 
(2020) 

Dry fermented sausages, 
Processing methods: irradiated 
and non-irradiated 

1000–2500 nm SNV, SG, 2nd PCA, OPLS-DA 100% Varra et al. 
(2020) 

Quality grades: premium and 
non-premium 

908–1676 nm 2nd, SG, SNV LDA, QDA, NPB ＞95% Piotrowski et al. 
(2019) 

Egg Feeding methods: cage and 
free-range 

950–1600 nm SG PCA, LDA 86%–92% Hoffman et al. 
(2022) 

Plant Rice Cultivated methods: organic 
and conventional 

12,000–4000 
cm− 1 

SG, SNV, 2nd PLS-DA 87.5% Xiao et al. 
(2019) 

Vegetable Tomato and sweet pepper, 
Cultivated methods: organic 
and conventional 

900–1650 nm SG, SNV, MSC PLS-DA 98.4%, 96.3% (de Andrade 
et al., 2023) 

Coffee Quality grades: special and 
non-specialty agroforestry 

937–1655 nm BLC PCA, HCA, DD- 
SIMCA 

87% Manuel et al. 
(2022) 

Raman/FT- 
Raman 

Animal Milk Cheese, Illegal addition: 
margarine, and corn and palm 
oil 

2000–200 cm− 1 1st, SG PLS-DA, PLS 100% Genis et al. 
(2021) 

Plant Fruit Coconut water, Content 
falsification: coconut water by 
dilution 

2579–408 cm− 1 SG, BLC PLSR 97%–99% Richardson et al. 
(2019) 

Honey Illegal addition: molasses, date 
molasses, grape molasses, high 
fructose corn syrup, corn 
syrup, sucrose, and inverted 
sugar 

2500–200 cm− 1 SG, MC SIMCA 100% Aykas et al. 
(2020) 

Oil Cold pressed rapeseed oil, 
Illegal addition: refined 
rapeseed oil and refined 
sunflower oil 

1800–800 cm− 1 SG, 1st LDA 93% McDowell et al. 
(2018) 

HSI Animal Meat Pork, Processing methods: 
minced jowl and pure 

400–1000 nm NORM, SNV, 
MSC, 1st, 2nd 

PLSR 90.63% Jiang et al. 
(2020) 

Porcine dorsi muscles, Storage 
methods: fresh and frozen- 
thawed 

900–1700 nm – PLS-DA 100% Barbin et al. 
(2013) 

Plant Black tea Quality grades: 1-7 350–1100 nm SG, SNV RF 92.7% Ren et al. (2021) 
THz Animal Milk Illegal addition: melamine 0.75–2.73 THz – MLR 97% Sun et al. (2019) 

Plant Oil Illegal addition: Swill-cooked 
dirty oil 

0.2–1.3 THz – PCA, SVM 97.3% Zhan et al. 
(2016) 

Honey Illegal addition: invert syrup 0.3–1.5 THz the complex 
dielectric 
constant (Re[ε] 
and Im[ε]) 

PLS – Liu et al. 
(2022b) 

NMR Animal Aquatic 
product 

Little yellow croaker, Illegal 
addition: carrageen or distilled 
water 

– – PLSR 98.77% Zang et al. 
(2017) 

Milk Feeding methods: organic and 
conventional 

1H 500 MHz – HCA, PLS-DA – Phuenpong et al. 
(2021) 

Plant Vegetable Paprika powder, Illegal 
addition: azorubine, ponceau 
4R, beetroot and sumac 
powder 

1H 400 MHz BLC DD-SIMCA 92% Horn et al. 
(2021) 

(continued on next page) 
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plant-derived foods (Consonni et al., 2018; Horn et al., 2021; Loz-
ano-Torres et al., 2022). 

Compared to other spectroscopic techniques, there have been rela-
tively few reports in quality fraud identification in recent years. HSI 
allows more detailed sample study by simultaneously measuring spec-
tral and spatial information, often using NIR as the spectral module. HSI 
mainly differentiates food processing methods, storage techniques, and 
quality levels. HSI was combined with VIS-NIR to analyze minced pork 
in pork products by building a PLSR model using the acquired spectral 
image data, with an R2 reaching 0.9063 (Jiang et al., 2020). Fresh and 
freeze-thawed porcine dorsal muscles were analyzed using HSI with 
integrated NIR, obtaining 100% differentiation accuracy via the PLS-DA 
model (Barbin et al., 2013). Regarding the identification of quality 
grades, VIS-NIR-HSI was combined with the random forest (RF) algo-
rithm to identify seven black tea quality grades, achieving an accurate 
identification rate of 92.7% (Ren et al., 2021). 

2.1.3. Geographical origin 
Generally, the application of spectroscopy in the geographical origin 

identification of food has been mainly focused on plant-derived foods in 
recent years. And the regional scope of geographic traceability includes 
different countries, different regions of the same country, and even 
smaller regions of the same region. Among them, MIR, NIR, HSI, and 
NMR have relatively more research results. Relevant literatures are 
summarized in Table 4. 

Similar to other aspects of food authenticity research, NIR is the most 
commonly used method for geographic origin identification in plant- 
derived foods, such as cereals and vegetables. The geographic sources 
of cereal from different countries, including rice (Teye et al., 2019), 
durum wheat (De Girolamo et al., 2019), grain maize (Schuetz et al., 
2022) and mung bean (Qian et al., 2022), were determined with 
discrimination accuracy values ranging from 90% to 100%. Vegetable 
product studies have shown that spectral classification accuracy requires 
selecting suitable, reliable prediction models. NIR was combined with 
DD-SIMCA to differentiate tomatoes and bell peppers from three Bra-
zilian regions with an accuracy of 82.7 % (de Andrade et al., 2023). The 
PLS-DA model yielded unsatisfactory results between 61.9 % and 100%, 
with a high degree of accuracy variability. Combining NIR and SVM 
successfully classified 97% of European and non-European white 
asparagus samples (Richter et al., 2019). The research on the 
geographical origin differentiation of animal-derived food products via 
NIR mainly concentrates on dairy products and seafood. Zhang et al. 
(2022b) distinguished the geographical origins of milk from five Chinese 
provinces by combining NIR with KNN, showing a discrimination rate of 
98.67%. Curro et al. (2021) used NIR to analyze the geographical origin 
of cuttlefish from five FAO (Adriatic Sea, northeastern and eastern 
central Atlantic Oceans, and eastern Indian and western central Pacific 
Oceans) fishing regions, with an accuracy reaching 92% after SVM al-
gorithm analysis. 

MIR, which has a different wavelength range than NIR, is more 
mature regarding origin traceability and is mainly used to differentiate 

the geographical origin of plant-derived foods, such as fruits and vege-
tables. The study of fruit is primarily concerned with determining the 
geographical origin of wine. In the study of distinguishing the 
geographical origin of grapes, MIR combined with PLS-DA was used to 
model the different geographical origins of Chardonnay grapes in South 
Australia, and the overall success rate in discriminating geographical 
origin for samples from different vintages (2014 and 2016) was 83% and 
81%, respectively (Gambetta et al., 2019). For vegetables, MIR was used 
to differentiate lentils from two countries and red chili powder from 
three countries at 100% accuracy (Innamorato et al., 2019; Kim et al., 
2021). Research involving the utilization of MIR for the geographical 
origin differentiation of animal-derived foods mainly focuses on milk 
and dairy products, such as goat milk and Alpine milk. Caredda et al. 
(2017) used fatty acid composition and MIR to analyze goat milk from 
three regions in Sardinia (north, middle, and south), obtaining excellent 
classification accuracy of 96% and 99%, respectively, with MIR showing 
slightly higher efficacy. NMR is also used for dairy origin identification. 
Haddad et al. (2022) quantified 178 peaks obtained via NMR analysis of 
cheese. They constructed a multivariate model to quantify a single fatty 
acid, successfully distinguishing the geographical origin of cheese. The 
remainder of the NMR research primarily focused on plant-derived 
foods, with geographical origins mainly represented by different re-
gions in a country, including wines from two Chinese provinces and dark 
chocolate from four Chinese cities. NMR identified and of quantified 
various compounds, including 33 metabolites in the wine and 42 
chemical components in the chocolate, using the related variation to 
distinguish the geographical origin of these products (Gougeon et al., 
2018; Le Gresley and Peron, 2019). 

Since HSI technology can obtain both internal composition and 
appearance-related information about food products, often revealing 
sample origin variation, it has been developed for distinguishing 
geographic origin, mainly of plant-derived products. HSI typically em-
ploys NIR as the spectral module. NIR-HIS was used to trace the origin of 
chia seeds, peaches, foxtail millet, Chinese chestnuts, and other food 
products, with discrimination accuracy values exceeding 90% (Table 4). 
This method was also used to differentiate mutton from four Chinese 
provinces Weng et al. (2021) achieved the best discrimination of mutton 
by combining RF with NIR-HSI to acquire effective spectral and image 
information of textural features, obtaining calibration and prediction set 
classification accuracies of 99.54% and 95.67%, respectively. The study 
also demonstrated the feasibility of using HSI to trace the origin trace-
ability of animal-derived products. In addition, recent studies on 
geographical origin identification using Raman and THz techniques only 
focus on plant-derived products. Although Raman spectroscopy distin-
guished the geographical origin of rice from 12 Chinese provinces and 
three Chinese cities, the discrimination rates were different, with the 
former reaching 100 % and the latter reaching a maximum of 88.9%, 
possibly because the urban areas were smaller than the provincial re-
gions (Sha et al., 2019; Zhu et al., 2018). And as for the application of 
THz, Liu et al. (2018a) assessed the feasibility of using THz to quickly 
distinguish EVOO from four geographical sources. The results indicated 

Table 3 (continued ) 

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter 
range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate/limits of 
detection 

References 

Honey Illegal addition: barley, rice 
and corn syrups 

1H 400 MHz BLC PCA, PLS – Lozano-Torres 
et al. (2022) 

Coffee Cultivated methods: organic 
and conventional 

1H 400 MHz BLC PLS-DA, OPLS- 
DA, OSC 

– Consonni et al. 
(2018) 

MIR, mid-infrared; NIR, near-infrared; FT-Raman, fourier transform Raman; HSI, hyperspectral image; THz, Terahertz; NMR, nuclear magnetic resonance; NORM, 
normalization; SNV, standard normalized variate; 1st, first derivative; 2nd, second derivative; SG, savitzky-golay; BLC, baseline correction; MSC, multiple scattering 
correction; MC, mean centering; PLS-DA, partial least squares discrimination analysis; HCA, hierarchical cluster analysis; LDA, linear discriminant analysis; QDA, 
quadratic discriminant analysis; PCA, principal component analysis; SVM, support vector machine; OPLS-DA, orthogonal partial least-squares discrimination analysis; 
RSDE, random subspace discriminant ensemble; RF, random forest; ELM, extreme learning machine; PLSR, partial least squares regression; NPB, nonparametric bayes; 
DD-SIMCA, data-driven soft independent modeling of class analogy; MLR, mixed logistic regression. 
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Table 4 
Application progress of spectroscopic technology in geographical origin identification of food.  

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate 

References 

MIR Animal Milk Goat milk, 3 Regions in Sardinia: 
North, Central and South 

5011.54–925.92 
cm− 1 

SNV GA-LDA 99% Caredda et al. 
(2017) 

3 Regions: South Tyrol, Tyrol, and 
EU Regions 

4000–400 cm− 1 – PLS-DA 95% Scampicchio 
et al. (2016) 

Plant Fruit Grape, wine 4 wine regions in 
Portuguese: Vinhos Verdes, Lisboa, 
Açores and Távora-Varosa 

3050–950cm− 1 SG, SNV PLS-DA 87.7% dos Santos 
et al. (2017) 

Grape wine, 6 Regions: Adelaide 
Hills, Barossa V alley, Clare V alley, 
Eden V alley, Langhorne Creek and 
Riverland 

1500–800cm− 1 SG, 2nd PLS-DA 81%–83% Gambetta et al. 
(2019) 

Vegetable Lentil, 2 Countries: Italy and 
Canada 

4000–400 cm− 1 SNV, MSC PCA, WPT-LDA, 
PLS-DA 

91%–100% Innamorato 
et al. (2019) 

Asian red pepper powders, 3 
Countries: Korean, Chinese, and 
Vietnamese 

4000–400 cm− 1 SG, 2nd CDA 100% Kim et al. 
(2021) 

Oil Olive oil, 5 Regions in Moroccan: 
Fez/Meknes, Marrakech/Safi, 
Eastern, Northern, Beni-Mellal/ 
Khenifra 

4000–700 cm− 1 NORM, 2nd, 
MSC 

PCA, FDA 91.87% Zaroual et al. 
(2021) 

Honey 2 Regions: Maltese Islands and non- 
Maltese Islands 

4000–550 cm− 1 MSC, OSC, 
SNV, 

PLS-DA ＞95% Formosa et al. 
(2020) 

Quinoa 
grains 

3 Countries: Argentina, Chilean and 
Postosi Bolivia 

4000–600 cm− 1 NORM, BLC SIMCA 96% Rodriguez 
et al. (2019a) 

NIR Animal Milk 5 Provinces in China: Heilongjiang, 
Henan, Hebei, Inner Mongolia, 
Ningxia 

900–1700 nm SG KNN 98.67% Zhang et al. 
(2022b) 

Cheese, 3 Regions in the State of 
Bahia: northeast, far west and south 

1100–2500 nm SNV PCA, LDA 90% Silva et al. 
(2021) 

Aquatic 
product 

Anchovie, 4 Countries: Morocco, 
Spain, Tunisia, and Croatia 

1000–2500 nm MSA, 2nd, SG OPLS-DA ＞99% Varra et al. 
(2021) 

Cuttlefish, 5 Fishing FAO areas: 
Adriatic Sea, northeastern and 
eastern central Atlantic Oceans, and 
eastern Indian and western central 
Pacific Oceans 

902–1680 nm SNV, SG SVM 92% Curro et al. 
(2021) 

Sea cucumber, 9 aquacultures–3 
Regions: Bohai Sea, Yellow Sea and 
East China Sea 

10,000–4000 
cm− 1 

– light GBM 91% Sun et al. 
(2021b) 

Plant Cereal Rice, 3 Countries: Ghana, Thailand, 
and Vietnam 

740–1070 nm MSC PCA 90% Teye et al. 
(2019) 

Durum wheat, 9 Countries: Italy, 
Australia, Canada, France, Greece, 
Russia, Spain, Turkey, and the 
United State 

10,000–4000 
cm− 1 

NORM, SNV LDA 100% De Girolamo 
et al. (2019) 

Grain maize, 5 Countries: Spain, 
Ukraine, Slovakia, Peru and the 
USA 

10,000–4000 
cm− 1 

SNV SVM 95% Schuetz et al. 
(2022) 

Mung bean, 4 Counties: Durbert 
Mongolian Autonomous County 
and Baicheng, Tailai and Chifeng 

10,000–4000 
cm− 1 

NORM PLS-DA 90%–96.67% Qian et al. 
(2022) 

Vegetable Tomato and sweet pepper, 3 Cities 
in Brazilian: Londrina, Rio de 
Janeiro, and São Paulo 

900–1650 nm SG, SNV, MSC DD-SIMCA 82.7% (de Andrade 
et al., 2023) 

White asparagus, 2 Regions: 
German and non-German 

11,500–4000 
cm− 1 

MSC, SG SVM 97% Richter et al. 
(2019) 

Fruit Durian, 2 Provinces in Thailand: 
Prachuap Kiri Khan and 
Chanthaburi 

12,500–4000 
cm− 1 

SG, 2nd SIMCA 100% Chanachot 
et al. (2021) 

Coffee 2 Regions in Vietnam: Dak Lak and 
non-Dak Lak 

900–1700 nm SNV PLS-DA 92% Minh et al. 
(2022) 

Chestnut 3 Regions in Italy: Viterbo, 
Vallerano and Solofra 

10,000–4000 
cm− 1 

SNV, 2nd, MC PLS-DA 97% Nardecchia 
et al. (2020) 

Oil Olive oil, 19 countries 11,500–4000 
cm− 1 

1st, NORM LDA 80%–100% Gertz et al. 
(2019) 

Honey 6 Regions in Hungary: Great Plain, 
Northern Mountains, Small Plain, 
Transdanubian Hills, 
Transdanubian Mountains, Western 
Hungary 

740–1700 nm SG PCA, LDA 99% Bodor et al. 
(2021) 

Raman/FT- 
Raman 

Plant Cereal Rice, 3 Cities in China: Wuchang, 
Yanbian, Panjin 

2339–250 cm− 1 SNV, MSC PCA, SVM 71.4%–88.9% Sha et al. 
(2019) 

(continued on next page) 
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Table 4 (continued ) 

Technology Product 
category 

Food 
product 

Adulterants/classified product Instrument 
parameter range 

Spectral 
pretreatment 

Chemometrics 
method 

Discriminant 
rate 

References 

Rice, 12 provinces in China: 
Heilongjiang, Jiangsu, Jilin, 
Shandong, Henan, Tianjin, Anhui, 
Hunan, Guangdong, Guangxi, 
Hainan and Anhui 

3900–100 cm− 1 1st SIMCA 100% Zhu et al. 
(2018) 

Oil Olive oil, 2 Regions: European and 
non-European 

3600–50 cm− 1 MSC PLS-DA 80%, 82% Tena et al. 
(2019) 

Honey 2 Countries: Romania and France 1900–200 cm− 1 NORM SIMCA 100%, 89% Magdas et al. 
(2021) 

Fruit Grape wine, 3 Regions in 
Romanian: Transylvania, Banat and 
Moldova 

3600–1000 cm− 1 – SLDA 100% Magdas et al. 
(2018) 

HSI Animal Meat Mutton, 4 Provinces in China: 
Xinjiang, Inner Mongolia, Ningxia 
and Guangxi 

400–1000 nm MSC RF 99.54% Weng et al. 
(2021) 

Plant Fruit Yangshan peach, 2 Cities in China: 
Yangshan and Nanjing 

400–1000 nm – GSR 100% Sun et al. 
(2021a) 

Dry Narrow-Leaved Oleaster Fruits, 
3 Provinces in China: Gansu, 
Ningxia and Xinjiang 

874–1743 nm 2nd PLS-DA, SVM, 
KNN 

90% Gao et al. 
(2019) 

Cereal Foxtail millet, 4 Cities in Inner 
Mongolia: Chifeng, Bayannur 
League, Hohhot, and Hinggan 
League 

900–1700 nm SNV PCA, SVM 95% Wang et al. 
(2022a) 

Rice, 2 Countries: South Korean and 
Chinese 

420–780 nm SG, 1st, 2nd PLS-DA 95% Kim et al. 
(2020) 

Chia seeds 3 Countries: Argentina, Paraguay, 
and Bolivia 

900–2500 nm MSC PLSR – Choi et al. 
(2021) 

Chinese 
Chestnuts 

3 Chinese provinces: Hebei, 
Liaoning and Yunnan 

383.4–990.4 nm SNV 1D-CNN 97.12% Li et al. 
(2021b) 

Wolfberry 4 Regions in Ningxia, China: 
Huinong, Tongxin, Guyuan and 
Zhongning 

400–1000 nm CV 2D-CNN 97.4%–99.5% Hao et al. 
(2022) 

THz Plant Scutellaria 
baicalensis 

3 Provinces in China: Inner 
Mongolia, Shanxi and Shaanxi 

0.2–1.7 THz – PCA, SVM 95.56% Liang et al. 
(2018) 

Olive oil 4 Countries: Australia, Spain, 
Greece and Italy 

0.1–4.0 THz – LS-SVM 96.25% Liu et al. 
(2018a) 

Coffee 3 Regions: Kenya, Tanzania and 
Yunnan 

0.5–1.9 THz – CNN 90%–100% Yang et al. 
(2021b) 

NMR Animal Milk Cheese Cow from 6 Countries: 
Bulgaria, France, Germany, 
Hungary, Italy, and Netherlands; 
Goat from 2 Countries: France and 
Spain; Sheep from 2 Countries: 
Bulgaria and Italy 

1H 
400.13 MHz 

BLC CDA, LDA – Haddad et al. 
(2022) 

Plant Fruit Grape wine, 2 Provinces in China: 
Shanxi and Ningxia 

1H 600 MHz BLC PCA – Gougeon et al. 
(2018) 

China’s sweet orange, 
4 Provinces in China: Hunan, 
Hubei, Sichuan and Guangxi 

1H 600 MHz NORM PCA, PLS-DA, 
OPLS-DA 

– Lin et al. 
(2021) 

Coffee, 4 Cities: Minas Gerais, 
Bahia, São Paulo, and Paraná 

1H 600 MHz – PCA, DA – Toci et al. 
(2018) 

Vegetable Asparagus, 6 Countries: Germany, 
Poland, The Netherlands, Spain, 
Greece, and Peru 

1H 400 MHz BLC PCA, SVM 87.8%–91.5% Klare et al. 
(2020) 

Oil Olive oil, 4 Cities in Huelva 
(southwest Spain): Beas, Gibraleón, 
Niebla, Sanlúcar de Guadiana 

1H 500 MHz – LDA 100% Sayago et al. 
(2019) 

Honey 2 Regions: Italian and Eastern 
European 

1H 600 MHz MC PLS-DA 100% Schievano 
et al. (2019) 

Dark 
chocolate 

3 Countries: Peru, Madagascar and 
Venezuela 

1H 600 MHz – PLS-DA – Le Gresley and 
Peron (2019) 

MIR, mid-infrared; NIR, near-infrared; FT-Raman, fourier transform Raman; HSI, hyperspectral image; THz, Terahertz; NMR, nuclear magnetic resonance; EVOO, 
extra-virgin olive oil; NORM, normalization; SNV, standard normalized variate; 1st, first derivative; 2nd, second derivative; SG, savitzky-golay; BLC, baseline 
correction; MSC, multiple scattering correction; MC, mean centering; iVISSA, interval variable iterative space shrinking analysis; PLS-DA, partial least squares 
discrimination analysis; FDA, fisher discriminant analysis; LDA, linear discriminant analysis; PCA, principal component analysis; SVM, support vector machine; OPLS- 
DA, orthogonal partial least-squares discrimination analysis; RF, random forest; light GBM, light gradient boosting machine; KNN, K-Nearest Neighbor; PLSR, partial 
least squares regression; CDA, canonical discriminant analysis; OSC, orthogonal signal correction; CNN, convolutional neural network; 1D-CNN, one-dimensional 
convolutional neural network; 2D-CNN, two-dimensional convolutional neural network; SLDA, stepwise discriminant analysis; GSR, group sparse representation 
classifier; WPT-LDA, wavelet packet transform + linear discriminant analysis; GA-LDA, genetic algorithm + linear discriminant analysis; LS-SVM, least square support 
vector machine. 
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that combining LS-SVM with a genetic algorithm (GA) achieved better 
classification, with a prediction concentration accuracy rate of 96.25%. 

In conclusion, spectral analysis, as one of the more established cat-
egories of rapid analysis techniques, has been frequently seen in the field 
of food authenticity in recent years. According to the literature survey, 
the food authenticity issues based on the number of reports are, in 
descending order, breeds or species identification, quality fraud identi-
fication, and geographical origin identification. However, based on the 
literature survey, spectroscopic techniques have high variability in 
correct classification. This is because the results of spectroscopic tech-
niques are susceptible to issues such as sample morphology and data 
processing methods. Therefore, subsequent studies should avoid these 
issues in the experimental design. 

2.2. Ambient ionization mass spectrometry 

Ambient ionization mass spectrometry (AIMS) can rapidly analyze 
pristine samples in atmospheric conditions, often with minimal or no 
sample preparation, and has the unique advantage of directly analyzing 
intact substances (Huang et al., 2010). It is gradually gaining popularity 
among experts in various fields due to rapid analysis while ensuring 
chemical sensitivity and accuracy. Representative AIMS technologies for 
the analysis of food authenticity mainly include direct analysis in 
real-time mass spectrometry (DART-MS), rapid evaporation ionization 
mass spectrometry (REIMS), matrix-assisted laser 
desorption/ionization-time of flight mass spectrometry (MALDI-MS), 
and soft ionization by chemical reaction in transfer mass spectrometry 
(SICRIT-MS) (Fig. 1). Instead of lengthy column separations, these 
techniques take seconds to minutes to achieve on-site analysis, signifi-
cantly reducing analysis time and meeting the market demands for 
authentication. Relevant literatures are summarized in Table 5. 

2.2.1. Direct analysis in real-time mass spectrometry 
DART-MS is an atmospheric pressure thermal desorption ionization 

method without a mobile phase and surface contact. During operation, 
gas flows through the DART-ion source to the sample surface to promote 
the thermal desorption of the surface analytes, followed by sample ion 
MS, allowing high-throughput sample measurement in a short time with 
little or no sample pre-treatment (Qie et al., 2022). DART-MS has 
attracted increasing research attention for food authentication due to its 
high efficiency and stability. In the published reports, studies on the 
identification of varieties or species have been conducted on 
plant-derived food. Combining DARA-MS with the PLS-DA algorithm 
differentiated wheat breeds with 90% accuracy (Miano et al., 2018) and 
cannabis breeds with 99% accuracy (Dong et al., 2019a). The results 
were compared with LC-MS, showing that DART-MS can obtain 
discrimination rates close to those of LC-MS in a short time. In the 
identification of food quality fraud, DART-MS mainly distinguishes the 
farming or cultivation methods of samples to identify whether there is 
the substitution of low-value products to high-value products. DART-MS 
combined with PCA could distinguish between wild and farmed salmon 
with 100% accuracy (Fiorino et al., 2019). Metabolomic differences in 
milk were analyzed using a combination of DART-MS and the PLS-DA 
model, differentiating between cow feeding practices, with 98% accu-
racy for maize silage and crop silage/hay and 100% accuracy for 
grassland hay (Riuzzi et al., 2021). In addition, the feasibility of 
DART-MS to differentiate the geographical origin of animal-derived 
products was confirmed by Qie et al. DART-MS was used to collect 
metabolomics data from lambs in four regions. Differences were iden-
tified and analyzed in conjunction with LDA, achieving a discrimination 
accuracy of 82.5% (Qie et al., 2022). 

2.2.2. Rapid evaporation ionization mass spectrometry 
REIMS enables handheld sampling. During data collection, appro-

priate sampling equipment and optimal instrument settings are selected 
based on the nature of the sample. The entire fingerprinting process 
takes only 1–2s while analyzing landmark components can be achieved 
combining MS (Balog et al., 2016). Nowadays, REIMS-based 

Fig. 1. Application of in-situ mass spectrometry in authenticity analysis of food 
DART-MS, direct analysis in real time mass spectrometry; REIMS, rapid evaporation ionization mass spectrometry; MALDI-TOF-MS, matrix-assisted laser desorption/ 
ionization time of flight mass spectrometry; SICRIT, soft ionization by chemical reaction in transfer. 
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Table 5 
Application progress of AIMS in authenticity analysis of food.  

Authenticity 
problem 

Technology Product 
category 

Food product Adulterants/classified product Instrument mode mass 
spectra 

Chemometrics 
method 

Discriminant 
rate 

References 

Breeds/Species 
identification 

DART-MS Plant Cereal Wheat, 3 Breeds: durum, common and hulled wheat positive ionization 
mode 

m/z 75–1125 Da PCA, PLS-DA 90% Miano et al. 
(2018) 

Cannabis hemp 4 Breeds: Cherry, Cherry blossom, Eletta and Carmagnola positive ionization 
mode 

m/z 100–1000 PCA, PLS-DA 99% Dong et al. 
(2019a) 

Oregano 2 Species: oregano and olive leaves positive ionization 
mode 

m/z 100–1000 PCA, SIMCA 90% Damiani et al. 
(2021) 

REIMS Animal Aquatic 
product 

Salmon, 2 Breeds: Salmon and Rainbow Trout positive and 
negative 
ionization mode 

m/z 50–1200 PCA, OPLS-DA 96.58% Song et al. 
(2019) 

Fish, 18 Breeds negative 
ionization mode 

m/z 150–1500 PCA, LDA 99% Rigano et al. 
(2019a) 

Meat 3 Species: horse, cattle, and venison negative 
ionization mode 

m/z 150–1500 PCA-LDA 100%, 97% Balog et al. 
(2016) 

Milk 3 Species: goat, buffalo, Holstein cow, and Jersey cow milk positive ionization 
mode 

m/z 200–1000 PCA, OPLS-DA, 
LDA 

100% Cui et al. 
(2022) 

MALDI-MS Animal Milk Cheese, 4 Species: goat, sheep, cow, and buffalo positive linear 
mode 

m/z, 
2000–20,000 Da 

– – Rau et al. 
(2020) 

Cheese, 2 Species: cow and feta negative ion mode m/z 3.5–40 kDa PLS-DA 83.5% Kritikou et al. 
(2022) 

Meat 4 Species: pork, chicken, duck and beef positive ion mode m/z, 
3000–22000Da 

PCA, PLS-DA 94.7% Pu et al. (2022) 

Edible insects 4 Species: buffalo worms, mealworms, crickets and 
grasshoppers 

positive linear 
mode 

m/z 2–20 kDa – – Ulrich et al. 
(2017) 

Aquatic 
product 

Fish, 8 Breeds: Brama japonica, Pampus argenteus, Zeus faber 
Linnaeus, Oreochromis mossambicus, Mugil cephalus, 
Epinephelus rivulatus, Larimichthys crocea and Larimichthys 
polyactis 

positive linear 
mode 

m/z 800–20,000 PCA – Shao and Bi 
(2020) 

Plant Cereal Barley, 8 Species: Kangoo, Laudis, Malz, Marthe, Odyssey, 
Overture, Sebastian and Wintmalt 

positive linear 
mode 

m/z 29–50 kDa – – Hleba et al. 
(2019) 

Oil 3 Breeds: sunflower, refined olive oil and virgin olive oils positive ion mode m/z 
240–2400Da 

PCA – Jergović et al. 
(2017) 

Quality fraud 
identification 

DART-MS Animal Aquatic 
product 

Salmon, Cultivated methods: wild-type and farmed negative 
ionization mode 

m/z 100–900 PCA, DA 100% Fiorino et al. 
(2019) 

Milk Feeding methods: maize silage, crop silage/hay and 
grassland hay 

positive ionization 
mode 

m/z 75–1125Da PLS-DA, LDA 98% Riuzzi et al. 
(2021) 

Plant Vegetable Leek, Cultivated methods: organic and conventional positive and 
negative 
ionization mode 

m/z 100–1000 PCA, OPLS-DA 93.8–100% Birse et al. 
(2022) 

REIMS Animal Meat Processing methods: β-agonist treated livestock negative 
ionization mode 

m/z 50–1200 PCA, LDA 95% Guitton et al. 
(2018) 

Illegal addition: PS80 protein powder, Naturprotein powder, 
pork plasma powder and carrageenan 

positive and 
negative 
ionization mode 

m/z 100–1200 PLS-DA – Kosek et al. 
(2019) 

MALDI-MS Plant Oil Processing methods: edible, versus deep fried and gutter positive ion mode m/z 280–1860 PCA – Cao et al. 
(2021) 

SICRIT-MS Plant Fruit Orange juice, Processing methods: freshly squeezed and 
pasteurized 

positive ionization 
mode 

m/z 50–1000 DD-SIMCA – Wang and Xu 
(2022) 

Geographical 
origin 
identification 

DART-MS Animal Meat Lamb, 4 Regions: Anhui, New Zealand, Ningxia, and Gansu positive and 
negative 
ionization mode 

m/z 50–1000 OPLS-DA, LDA 100%,82.5% Qie et al. 
(2022) 

Plant Honey Chestnut from 2 Countries: Italy and PortugalAcacia from 2 
Countries: Italy and China 

positive linear 
mode 

m/z 100~600 KNN 96.7%~100% 
90%~100% 

Lippolis et al. 
(2020) 

(continued on next page) 
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authenticity studies mostly focus on breeds identification in 
animal-derived products, such as beef, poultry, fish, and dairy products. 
For meat identification, REIMS collects the fingerprints of meat products 
(venison, horse meat, and beef) to identify the animal tissues of different 
breeds and species, yielding excellent results with 100% accuracy for 
breeds identification and 97% accuracy for species cognition (Balog 
et al., 2016). A REIMS-based lipidomic approach was used to identify 
salmon and rainbow trout in real-time. The OPLS-DA model was used to 
statistically analyze 12 fatty acids and 37 phospholipids, resulting in an 
accurate discrimination rate of 96.58% (Song et al., 2019). REIMS was 
also used to establish a database of 18 marine species from a small area 
of the Messina Strait. The validation results showed identification rates 
of over 99% for all 18 species (Rigano et al., 2019a). REIMS combined 
with OPLS-DA differentiated four types of milk (goat, buffalo, Holstein, 
and Jersey) with 100 % accuracy (Cui et al., 2022). Furthermore, nine 
varieties of pistachios from three production areas were analyzed using 
REIMS (Rigano et al., 2019b). The results showed 98% correct identi-
fication based on variety and 100% accurate recognition based on 
origin. Therefore, REIMS could analyze plant-derived products and 
showed potential for geographic origin differentiation. In terms of 
quality fraud identification, combining REIMS and non-targeted 
metabolomics can directly analyze and identify meat products of live-
stock treated with β-agonist via the metabolite lipid profile changes at 
classification accuracy rates exceeding 95%. Therefore, this method can 
accurately and quickly determine the exposure of animals to ractop-
amine during reproduction (Guitton et al., 2018). 

2.2.3. Matrix-assisted laser desorption/ionization-time of flight mass 
spectrometry 

MALDI-MS is an ionization method that can directly vaporize and 
ionize non-volatile samples. The matrix must be mixed with the test 
solution before analysis to ensure that excessive laser energy does not 
destroy the test compound. The application purpose of MALDI-MS in 
food authenticity analysis is mainly to identify breeds or species, and 
establish a corresponding database based on the obtained data. Hleba 
et al. (2019) successfully distinguished eight barley breeds using 
MALDI-MS. They determined that B hordeins was the main substance for 
distinguishing barley, that B hordeins was the main substance for dis-
tinguishing barley, and established a local barley database based on B 
hordeins. Rau et al. (2020) used MALDI-MS to rapidly and accurately 
identify the dairy animal species of mozzarella and white brined cheese, 
establishing a MALDI-MS database for animal species identification in 
dairy products. MALDI commonly uses the PLS-DA model for breeds or 
species discrimination. MALDI-MS was used to analyze three other 
species (pork, chicken, and duck) in beef, obtaining an average 
discrimination accuracy of 94.7% using the PLS-DA model (Pu et al., 
2022). MALDI and PLS-DA was used to identify cow-milk adulteration in 
feta milk at an accuracy of 83.5% (Kritikou et al., 2022). In addition to 
breeds or species differentiation, MALDI-MS has also been successfully 
applied for the geographical origin identification of food. The analysis of 
animal-derived samples is mainly based on their protein omics data. 
Kandasamy et al. (2021) successfully differentiated the geographic 
origin of mozzarella cheese from Korean farms and non-Korean 
mozzarella cheese using protein profiling data collected via 
MALDI-MS combined with multivariate statistical analysi. This method 
can also distinguish cheese from farms and companies within Korea. 
Protein information in fish mucus varies depending on the growing 
environment of the fish. Therefore, protein information in the mucus of 
sparus aurata collected by MALDI-MS, combined with PCA and HCA, 
can be used to distinguish sparus aurata from two different mariculture 
farms (Freitas et al., 2022). Besides, Cao et al. (2021) established a 
method to distinguish edible oil from used cooking oil using MALDI-MS. 
The results showed that fresh edible oil was successfully separated from 
deep fried oil and gutter oil. This method quickly identified the 
authenticity of oil only via visual inspection without complicated 
calculation and analysis. This study also confirmed the feasibility of Ta
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using MALDI-MS for food quality fraud identification. 

2.2.4. Soft ionization by chemical reaction in transfer mass spectrometry 
SICRIT represents the latest optimal AIMS technology, which can 

directly analyze gaseous or flavor molecules online. The chemical 
composition and state of the influx substances can be identified in real- 
time using the electrode discharge and transient excitation of gaseous 
chemicals at the entrance of MS. Samples can be analyzed directly, 
quantitatively and qualitatively without the aid of solvents or auxiliary 
gases. However, this technology is still in the initial exploration stage in 
food authenticity studies, with fewer application examples. Wang and 
Xu (Wang and Xu, 2022) applied SCRIT to analyze orange juice for the 
first time, successfully determining the differences between orange juice 
exposed to different degrees of processing, providing a reference for 
further segmentation of micro-processed juice segmentation. Although 
SCIRIT is primarily used for volatile compound analysis due to equip-
ment constraints, its efficient and convenient assessment process high-
lights its promise for common food authentication applications. 

In conclusion, AIMS generally presents advantages, such as high ef-
ficiency, repeatability, and stability, which are suitable for solving 
problems related to food authenticity. However, this type of technology 
is not yet fully mature, and the data acquisition and processing methods 
easily affect the accuracy of the discrimination rate. Therefore, attempts 
should be made to optimize the data acquisition procedure and select 
suitable data processing methods to improve the discrimination 
accuracy. 

2.3. Electronic sensors 

Electronic sensors include electronic nose (E-nose) and electronic 
tongue (E-tongue). An E-nose is an artificial olfactory system, while an 
E-tongue is an artificial gustatory system. They consist of a sample 
processing system, a chemical sensor array, and a pattern recognition 
system. The E-nose uses gas sensors to rapidly identify odor components 
and obtains the overall fingerprint information of the volatile compo-
nents in a sample (Gonzales et al., 2011). The sample preprocessor of the 
E-tongue is equivalent to the human taste receptors. It converts the 
abstract features of liquid samples into visual electronic signals that 
respond to the tested liquid via the sensor array with low selectivity, 
non-specificity, and interactive sensitivity. The output signal data can be 
used to obtain information about the taste characteristics of the sample 
being tested (Fig. 2). Electronic sensors have been widely used for food 
authentication. Relevant literatures are summarized in Table 6. 

2.3.1. Electronic nose 
The E-nose is primarily used to analyze volatile components in 

samples, and has become popular for analyzing the authenticity of food 
products. In a 2017 review, 46 applications of electronic noses for food 
authenticity were demonstrated. Dairy products, vegetable oils and 
animal fats, as well as meat and alcohol, are all able to achieve 
authenticity through e-nose technology (Gliszczynska-Swiglo and 
Chmielewski, 2017). It is worth noting that the research on food 
authenticity using E-nose technology mostly adopts electronic nose 
equipment based on fast GC. He et al. (2021) analyzed 65 white wine 
samples from three regions with six aroma types using the GC-E-Nose. 
The results showed a total classification accuracy of 91.53% and 
93.94% for aroma and region, respectively. Wu et al. (2022) analyzed 41 
apple samples from seven regions and three plant sources in China using 
an E-nose, identifying 29 volatile compounds. The algorithm identifi-
cation rates were 88.2% and 88.9% for the geographical regions and 
plant sources, respectively. Therefore, E-nose can be used for breeds or 
species identification, as well as to determine the geographical origin of 
food products. An E-nose was also used to determine raw milk quality 
fraud. Degraded raw milk samples neutralized with sodium hydroxide 
(NaOH), sodium thiocyanate (NaSCN), sodium carbonate (Na2CO3), 
and sodium bicarbonate (NaHCO3) were used to simulate the fraudulent 
product. The degraded raw milk neutralized with chemicals and simu-
lated adulterated samples were examined via flash GC using E-nose and 
chemometric methods. Analysis indicated that RF could achieve 100% 
discrimination (Tian et al., 2022). 

2.3.2. Electronic tongue 
The E-tongue mimics human taste perception and has revolutionized 

traditional food identification and evaluation methods. Its perception 
exceeds basic taste recognition. Due to the miniaturization of the E- 
tongue, it has been widely used for breeds identification, geographical 
origin determination, and quality fraud evaluation of food products. In 
breeds identification studies, E-tongue has been applied to meat prod-
ucts such as beef and mutton, and plant-derived foods such as coffee and 
olive oil, with excellent research results. Suranyi et al. (2021) used 
conventional methods to analyze the quality indicators of beef, using an 
E-tongue to predict the indicator parameters. The results showed correct 
beef breeds classification reaching 100%. The E-tongue can also 
distinguish different species in meat products, and even different species 
sources in minced meat. Tian et al. (2019) used E-tongue technology to 
distinguish mutton, pork, and chicken in minced meat, with the classi-
fication rate reaching 100%. The electronic tongue is applied to coffee 
and olive oil, mainly to distinguish their breeds. In a recent study where 
electronic sensors were combined with human sensory attributes to 

Fig. 2. Electronic sensors and human sensory system.  
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Table 6 
Application progress of electronic sensors in authenticity analysis of food.  

Authenticity 
problem 

Technology Product 
category 

Food product Adulterants/classified product Instrument configuration Chemometrics 
method 

Discriminant 
rate 

References 

Breeds/Species 
identification 

E-nose Animal Meat Minced meat, 2 Species: mutton and pork a PEN2 E-nose (portable electronic nose II, Airsense 
Corpora-tion, Germany) 

SLDA – Tian et al. (2013) 

Plant Baijiu 6 Breeds: Strong aroma, Soy sauce aroma, 
Light aroma, Jian aroma, Feng aroma and 
Herbal aroma 

the fast GC- based electronic nose analysis, Heracles 
II (Alpha MOS, Toulouse, France) 

PLS-DA 93.94% He et al. (2021) 

Fruit Apple, 3 Breeds: Golden Delicious, Fuji and 
Ralls 

an FGC E-nose (Heracles II, Alpha M.O.S., 
Toulouse, France) 

SLDA 87.5% Wu et al. (2022) 

Red wine, 3 Breeds: Cabernet Sauvignon, 
Snake Dragon Ball and Merlot 

colorimetric sensors in the E-nose system a E- 
tongue (Isenso, Shanghai Ruifen International 
Trading Co., Ltd.) 

ELM 100% Han et al. (2020) 

E-tongue Animal Meat Cattle, 5 Breeds: Angus, domestic buffalo, 
Hungarian Grey, Hungarian Spotted cattle 
and Holstein 

a potentiometric electronic tongue (e-tongue) with 
food grade sensors 

LDA 100% Suranyi et al. (2021) 

Minced meat, 3 Species: mutton, pork and 
chicken 

the taste system of a-Astree (Alpha M.O.S, 
Toulouse, France) 

BDA, CDA 90%–100% Tian et al. (2019) 

Plant Cereal Rice, 2 Breeds: jasmine and white lab-made E-nose system BPNN – Timsorn et al. 
(2017) 

Oil Olive oil, 8 Breeds (Arbosana, Arroniz, 
Cornicabra, Frantoio, Manzanilla, Redondilla, 
Royuela and Zorzal) 

the E-tongue included two print-screen 
potentiometric devices, containing different cross- 
sensitivity membranes as chemical sensors 

LDA-SA 100% Dias et al. (2016) 

E-nose E- 
tongue 

Plant Coffee 7 Breeds: Robusta Xinglong 1, Robusta Reyan 
1, Robusta Reyan 2, Robusta Xinglong 24-2, 
Robusta Xinglong 26, Robusta Xinglong 28, 
and ‘Robusta Chenmai’ 

a commercial E-tongue (Alpha ASTREE Liquid 
Taste Analyzer; Alpha M.O.S., Toulouse, France) 

PLSR 100% Dong et al. (2017) 

E-nose, E- 
tongue, E-eye 

Plant Oil Olive oil, 3 Breeds: Hojiblanca, Picual and 
Arbequina 

an E-nose (13 MOX sensors, FIS and Figaro) an E- 
tongue (3-electrode cell) an E-eye (LEDs from 780 
nm to 380 nm) 

PLS-DA – Apetrei et al. (2010) 

Quality fraud 
identification 

E-nose Animal Milk Illegal addition: acid neutralizers a flash GC E-nose (Alpha MOS, Toulouse, France) RF 100% Tian et al. (2022) 
E-tongue Plant Black tea Quality grades (1–7) an E-tongue (electrodes made of 6 different 

cylindrical metal electrodes (platinum, gold, 
palladium, wolfram, titanium, and silver)) 

PLS-DA, SRD 90% Chen et al. (2020) 

Honey illegal addition: fructose, glucose, inverted 
sugar, hydrolyzed inulin syrup and malt wort 

a voltametric E-tongue (3 electrodes: reference 
electrode (Ag/AgCl) 

PLS-LDA 83.33% Oroian et al. (2018) 

E-nose, E- 
tongue 

Animal Aquatic 
product 

Storage methods: different storage times 
(1–10days) 

An E-nose with nine metal oxide semiconductor gas 
sensors, a commercial E-tongue 

RBF-NN 93.9% Han et al. (2014) 

Plant Coffee beans Processing methods: room-temperature 
drying, solar drying, heat pump drying, hot- 
air drying, and freeze drying 

an Astree II potentio-metric electronic tongue 
(Alpha M. O. S., Toulouse, France) an Astree II 
potentio-metric electronic tongue (Alpha M. O. S., 
Toulouse, France) 

PCA – Dong et al. (2019b) 

Black tea Quality grades (1–4) an E-nose (5 MOS sensors, 120 gas sensors, Figaro, 
Japan), an E-Tongue (5 electrodes made of 5 
different noble metals (viz. gold, iridium, 
palladium, platinum, and rhodium)) 

PCA, KNN 99.75% Banerjee et al. 
(2019) 

Geographical 
origin 
identification 

E-nose Plant Fruit Apple, 7 Provinces in china: Shandong, 
Shanxi, Sinkiang, Hebei, Gansu, Liaoning, and 
Shaanxi 

an FGC E-nose (Heracles II, Alpha M.O.S., 
Toulouse, France) 

SLDA 97.1%–100% Wu et al. (2022) 

Vegetable Ginger, 7 Provinces in China: Yunnan, 
Sichuan, Henan, Shandong, Fujian, Zhejiang, 
Guangdong 

the Heracles NEO e-nose (Alpha M.O.S., Toulouse, 
France) 

RF 100% Yu et al. (2022) 

Coffee 4 Regions in Rwanda: northern, southern, 
eastern, and western 

the Heracles NEO e-nose (Alpha M.O.S., Toulouse, 
France) 

PCA, DFA 95% Flambeau et al. 
(2017) 

(continued on next page) 
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differentiate between olive oil varieties, eight olive oil varieties were 
classified correctly with 100 per cent accuracy, a significant improve-
ment over the ability to differentiate using only the electronic tongue or 
sensory attributes (Dias et al., 2016). And the successful application of 
the combination of electronic sensors and human sensory attributes 
confirms the complementary roles of human beings and artificial intel-
ligence. In quality fraud identification studies, E-tongue also showed 
multiple analytical abilities for quality fraud identification. Although 
the samples mostly included plant-derived foods, the analysis samples 
and purposes were diverse, allowing the determination of seven black 
tea grades (Chen et al., 2020), as well as honey adulterated with addi-
tives such as glucose, inverted sugar, and inulin syrup (Oroian et al., 
2018). The discrimination accuracies of these two studies were 90 % and 
83.3%, respectively. Regarding the research on the authenticity of 
honey, Sobrino-Gregorio et al. (2020) successfully distinguished honey 
from three countries using E-tongue technology. Therefore, it is also 
feasible to use E-tongue technology to examine the geographical origin 
of food. 

2.3.3. Multi-technology coupling of electronic sensors 
Research on the combination of various sensors, particularly the 

combination of E-nose and E-tongue, is growing to enhance the use of 
electronic sensors for food authentication in addition to the combination 
of electronic sensors with human sensory attributes. The E-nose and E- 
tongue are mainly combined for quality fraud and geographical origin 
identification in food authenticity research. Han et al. (2014) analyzed 
the accuracy of single E-nose or E-tongue use and their combination in 
distinguishing fish with different levels of freshness. The results showed 
that the single systems fulfilled the requirements, while combining the 
two was more accurate, with a discrimination accuracy of 93.9% could 
be obtained. Furthermore, the combination of E-nose and E-tongue 
combination traced Lycium ruthenicum Murray from five provinces in 
China (Guansu, Inner Mongolia, Ningxia, Qinghai, Xinjiang), with 
92.6% accuracy (Wang et al., 2019b). Apetrei et al. (2010) combined an 
E-eye, E-nose, and E-tongue to distinguish olive oil with different 
bitterness levels, confirming that the discrimination ability of the com-
bined system was superior to the results obtained with the three in-
struments, respectively. 

In general, the reports on the diverse applications of electronic 
sensor technology in investigating food authenticity concerns exhibit a 
relatively uniform quantity of data. They primarily use analysis of vol-
atile or odorous compounds in the food matrix to achieve the differen-
tiation goal. This method has the benefits of high efficiency, low cost, 
and good reproducibility. However, low discrimination accuracy may 
occur due to the limited number of compounds they can identify. 
Therefore, it is necessary to effectively avoid similar situations by 
combining multiple techniques or selecting the appropriate data anal-
ysis methods. 

2.4. DNA-based technology 

DNA is one of the best indicators for food authenticity analysis and 
traceability because it is completely consistent in different parts of or-
ganisms and has superior consistency and thermal stability throughout 
the entire life cycle of animals and plants, from farmland to dining table, 
when compared to other indicators like mineral elements and stable 
isotopes (Scarano and Rao, 2014). After the horse meat turmoil in 
Europe in 2003, DNA technology gradually began to be used in the field 
of food authenticity, primarily for species-derived component analysis 
in food. The DNA technologies currently used for rapid food authenticity 
analysis mainly include loop-mediated isothermal amplification 
(LAMP), recombinase polymerase amplification (RPA), high-resolution 
melting (HRM), next-generation sequencing (NGS), and DNA barcod-
ing. DNA-based technology is mainly used to distinguish breeds or 
species. Relevant literatures are summarized in Table 7. Ta
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Table 7 
Application progress of DNA-based technology in authenticity analysis of food.  

Authenticity 
problem 

Technology Product 
category 

Food 
product 

Adulterants/classified product Target/Primers/Markers Detection limit References 

Breeds/Species 
identification 

LAMP Animal Aquatic 
product 

Identification of skipjack tuna in 
processed fish products 

cytochrome b gene 50 pg Xiong et al. (2021) 

Identification of Thunnus albacares 
in tuna steaks, fillets or canned 

cytochrome b gene 540 fg Ali et al. (2022) 

Identification of salmo salar in 
commercial products 

LB-6 5 pg Li et al. (2022) 

Identification of Diodon in both 
cooked and digested samples 

cytochrome oxidase I gene 0.5 pg Xie et al. (2022a) 

Identification of arothron in 
commercial products 

cytochrome b gene 1 ng Xie et al. (2022b) 

Identification of takifugu in 
commercial products 

cytochrome oxidase I gene 0.1 ng Xie et al. (2022c) 

8 Breeds: 6 commercial cods and 2 
oilfish 

cytochrome b gene – Li et al. (2021a) 

European eel, 4 Breeds: A. anguilla, 
A. rostrata, A. australis and A. 
japonica 

the cytochrome b, the 16S 
ribosomal RNA or the 
cytochrome oxidase c subunit 1 
gene 

500 pg Spielmann et al. 
(2019) 

Crab, 3 Breeds (blue swimming, 
crucifix, and three spotted 
swimming) 

cytochrome oxidase I gene 50 ng Benjakul and 
Saetang (2022) 

Meat 5 Species: cattle, buffalo, goat, 
sheep and pork 

cytochrome b gene 0.0001 ng Kumari et al. 
(2021) 

5 Species: ovis aries, goat, cattle, 
buffalo and chicken 

mitochondrial D loop region 0.5 ng Mounika et al. 
(2021) 

2 Species: horse and donkey LOC106782588, LOC106825524 40 pg Zhang et al. (2019) 
4 Species: pig, buffalo, sheep, and 
goat 

mitochondrial CO I gene 10 fg Jawla et al. (2021) 

10 Species: chicken, duck, pig, 
cow, horse, goat, rabbit, ostrich, 
camel and goose 

cytochrome b gene 1.5 pg Yan et al. (2022) 

4 Species: duck, pork, beef, mutton 
and chicken 

a mitochondrial DNA 30 ng Shi et al. (2017) 

8 Species: donkey, horse, pork, 
cow, sheep, chicken, duck and 
rabbit 

cytochrome b gene 1% Wang et al. 
(2020a) 

Milk 2 Species: cow and goat mitochondrial cytochrome b 
gene 

Cow, 0.1 pg; 
Goat, 1 pg 

Kim and Kim 
(2018) 

2 Species: milk and goat milk cytochrome b gene 10 fg Wang et al. 
(2022d) 

5 Species: camel, horse, yak, goat 
and cow 

cytochrome b gene, cytochrome c 
oxidase subunit 1 gene 

0.05 ng Yu et al. (2021) 

Donkey- 
hide 
gelatine 
(DHG) 

7 Species: donkey and horse, cow, 
pork, goat, sheep or chicken 

12S rDNA 0.001 ng, 0.1% 
DHG 

Sheu et al. (2020) 

Plant Vegetable Eggplant, 12 Bangladesh breeds 
and 6 Japan breeds 

β-fructosidase gene Senryo-nigou, 
50 copies, BARI 
Begun-4, 50 
copies 

Yeasmin et al. 
(2021) 

Sweet potato noodles, 2 Species: 
cassava and sweet potato 

– 1% Wang et al. 
(2019a) 

R. crustosa, R. rosacea, R. 
sanguinea, R. variata, R. 
velenovskyi and edible mushrooms 

ITS sequence 3.2 pg Wang et al. 
(2022b) 

Wheat 28 durum wheat breeds Chr 7A – Cibecchini et al. 
(2020) 

Honey 4 Breeds: A. cerana and four 4 
breeds A. mellifera 

MRJP2 gene A. cerana, 4 ng, 
A. mellifera, 1 
ng 

Gao et al. (2023) 

RPA Animal Meat 4 Species: duck, chicken, cow, 
sheep and pig 

ND2, d-loop, 12S rRNA + 16S 
rRNA, ND5 and d-loop 

200 fg Cao et al. (2018) 

3 Species: beef, pork and horse the porcine mitochondrial ND2, 
equine ATP 6–8 genes 

1% Kissenkotter et al. 
(2020) 

2 Species: beef and chicken iSp 9 0.01% Liu et al. (2022a) 
2 Species: beef and duck Beef (ARS-UCD1.2: 23: 

10,955,159：10,956,296: 1) 
duck (ENSAPLG00000007071) 

5% Fu et al. (2020) 

3 Species: mutton, chicken and 
duck 

cytochrome b gene 4 fg Li et al. (2019b) 

Identification of pork in 
commercial meat products 

mitochondrial DNA 0.001 ng Zhao et al. (2022) 

(continued on next page) 
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Table 7 (continued ) 

Authenticity 
problem 

Technology Product 
category 

Food 
product 

Adulterants/classified product Target/Primers/Markers Detection limit References 

Milk 2 Species: milk and yak milk an abasic spacer C3 and tail 
nucleotide sequence modified 
reverse primers 

5% Wang et al. 
(2020b) 

Aquatic 
product 

Octopus vulgaris and other 
cephalopod species 

cytochrome oxidase I gene 50 ng Velasco et al. 
(2021) 

HRM Animal Aquatic 
product 

Salmonid, 8 Species: Oncorhynchus 
keta, O. gorbuscha, O. kisutch, 
O. nerka and O. tshawytscha, Salmo 
salar, Oncorhynchus mykiss and 
Salmo trutta 

cytochrome oxidase I gene, 
cytochrome b gene 

– Monteiro et al. 
(2021) 

Mussel, 3 Species: 
M. galloprovincialis, M. edulis, and 
M. chilensis  

H1C gene – Asorey et al. 
(2022) 

Milk Cheese, 2 Species: bovine and feta D-loop region and tRNALys 0.1% Ganopoulos et al. 
(2013) 

Plant Grape 13 Breeds: Alicante Bouschet, 
Cabernet Sauvignon, Donzelinho 
Tinto, Merlot, Malvasia Fina, Pinot 
Noir, Rufete, Tinto Cão, Touriga 
Franca, Tinta Francisca, Touriga 
Nacional, Tinta Roriz and Viosinho 

Vv1/UFGT, Vv2/F3H, Vv3/ 
UFGT 

– Pereira et al. 
(2017) 

Honey 3 Breeds: A. m. mellifera (M 
lineage), A. m. ligustica (C lineage) 
and A. m. carnica (C lineage) 

cytochrome oxidase I gene 
cytochrome b gene 

– Soares et al. (2019) 

Rice Carnaroli and 35 rice breeds Alk and Waxy genes – Grazina et al. 
(2022) 

Panax 
ginseng 

5 Breeds: P. ginseng, P. 
quinquefolius, P. notoginseng, 
P. japonicus and P. trifolius 

the gene encoding the 
dammarenediol synthase 

– Grazina et al. 
(2021) 

DNA 
barcoding 

Animal Aquatic 
product 

Yellow croakers, 7 Species: L. 
polyactis, L. crocea, L. terengganui, 
N. albiflora, C. lucidus, P. 
argentata, and P. macrocephalus. 

cytochrome oxidase I gene – Chen et al. (2021a) 

Fillet, 2 Breeds: G. morhua and 
G. macrocephalus 

Cytochrome Oxidase subunit I 
gene 

– Feldmann et al. 
(2021) 

Meat 15 mammalian and 6 poultry 
species 

16S rDNA 0.1% Dobrovolny et al. 
(2019) 

Milk butter, milk and yogurt, identify 
plant oil (corn, soybean, rapeseed 
and sunflower) in products 

inner P6 loop – Uncu and Uncu 
(2020) 

Plant Honey 3 Breeds: nonItalian, Italian 
polyfloral and Italian monofloral 

trnL – Chiara et al. 
(2021) 

Cereal 11 market 3 Species: Black gram, 
refined wheat flour and white pea 
flour 

rbcL 600 bp, trnH-psbA 380 bp, 
ITS 680 bp 

– Amane and 
Ananthanarayan 
(2019) 

NGS Animal Aquatic 
product 

Surimi-based products 
Species: DNA from 13 families, 19 
genera and 16 species of fish, and 
from 3 families, 3 genera and 3 
species 

16SrRNA – Giusti et al. (2017) 

Bivalve molluscs, 15 species 
belonging to the bivalve families 

16S ribosomal RNA (16S rRNA) 
and cytochrome c oxidase I (COI) 
genes 

– Abbadi et al. 
(2017) 

Meat 13 Species: pork and 12 different 
species 

– 0.1% Akbar et al. (2021) 

Milk 4 Species: cattle, sheep, goat, and 
buffalo 

12S_Ki, 16S_Ki, 16S_KH – Ribani et al. 
(2018) 

Plant Honey 3 Breeds: 6 monofloral honeys, 2 
polyfloral honeys and 1 honeydew 
honey 

trnL barcoding fragment – Utzeri et al. (2018) 

SNP + HRM Plant Fruit Grape, 4 Breeds: Alvarinho, 
Moscatel Galego, Touriga 
Francaand Touriga Nacional 

UFGT, F3H and LDOX genes – Teixeira et al. 
(2021b) 

Bar-HRM Animal Aquatic 
product 

Gadoid, 4 Breeds: Atlantic cod, 
Pacific cod, Alaska pollock and 
saithe 

cytochrome oxidase I gene, 
cytochrome b gene 

– Fernandes et al. 
(2017) 

Hake, 5 Breeds: M. merluccius, 
M. productus, M. hubbsi, 
M. capensis and M. paradoxus 

cytochrome oxidase I gene 0.2–20 pg Fernandes et al. 
(2018) 

Pufferfish, 4 Species: Takifugu 
xanthopterus, T. fasciatus, T. 
flavidus and T. rubripes 

cytochrome oxidase I gene – Chen et al. (2021b) 

Plant Fruit Berry, 8 Breeds: Bilberry, 
Blueberry ‘Northblue’, 
Lingonberry, Bog bilberry, 
Crowberry, Gooseberry, 

ITS, rpl36–rps8, trnL–F or 
trhH–psbA 

– Jaakola et al. 
(2010) 

(continued on next page) 
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2.4.1. Loop-mediated isothermal amplification 
LAMP is a DNA analysis method that enables nucleic acid amplifi-

cation in a short time at a constant temperature. The analysis results can 
be evaluated with the naked eye, meeting the requirements of on-site 
and grassroots analysis. Currently, the application of LAMP in food 
authenticity research is based on distinguishing the species or breeds of 
food. This mostly includes animal-derived foods, such as the three major 
categories of aquatic products, meat and milk. Studies on aquatic 
products are mainly divided into species-specific processed product 
identification and single-species differentiation. LAMP-based fish 
species-specific identification studies serve two purposes. One is to 
establish a specific analysis method based on LAMP for high-value 
species, such as Skipjack tuna, Thunnus albacares, and Salmo salar, to 
identify adulteration in the corresponding processed products (Ali et al., 
2022; Li et al., 2022; Xiong et al., 2021). Another is the use of LAMP to 
quickly identify toxic fish species (diodon, arothron and takifugu) in 
commercially available products, effectively reducing the incidence of 
poisonings (Xie et al., 2022a, 2022b, 2022c). In relation to the investi-
gation of aquatic product species differentiation, LAMP combined with 
cytochrome b gene successfully differentiated three types of crabs (blue 
swimming crab, cruciferous crab and three-spotted swimming crab) 
with a detection limit as low as 50 ng (Benjakul and Saetang, 2022). 
Recent research on LAMP-based meat identification has aimed to 
differentiate between the various animal origins of the meat. Meat 
products with species numbers as low as 2 (horse and donkey) (Zhang 
et al., 2019) and as high as 10 (chicken, duck, pig, cow, horse, goat, 
rabbit, ostrich, camel and goose) (Yan et al., 2022) were successfully 
distinguished, with detection limits as low as 10 fg. LAMP-based dairy 
research focuses on identifying specific sources of high-value milk, with 
samples tested on-site in as little as 30 min, effectively avoiding dairy 
product adulteration (Kim and Kim, 2018). In addition, LAMP specif-
ically recognized donkey DNA in donkey skin gelatine within 1 h, with a 

relative detection limit of 0.1% for the remaining non-donkey DNA 
(horse, cow, pig, goat, sheep, or chicken) (Sheu et al., 2020). In the study 
of plant-derived goods, Wang et al. (2019a) created a LAMP-based 
technique for rapid analysis of Manihot esculenta in sweet potato noo-
dles in addition to differentiating between breeds. Cassava is often put 
into production instead of sweet potato because of its high starch con-
tent and lower cost of making starch products. The results indicated that 
the real-time LAMP method could accurately and specifically analyze 
cassava components in sweet potato noodles with a detection limit of 
1%. The gene fragments used by LAMP in animal product research are 
relatively uniform, with essentially cytochrome b and cytochrome oxi-
dase I as the main target genes. Contrarily, the gene fragments of 
plant-derived products are relatively specific, withminimal duplication. 

2.4.2. Recombinase polymerase amplification 
The nucleic acid amplification process of RPA technology mainly 

depends on three kinds of enzymes. Single-stranded nucleic acid 
recombinases, single-stranded DNA binding proteins (SSB), and strand- 
substitution DNA polymerases. Since detectable amplification products 
are usually obtained within 10 min min, so RPA is known as an alter-
native nucleic acid analysis technology to PCR (Li et al., 2019a). The 
application of RPA for food authentication is immature, with few related 
studies. Current research basically distinguishes between the breeds of 
plant-derived products, which are also divided into three categories: 
meat, milk, and aquatic products, with meat products being the most 
dominant. The purpose of all recently reported applications is species 
differentiation. Cao et al. (2018) established a new method for the visual 
identification of meat adulteration based on recombinase polymerase 
amplification (RPA) and SYBR green I (SG), which successfully identi-
fied ducks, chickens, cattle, sheep and pigs, and mutton. For seafood 
(octopus adulteration identification), an analysis method based on RPA 
and lateral flow analysis (LFA) was developed. The study optimized the 

Table 7 (continued ) 

Authenticity 
problem 

Technology Product 
category 

Food 
product 

Adulterants/classified product Target/Primers/Markers Detection limit References 

Honeysucle and Mountain 
shadbush 
Juice, 5 Species: orange, mango, 
peach, pear and pineapple  

trnL – Faria et al. (2013) 

Apricot 35 breeds ITS1 and ITS2 – Hurkan (2022) 
Walnut 3 Species: walnut, peanut and 

soybean 
PsbA-trnH gene 10% Ding et al. (2020) 

Processed 
foods 

3 Species: flax, chia and sesame 
seeds 

rbcL DNA sequences – Bruno et al. (2020) 

Honey 3 Breeds: L. stoechas subsp., L. 
penduculata and L. viridis 

matK gene – Soares et al. (2018) 

NGS + DNA 
barcoding 

Animal Meat 5 mammalian Species: pig, cattle, 
horse, sheep, and goat; 2 poultry 
Species: chicken and turkey 

Sanger sequencing and matching 
a ~464 base pair (bp) fragment 
of the mitochondrial cytochrome 
b gene 

– Dobrovolny et al. 
(2022) 

27 meat and poultry products 16S rRNA – Xing et al. (2019b) 
12 Species (bovine (cattle and 
water buffalo), swine (domestic 
pig), Caprinae (sheep), gallus 
(domestic chicken), partridge, fish 
(grass carp, silver carp, blue scad, 
tile fish, and pomfret), and shrimp 
(prawn)) 

mini COI 136 bp, standard 
barcode 658 bp 

– Pan et al. (2020) 

Aquatic 
product 

Identification of salmon in 
commercial products 

16S rRNA 1% Wang et al. (2021) 

Plant Edible 
seaweeds 

Identification of edible seaweeds in 
commercial products 

cox 1, tufa and LSU – Handy et al. 
(2020) 

Quality fraud 
identification 

NGS + DNA 
barcoding 

Animal Aquatic 
product 

Sea cucumber, Processing methods 
(raw and processed) 

COI mini-barcode 257 bp – Xing et al. (2021b) 

Geographical 
origin 
identification 

SNP + HRM Plant Fruit Grape, 4 Regions: Melgaco, 
Moncao, Vinho Verdel and Douro 

UFGT, F3H and LDOX genes – Teixeira et al. 
(2021b) 

LAMP, loop-mediated isothermal amplification; RPA, recombinase polymerase amplification; HRM, high-resolution melting; NGS, next generation sequencing; Bar- 
HRM, barcode DNA high-resolution melting. 
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design of primers and the nfo-probe system in the COI region, with the 
final results acheving100% specificity and sensitivity. The results were 
validated in eight European laboratories (Velasco et al., 2021). In 
addition, Wang et al. (2020b) combined RPA and a lateral flow nucleic 
acid assay (LFNAA) for yak milk authentication, with a detection limit as 
low as 5%. With its benefits of high efficiency, affordability, and con-
venience, RPA is thought to have great potential in future food 
authentication studies, even though it is not widely utilized. 

2.4.3. High-resolution melting 
Using saturated dyes and the variations in nucleic acid molecule 

dissolution temperatures, HRM creates distinct dissolution curves that 
are monitored by real-time PCR technology. This allows for the quick, 
sensitive, and precise analysis of single-base differences (Ganopoulos 
et al., 2013). HRM is currently primarily used to distinguish between 
breeds or species. A comparable number of studies exist regarding using 
products derived from plants and animals. Interestingly, the HRM 
studies on plant-based products all distinguish between food varieties, 
while those on animal-derived products all distinguish between food 
species. Grazina et al. (2021) used HRM technology to distinguish five 
kinds of ginseng (ginseng, five-leaf pine, notoginseng, Japanese pine, 
and three-leaf pine) with a more than 98% confidence. Furthermore, the 
analysis method based on HRM successfully distinguished 13 kinds of 
grapes, three kinds of honey, and 36 kinds of rice. For animal-derived 
products, HRM identified eight species of salmonids in less than 70 
min (Monteiro et al., 2021), while accurately determining the authen-
ticity of Greek PDO sheep’s milk cheese with a detection limit of 0.1% 
(Ganopoulos et al., 2013). The research of HRM in distinguishing 
geographical origin of food needs to be realized by the collection of 
single nucleotide polymorphisms (SNP). Teixeira et al. (2021b) analyzed 
SNP in three genes (UFGT, F3H, and LDOX) using a DNA assay in 
conjunction with HRM analysis to successfully distinguish wines from 
four regions (Melgaco, Moncao, Vinho Verde, and Douro). 

2.4.4. Multi-technology coupling of DNA-based technology 
The HRM applied in food authenticity studies is often analyzed in 

combination with DNA barcoding (Bar-HRM). DNA barcoding is a new 
technology that can quickly identify species using relatively short DNA 
fragments. It can rapidly identify a large number of samples simulta-
neously (Barrett and Hebert, 2005). DNA barcoding can reportedly 
differentiate species or varieties of aquatic products, meat and milk. The 
DNA barcodes used to differentiate aquatic products are usually cyto-
chrome oxidase I gene (COI) sequences (Chen et al., 2021a; Feldmann 
et al., 2021). The 16SrDNA fragments were used as DNA barcodes to 
differentiate between 15 mammalian and six poultry species (Dobro-
volny et al., 2019). The inner P6 loop was used as a DNA barcode to 
identify vegetable oil adulteration in milk and dairy products (Uncu and 
Uncu, 2020). It is evident that the desired results can be obtained by 
selecting a barcode region suitable for differentiation. Bar-HRM mainly 
distinguishes the breeds or species of aquatic products and fruits. Fer-
nandes et al. (2018) developed a micro-bar code by combining the cy-
tochrome C oxidase subunit I gene with HRM analysis to quickly 
distinguish hake breeds. The results showed that five hake breeds were 
completely distinguished with confidence. Bar-HRM can distinguish 
fruit breeds from raw materials while also tracing plant sources through 
juice. Faria et al. (2013) combined the trnL DNA barcode with HRM 
analysis to distinguish fruit breeds (orange, mango, peach, pear, and 
pineapple) in fruit juice. Bar-HRM has the advantage over DNA bar-
coding in that it allows for quantitative measurements, and over HRM in 
that it has the advantage of higher resolution. 

In addition to combining with HRM technology, DNA barcode 
technology is often coupled with NGS technology for food authentica-
tion. NGS, also known as high-throughput sequencing (HTS) technology, 
can sequence hundreds of thousands to millions of nucleic acid mole-
cules at a time and comprehensively and meticulously analyze the 
transcriptome and genome of a species. NGS has been used in recent 

years to distinguish between the breeds or species of animal-derived 
products. Abbadi et al. (2017) used NGS technology to correctly iden-
tify 15 species of bivalves, Furnaceae, ostrich, Iridaceae, and salaman-
der, providing a quick, economical method for identifying substitution 
fraud in seafood products. Akbar et al. (2021) developed an NGS-based 
method to distinguish pork-derived components from other animal meat 
products, which could identify mixed samples containing multiple spe-
cies (up to 12). NGS and DNA barcoding applications for food authen-
tication have gradually increased, with current research focusing on 
animal-derived foods. The NGS and DNA barcoding combination 
clearly distinguished five kinds of mammals, two types of poultry, and 
12 kinds of animal sources for meat products (Dobrovolny et al., 2022; 
Pan et al., 2020). This approach can also distinguish seafood species, 
such as salmon and edible seaweed breeds. Furthermore, the NGS and 
COI micro-barcode combination was used to identify sea cucumbers, 
mainly to determine whether commercial sea cucumber products were 
inconsistent with the labels, such as the substitution of cheap sea cu-
cumbers (Xing et al., 2021b). 

With the benefits of high specificity and sensitivity, DNA analysis 
technologies have proven to be one of the most effective methods for 
differentiating between food product breeds or species. The DNA-based 
rapid analysis techniques mentioned in this paper have been gradually 
applied in the field of food authenticity. Based on the literature research, 
the current research aims to differentiate food species, which may be 
related to the low genetic variation of breeds. Therefore, developing 
more sensitive, multi-targeted, high-throughput DNA technologies is 
necessary for food authentication. It is also necessary to continuously 
construct and improve DNA marker databases and prepare more suitable 
targeting primers to promote new progress of rapid DNA technology in 
the field of food authenticity. 

3. Chemometrics methods 

With a wide variety of foods and complex ingredients, food 
authenticity analysis was developed in response to various issues with 
food quality. Therefore, the popularization and application of rapid 
analysis technology are inevitable. However, regardless of the changing 
needs of food authenticity issues, various analytical techniques can only 
obtain informative datasets characterising different fingerprints, which 
are often mined and processed in conjunction with chemometrics (Grassi 
et al., 2023). Moreover, rapid analysis technology acquired more in-
formation, highlighting the significance of chemometrics. Selecting 
appropriate chemometric methods for data analysis is critical for 
effective results (Tarapoulouzi et al., 2022). 

3.1. Unsupervised algorithm 

Unsupervised learning is typically used for data exploration during 
the initial data analysis stage to observe the overall data structure, un-
derstand information such as data characteristics, variable correlations, 
and outliers, and further process data such as dimensionality reduction 
and unsupervised clustering for the purpose of sample classification or 
complex data simplification (Agriopoulou et al., 2022). PCA and cluster 
analysis (CA) are unsupervised algorithms commonly used during data 
exploration. PCA generates independent principal component compre-
hensive indexes via linear transformation for data dimension reduction. 
CA uses the similarity principle for data clustering to reduce data pro-
cessing complexity, while hierarchical cluster analysis (HCA) is typically 
used for food analysis. PCA and HCA can independently analyze relevant 
information with significant differences between sample groups and 
minor differences within groups to classify data. The PCA model can be 
used to differentiate coffee beans of five geographical origins based on 
informative data collected by Fourier Transform Infrared Spectroscopy 
(FTIR) technology (Obeidat et al., 2018). The PCA score plots showed a 
significant difference between fresh edible oils, frying oils, and gutter 
oils based on the edible oil data gathered via MALDI-MS (Cao et al., 
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2021). Based on the proteomic data collected by MALDI-MS, HCA was 
able to fully differentiate between fermented-salted vegetables from 
China and Korea after four weeks of fermentation (Yoon et al., 2017). 
PCA and HCA are considered the most commonly used models for 
analyzing IR and Raman spectral data to identify plant-derived products 
(Kucharska-Ambrozej and Karpinska, 2020). However, in most cases, 
unsupervised algorithms are mainly used to reduce data dimensionality, 
which clarifies the data structure and decreases the data processing 
complexity. 

3.2. Supervised algorithm 

Supervised algorithms are more reliable for data structures with 
small differences between sample groups during actual sample analysis. 
Based on the literature survey, the commonly used supervised methods 
include LDA, partial least squares discriminant analysis (PLS-DA), OPLS- 
DA, SVM, KNN, and partial least squares regression (PLSR). 

3.2.1. Linear discriminant analysis 
Since LDA mainly applies to low-dimensional, linear data, it usually 

needs to be combined with unsupervised algorithms, such as PCA and 
HCA, and can be implemented using software such as SPSS and MAT-
LAB. It is mainly used to distinguish between species, breeds, and 
geographical origins in the field of food authenticity. The LDA model 
was used to analyze the signature markers of the five milk species (cow, 
goat, camel, soybean, and oat) collected via electrospray ionization mass 
spectrometry (ESI-MS), with a 100% cross-validated discrimination rate 
(Hong et al., 2022). The LDA model based on Fourier-transform near--
infrared spectroscopy (FT-NIR) yielded an overall discrimination of 97% 
for wheat from different regions in Italy (Northern, Central, and 
Southern) and 100% for Italian and non-Italian wheat (De Girolamo 
et al., 2019). 

3.2.2. Partial least squares regression 
Three main algorithms are associated with partial least squares, 

including PLSR, PLS-DA, and OPLS-DA. PLSR, a commonly used multi-
variate regression method for quantifying food adulterant concentra-
tions, is mainly combined with spectroscopic data. It can be executed in 
several software programs such as SPSS, The Unscrambler X, and others. 
Regarding the study on the adulteration of minced pork with jaw meat, 
the data collected via HSI were optimized using six pre-processing and 
three wavelength selection methods. Ultimately, it was found that the 
PLSR model performed best when the data were processed using the 
standard normal variate (SNV) and regression coefficients (RC) (Jiang 
et al., 2020). 

3.2.3. Partial least squares discriminant analysis 
PLS-DA can analyze data from a wide range of techniques, including 

spectroscopy and mass spectrometry, and is the most commonly used 
classification method in the field of food authenticity. It can be imple-
mented using SPSS, SIMCA, and MATLAB software. PLS-DA is typically 
used for data where the predictors are correlated and the number of 
variables exceeds the number of samples. PLS-DA has been demon-
strated for all of the rapid analysis techniques mentioned in this paper, 
and it is the main classification algorithm currently applied to in situ 
mass spectrometry data. The PLS-DA model discriminated between 
Korean and non-Korean cheese samples with 100% accuracy by 
analyzing the proteomic data obtained via MALDI-MS (Kandasamy 
et al., 2021). 

3.2.4. Orthogonal partial least squares discriminant analysis 
OPLS-DA is often employed when the number of variables exceeds 

the number of samples, resulting in the overfitting of the PLS or PLS-DA 
model. OPLS-DA has demonstrated validity in authenticity studies for 
various food products (Agriopoulou et al., 2021). Its implementation 
software is similar to that of PLS-DA. Based on the data collected from 

pure and adulterated honey samples via NMR, the PCA-LDA and 
OPLS-DA models were compared regarding their discriminatory effects, 
resulting in a high accuracy of 97.6% for OPLS-DA (He et al., 2020). The 
OPLS-DA model based on the metabolomic data of cocoa collected by 
REIMS achieved 100% accuracy in distinguishing adulterated cocoa 
(Chang et al., 2022). 

3.2.5. Other algorithms 
The adaptability of different analysis methods to different authen-

ticity issues is related to sample analysis technology. SVM is a binary 
classification model that is more suitable for a moderate amount of data, 
as well as high dimensional and non-linear data (Lamine et al., 2023). 
KNN is more suitable for modeling similar class groupings, such as food 
quality levels. PCA, PLS-DA, and SVM models based on NIR spectral data 
were developed to identify rice breeds (Indica and Japonica) (Sampaio 
et al., 2020). The results showed that the SVM model performed best 
model, with a 97% fitting accuracy, 93% cross-validation, and 91% 
prediction rate. The KNN and SVM models were established to differ-
entiate rice quality grades. The results showed that the KNN model was 
more effective, with a 91.81% accuracy (Teye et al., 2019). 

4. Conclusion 

Rapid analysis technology is becoming increasingly popular in the 
field of food authenticity because of its benefits, which typically include 
low pre-treatment requirements and high analysis efficiency. Rapid 
analysis conforms to the needs of the industry and helps improve the 
frequent adulteration in the food authenticity field. However, these 
techniques also present various insurmountable shortcomings. (1) The 
common problem of spectral technology is the relative complexity of 
data analysis, which requires selecting appropriate pre-processing 
methods for spectral data to reduce the difficulty of subsequent data 
analysis. (2) Since AIMS was developed based on MS, data analysis relies 
heavily on databases, while the overall analysis cost is high. (3) The 
main disadvantage of electronic sensor technology such as the E-nose 
and E-tongue is that it is easily influenced by the analytical environment, 
while its accuracy is generally low. (4) Rapid DNA-based analyses are 
not yet mature enough to identify varieties with small genetic variation, 
and DNA marker databases need to be further developed. 

Therefore, to select the most appropriate method based on sample 
differences and specific requirements, it is necessary to continuously 
explore the potential of various technologies in the future development 
of rapid analysis techniques. Additionally, a universally standardized 
model must be established for quick analysis to regulate the analysis of 
data measured using various instruments or in various conditions. To 
bring rapid analysis technology closer to practical applications in food 
certification, further exploration is required regarding smaller, simpler, 
and more intelligent system equipment. 
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Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., Blasco, J., 2010. Advances in 
machine vision applications for automatic inspection and quality evaluation of fruits 
and vegetables. Food Bioprocess Technol. 4 (4), 487–504. https://doi.org/10.1007/ 
s11947-010-0411-8. 

Cui, Y.W., Ge, L.J., Lu, W.B., Wang, S.T., Li, Y.Y., Wang, H.F., Huang, M., Xie, H.J., 
Liao, J., Tao, Y., Luo, P., Ding, Y.Y., Shen, Q., 2022. Real-time profiling and 
distinction of lipids from different mammalian milks using rapid evaporative 
ionization mass spectrometry combined with chemometric analysis. J. Agric. Food 
Chem. 70 (25), 7786–7795. https://doi.org/10.1021/acs.jafc.2c01447. 

Curro, S., Balzan, S., Serva, L., Boffo, L., Ferlito, J.C., Novelli, E., Fasolato, L., 2021. Fast 
and green method to control frauds of geographical origin in traded cuttlefish using a 
portable infrared reflective instrument. Foods 10 (8). https://doi.org/10.3390/ 
foods10081678. Article 1678.  

Damiani, T., Dreolin, N., Stead, S., Dall’Asta, C., 2021. Critical evaluation of ambient 
mass spectrometry coupled with chemometrics for the early detection of 
adulteration scenarios in Origanum vulgare L. Talanta 227. https://doi.org/ 
10.1016/j.talanta.2021.122116. Article 122116.  

Dashti, A., Mueller-Maatsch, J., Weesepoel, Y., Parastar, H., Kobarfard, F., Daraei, B., 
AliAbadi, M.H.S., Yazdanpanah, H., 2022. The feasibility of two handheld 
spectrometers for meat speciation combined with chemometric methods and its 
application for halal certification. Foods 11 (1). https://doi.org/10.3390/ 
foods11010071. Article 71.  

de Andrade, Galvan, D., Effting, L., Lelis, C., Melquiades, F.L., Bona, E., Conte-Junior, C. 
A., 2023. An easy-to-use and cheap analytical approach based on NIR and 
chemometrics for tomato and sweet pepper authentication by non-volatile profile. 
Food Anal. Methods 16 (3), 567–580. https://doi.org/10.1007/s12161-022-02439- 
4. 

de Carvalho Couto, C., Freitas-Silva, O., Morais Oliveira, E.M., Sousa, C., Casal, S., 2022. 
Near-infrared spectroscopy applied to the detection of multiple adulterants in 
roasted and ground arabica coffee [article]. Foods 11 (1). https://doi.org/10.3390/ 
foods11010061. Article 61.  

De Girolamo, A., Cortese, M., Cervellieri, S., Lippolis, V., Pascale, M., Logrieco, A.F., 
Suman, M., 2019. Tracing the geographical origin of durum wheat by FT-NIR 
spectroscopy. Foods 8 (10). https://doi.org/10.3390/foods8100450. Article 450.  

Delpino-Rius, A., Eras, J., Gatius, F., Balcells, M., Canela-Garayoa, R., 2019. Combined 
analysis of primary metabolites and phenolic compounds to authenticate commercial 
monovarietal peach purees and pear juices. Molecules 24 (18). https://doi.org/ 
10.3390/molecules24183289. Article 3289.  

Dias, L.G., Rodrigues, N., Veloso, A.C.A., Pereira, J.A., Peres, A.M., 2016. Monovarietal 
extra-virgin olive oil classification: a fusion of human sensory attributes and an 
electronic tongue. Eur. Food Res. Technol. 242 (2), 259–270. https://doi.org/ 
10.1007/s00217-015-2537-4. 

Ding, Y.F., Jiang, G.Z., Huang, L.H., Chen, C.T., Sun, J.W., Zhu, C., 2020. DNA barcoding 
coupled with high-resolution melting analysis for nut species and walnut milk 
beverage authentication. J. Sci. Food Agric. 100 (6), 2372–2379. https://doi.org/ 
10.1002/jsfa.10241. 

Dobrovolny, S., Blaschitz, M., Weinmaier, T., Pechatschek, J., Cichna-Markl, M., 
Indra, A., Hufnagl, P., Hochegger, R., 2019. Development of a DNA metabarcoding 
method for the identification of fifteen mammalian and six poultry species in food. 
Food Chem. 272, 354–361. https://doi.org/10.1016/j.foodchem.2018.08.032. 

Dobrovolny, S., Uhlig, S., Frost, K., Schlierf, A., Nichani, K., Simon, K., Cichna-Markl, M., 
Hochegger, R., 2022. Interlaboratory validation of a DNA metabarcoding assay for 
mammalian and poultry species to detect food adulteration. Foods 11 (8). https:// 
doi.org/10.3390/foods11081108. Article 1108.  

Dong, W., Liang, J., Barnett, I., Kline, P.C., Altman, E., Zhang, M.L., 2019a. The 
classification of Cannabis hemp cultivars by thermal desorption direct analysis in 
real time mass spectrometry (TD-DART-MS) with chemometrics. Anal. Bioanal. 
Chem. 411 (30), 8133–8142. https://doi.org/10.1007/s00216-019-02200-7. 

Dong, W.J., Hu, R.S., Long, Y.Z., Li, H.H., Zhang, Y.J., Zhu, K.X., Chu, Z., 2019b. 
Comparative evaluation of the volatile profiles and taste properties of roasted coffee 
beans as affected by drying method and detected by electronic nose, electronic 
tongue, and HS-SPME-GC-MS. Food Chem. 272, 723–731. https://doi.org/10.1016/ 
j.foodchem.2018.08.068. 

Dong, W.J., Zhao, J.P., Hu, R.S., Dong, Y.P., Tan, L.H., 2017. Differentiation of Chinese 
robusta coffees according to species, using a combined electronic nose and tongue, 
with the aid of chemometrics. Food Chem. 229, 743–751. https://doi.org/10.1016/j. 
foodchem.2017.02.149. 

Dong, Y.J., 2017. Spectroscopy and Spectra Limaging Technology and Their Application 
Sonfood Detection (Ph.D., Zhejiang University).  

dos Santos, C.A.T., Pascoa, R., Sarraguca, M.C., Porto, P., Cerdeira, A.L., Gonzalez- 
Saiz, J.M., Pizarro, C., Lopes, J.A., 2017. Merging vibrational spectroscopic data for 
wine classification according to the geographic origin. Food Res. Int. 102, 504–510. 
https://doi.org/10.1016/j.foodres.2017.09.018. 

Du, Q.W., Zhu, M.T., Shi, T., Luo, X., Gan, B., Tang, L.J., Chen, Y., 2021. Adulteration 
detection of corn oil, rapeseed oil and sunflower oil in camellia oil by in situ diffuse 
reflectance near-infrared spectroscopy and chemometrics. Food Control 121. 
https://doi.org/10.1016/j.foodcont.2020.107577. Article 107577.  

Eksi-Kocak, H., Mentes-Yilmaz, O., Boyaci, I.H., 2016. Detection of green pea 
adulteration in pistachio nut granules by using Raman hyperspectral imaging. Eur. 
Food Res. Technol. 242 (2), 271–277. https://doi.org/10.1007/s00217-015-2538-3. 

Faqeerzada, M.A., Lohumi, S., Joshi, R., Kim, M.S., Baek, I., Cho, B.K., 2020a. Non- 
targeted detection of adulterants in almond powder using spectroscopic techniques 
combined with chemometrics. Foods 9 (7). https://doi.org/10.3390/foods9070876. 
Article 876.  

Faqeerzada, M.A., Lohumi, S., Kim, G., Joshi, R., Lee, H., Kim, M.S., Cho, B.K., 2020b. 
Hyperspectral shortwave infrared image analysis for detection of adulterants in 
almond powder with one-class classification method. Sensors 20 (20). https://doi. 
org/10.3390/s20205855. Article 5855.  

Faria, M.A., Magalhaes, A., Nunes, M.E., Oliveira, M., 2013. High resolution melting of 
trnL amplicons in fruit juices authentication. Food Control 33 (1), 136–141. https:// 
doi.org/10.1016/j.foodcont.2013.02.020. 

Feldmann, F., Ardura, A., Blanco-Fernandez, C., Garcia-Vazquez, E., 2021. DNA analysis 
detects different mislabeling trend by country in European cod fillets. Foods 10 (7). 
https://doi.org/10.3390/foods10071515. Article 1515.  

Fernandes, T.J.R., Costa, J., Oliveira, M., Mafra, I., 2017. DNA barcoding coupled to 
HRM analysis as a new and simple tool for the authentication of Gadidae fish species. 
Food Chem. 230, 49–57. https://doi.org/10.1016/j.foodchem.2017.03.015. 

Fernandes, T.J.R., Costa, J., Oliveira, M., Mafra, I., 2018. COI barcode-HRM as a novel 
approach for the discrimination of hake species. Fish. Res. 197, 50–59. https://doi. 
org/10.1016/j.fishres.2017.09.014. 

Fiorino, G.M., Losito, I., De Angelis, E., Arlorio, M., Logrieco, A.F., Monaci, L., 2019. 
Assessing fish authenticity by direct analysis in real time-high resolution mass 
spectrometry and multivariate analysis: discrimination between wild-type and 
farmed salmon. Food Res. Int. 116, 1258–1265. https://doi.org/10.1016/j. 
foodres.2018.10.013. 

Flambeau, K.J., Lee, W.J., Yoon, J., 2017. Discrimination and geographical origin 
prediction of washed specialty Bourbon coffee from different coffee growing areas in 
Rwanda by using electronic nose and electronic tongue. Food Sci. Biotechnol. 26 (5), 
1245–1254. https://doi.org/10.1007/s10068-017-0168-1. 

Formosa, J.P., Lia, F., Mifsud, D., Farrugia, C., 2020. Application of ATR-FT-MIR for 
tracing the geographical origin of honey produced in the Maltese Islands. Foods 9 
(6). https://doi.org/10.3390/foods9060710. Article 710.  

Freitas, J., Silva, P., Perestrelo, R., Vaz-Pires, P., Camara, J.S., 2022. Improved approach 
based on MALDI-TOF MS for establishment of the fish mucus protein pattern for 
geographic discrimination of Sparus aurata. Food Chem. 372 https://doi.org/ 
10.1016/j.foodchem.2021.131237. Article 131237.  

Fu, M., Zhang, Q.W., Zhou, X., Liu, B., 2020. Recombinase polymerase amplification 
based multiplex lateral flow dipstick for fast identification of duck ingredient in 
adulterated beef. Animals 10 (10). https://doi.org/10.3390/ani10101765. Article 
1765.  

Gambetta, J.M., Cozzolino, D., Bastian, S.E.P., Jeffery, D.W., 2019. Classification of 
Chardonnay grapes according to geographical indication and quality grade using 
attenuated total reflectance mid-infrared spectroscopy. Food Anal. Methods 12 (1), 
239–245. https://doi.org/10.1007/s12161-018-1355-2. 

Ganopoulos, I., Sakaridis, I., Argiriou, A., Madesis, P., Tsaftaris, A., 2013. A novel closed- 
tube method based on high resolution melting (HRM) analysis for authenticity 
testing and quantitative detection in Greek PDO Feta cheese. Food Chem. 141 (2), 
835–840. https://doi.org/10.1016/j.foodchem.2013.02.130. 

Gao, J., Jin, X.E., Gong, B., Li, J.J., Chen, A.L., Tan, J.X., Wang, J., 2023. Identification of 
insect sources of honey in China based on real-time fluorescent LAMP technology. 
J. Food Compos. Anal. 115, 104875 https://doi.org/10.1016/j.jfca.2022.104875. 

Gao, P., Xu, W., Yan, T.Y., Zhang, C., Lv, X., He, Y., 2019. Application of near-infrared 
hyperspectral imaging with machine learning methods to identify geographical 
origins of dry narrow-leaved oleaster (Elaeagnus angustifolia) fruits. Foods 8 (12). 
https://doi.org/10.3390/foods8120620. Article 620.  

Genis, D.O., Sezer, B., Durna, S., Boyaci, I.H., 2021. Determination of milk fat 
authenticity in ultra-filtered white cheese by using Raman spectroscopy with 
multivariate data analysis. Food Chem. 336 https://doi.org/10.1016/j. 
foodchem.2020.127699. Article 127699.  

Gertz, C., Gertz, A., Matthaus, B., Willenberg, I., 2019. A systematic chemometric 
approach to identify the geographical origin of olive oils. Eur. J. Lipid Sci. Technol. 
121 (12), 1900281 https://doi.org/10.1002/ejlt.201900281. 

Giese, E., Rohn, S., Fritsche, J., 2019. Chemometric tools for the authentication of cod 
liver oil based on nuclear magnetic resonance and infrared spectroscopy data. Anal. 
Bioanal. Chem. 411 (26), 6931–6942. https://doi.org/10.1007/s00216-019-02063- 
y. 

Giusti, A., Armani, A., Sotelo, C.G., 2017. Advances in the analysis of complex food 
matrices: species identification in surimi-based products using Next Generation 
Sequencing technologies. PLoS One 12 (10), e0185586. https://doi.org/10.1371/ 
journal.pone.0185586. 

Gliszczynska-Swiglo, A., Chmielewski, J., 2017. Electronic nose as a tool for monitoring 
the authenticity of food. A review. Food Anal. Methods 10 (6), 1800–1816. https:// 
doi.org/10.1007/s12161-016-0739-4. 

Gonzales, C., Leiva-Revilla, J., Rubio, J., Gasco, M., Gonzales, G.F., 2011. Effect of red 
maca (Lepidium meyenii) on prostate zinc levels in rats with testosterone-induced 
prostatic hyperplasia. Andrologia 44 (1), 362–369. https://doi.org/10.1111/j.1439- 
0272.2011.01190.x. 

Gougeon, L., Da Costa, G., Le Mao, I., Ma, W., Teissedre, P.L., Guyon, F., Richard, T., 
2018. Wine analysis and authenticity using H-1-NMR metabolomics data: 
application to Chinese wines. Food Anal. Methods 11 (12), 3425–3434. https://doi. 
org/10.1007/s12161-018-1310-2. 

Z. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.3390/foods9111691
https://doi.org/10.3390/foods9111691
https://doi.org/10.1016/j.foodcont.2018.07.013
https://doi.org/10.1016/j.foodcont.2018.07.013
https://doi.org/10.1007/s11947-019-02268-0
https://doi.org/10.1007/s11947-019-02268-0
https://doi.org/10.1007/s11947-010-0411-8
https://doi.org/10.1007/s11947-010-0411-8
https://doi.org/10.1021/acs.jafc.2c01447
https://doi.org/10.3390/foods10081678
https://doi.org/10.3390/foods10081678
https://doi.org/10.1016/j.talanta.2021.122116
https://doi.org/10.1016/j.talanta.2021.122116
https://doi.org/10.3390/foods11010071
https://doi.org/10.3390/foods11010071
https://doi.org/10.1007/s12161-022-02439-4
https://doi.org/10.1007/s12161-022-02439-4
https://doi.org/10.3390/foods11010061
https://doi.org/10.3390/foods11010061
https://doi.org/10.3390/foods8100450
https://doi.org/10.3390/molecules24183289
https://doi.org/10.3390/molecules24183289
https://doi.org/10.1007/s00217-015-2537-4
https://doi.org/10.1007/s00217-015-2537-4
https://doi.org/10.1002/jsfa.10241
https://doi.org/10.1002/jsfa.10241
https://doi.org/10.1016/j.foodchem.2018.08.032
https://doi.org/10.3390/foods11081108
https://doi.org/10.3390/foods11081108
https://doi.org/10.1007/s00216-019-02200-7
https://doi.org/10.1016/j.foodchem.2018.08.068
https://doi.org/10.1016/j.foodchem.2018.08.068
https://doi.org/10.1016/j.foodchem.2017.02.149
https://doi.org/10.1016/j.foodchem.2017.02.149
http://refhub.elsevier.com/S2665-9271(24)00002-9/sref59
http://refhub.elsevier.com/S2665-9271(24)00002-9/sref59
https://doi.org/10.1016/j.foodres.2017.09.018
https://doi.org/10.1016/j.foodcont.2020.107577
https://doi.org/10.1007/s00217-015-2538-3
https://doi.org/10.3390/foods9070876
https://doi.org/10.3390/s20205855
https://doi.org/10.3390/s20205855
https://doi.org/10.1016/j.foodcont.2013.02.020
https://doi.org/10.1016/j.foodcont.2013.02.020
https://doi.org/10.3390/foods10071515
https://doi.org/10.1016/j.foodchem.2017.03.015
https://doi.org/10.1016/j.fishres.2017.09.014
https://doi.org/10.1016/j.fishres.2017.09.014
https://doi.org/10.1016/j.foodres.2018.10.013
https://doi.org/10.1016/j.foodres.2018.10.013
https://doi.org/10.1007/s10068-017-0168-1
https://doi.org/10.3390/foods9060710
https://doi.org/10.1016/j.foodchem.2021.131237
https://doi.org/10.1016/j.foodchem.2021.131237
https://doi.org/10.3390/ani10101765
https://doi.org/10.1007/s12161-018-1355-2
https://doi.org/10.1016/j.foodchem.2013.02.130
https://doi.org/10.1016/j.jfca.2022.104875
https://doi.org/10.3390/foods8120620
https://doi.org/10.1016/j.foodchem.2020.127699
https://doi.org/10.1016/j.foodchem.2020.127699
https://doi.org/10.1002/ejlt.201900281
https://doi.org/10.1007/s00216-019-02063-y
https://doi.org/10.1007/s00216-019-02063-y
https://doi.org/10.1371/journal.pone.0185586
https://doi.org/10.1371/journal.pone.0185586
https://doi.org/10.1007/s12161-016-0739-4
https://doi.org/10.1007/s12161-016-0739-4
https://doi.org/10.1111/j.1439-0272.2011.01190.x
https://doi.org/10.1111/j.1439-0272.2011.01190.x
https://doi.org/10.1007/s12161-018-1310-2
https://doi.org/10.1007/s12161-018-1310-2


Current Research in Food Science 8 (2024) 100676

24

Grassi, S., Tarapoulouzi, M., D’Alessandro, A., Agriopoulou, S., Strani, L., Varzakas, T., 
2023. How chemometrics can fight milk adulteration. Foods 12 (1). https://doi.org/ 
10.3390/foods12010139. Article 139.  

Grazina, L., Amaral, J.S., Costa, J., Mafra, I., 2021. Towards authentication of Korean 
ginseng-containing foods: differentiation of five Panax species by a novel diagnostic 
tool. LWT–Food Sci. Technol. 151 https://doi.org/10.1016/j.lwt.2021.112211. 
Article 112211.  

Grazina, L., Costa, J., Amaral, J.S., Garino, C., Arlorio, M., Mafra, I., 2022. 
Authentication of carnaroli rice by HRM analysis targeting nucleotide 
polymorphisms in the Alk and Waxy genes. Food Control 135. https://doi.org/ 
10.1016/j.foodcont.2022.108829. Article 108829.  

Guitton, Y., Dervilly-Pinel, G., Jandova, R., Stead, S., Takats, Z., Le Bizec, B., 2018. Rapid 
evaporative ionisation mass spectrometry and chemometrics for high-throughput 
screening of growth promoters in meat producing animals. Food Addit. Contam. Part 
a-Chemistry Analysis Control Exposure & Risk Assessment 35 (5), 900–910. https:// 
doi.org/10.1080/19440049.2017.1421778. 

Gunning, Y., Jackson, A.J., Colmer, J., Taous, F., Philo, M., Brignall, R.M., El Ghali, T., 
Defernez, M., Kemsley, E.K., 2020. High-throughput screening of argan oil 
composition and authenticity using benchtop(1)H NMR. Magn. Reson. Chem. 58 
(12), 1177–1186. https://doi.org/10.1002/mrc.5023. 

Haddad, L., Francis, J., Rizk, T., Akoka, S., Remaud, G.S., Bejjani, J., 2022. Cheese 
characterization and authentication through lipid biomarkers obtained by high- 
resolution H-1 NMR profiling. Food Chem. 383 https://doi.org/10.1016/j. 
foodchem.2022.132434. Article 132434.  

Han, F.K., Huang, X.Y., Aheto, J.H., Zhang, X.R., Rashed, M.M.A., 2022. Fusion of a low- 
cost electronic nose and Fourier transform near-infrared spectroscopy for qualitative 
and quantitative detection of beef adulterated with duck. Anal. Methods 14 (4), 
417–426. https://doi.org/10.1039/d1ay01949j. 

Han, F.K., Huang, X.Y., Teye, E., Gu, F.F., Gu, H.Y., 2014. Nondestructive detection of 
fish freshness during its preservation by combining electronic nose and electronic 
tongue techniques in conjunction with chemometric analysis. Anal. Methods 6 (2), 
529–536. https://doi.org/10.1039/c3ay41579a. 

Han, F.K., Zhang, D.J., Aheto, J.H., Feng, F., Duan, T.F., 2020. Integration of a low-cost 
electronic nose and a voltammetric electronic tongue for red wines identification. 
Food Sci. Nutr. 8 (8), 4330–4339. https://doi.org/10.1002/fsn3.1730. 

Handy, S.M., Ott, B.M., Hunter, E.S., Zhang, S., Erickson, D.L., Wolle, M.M., Conklin, S. 
D., Lane, C.E., 2020. Suitability of DNA sequencing tools for identifying edible 
seaweeds sold in the United States. J. Agric. Food Chem. 68 (52), 15516–15525. 
https://doi.org/10.1021/acs.jafc.0c03734. 

Hao, J., Dong, F.J., Wang, S.L., Li, Y.L., Cui, J.R., Men, J.L., Liu, S.J., 2022. Combined 
hyperspectral imaging technology with 2D convolutional neural network for near 
geographical origins identification of wolfberry. J. Food Meas. Char. 16 (6), 
4923–4933. https://doi.org/10.1007/s11694-022-01552-6. 

Hao, Y., Geng, P., Wu, W.H., Wen, Q.H., Rao, M., 2019. Identification of rice varieties 
and transgenic characteristics based on near-infrared diffuse reflectance 
spectroscopy and chemometrics. Molecules 24 (24). https://doi.org/10.3390/ 
molecules24244568. Article 4568.  

He, C., Liu, Y., Liu, H., Zheng, X., Shen, G., Feng, J., 2020. Compositional identification 
and authentication of Chinese honeys by 1H NMR combined with multivariate 
analysis [Article]. Food Res. Int. 130 https://doi.org/10.1016/j. 
foodres.2019.108936. Article 108936.  

He, W., Sun, X.J., 2018. Discussion on application technology of Raman spectrum. 
Standard Science 3, 70–75. 

He, X., Huang, Y.M., Gorska-Horczyczak, E., Wierzbicka, A., Jelen, H.H., 2021. Rapid 
analysis of Baijiu volatile compounds fingerprint for their aroma and regional origin 
authenticity assessment. Food Chem. 337 https://doi.org/10.1016/j. 
foodchem.2020.128002. Article 128002.  

Hleba, L., Drab, S., Cisarova, M., Cubon, J., 2019. Barley varieties discrimination using 
maldi-TOF mass spectrometry. J. Microbiol. Biotechnol. Food Sci. 8 (6), 1347–1351. 
https://doi.org/10.15414/jmbfs.2019.8.6.1347-1351. 

Hoffman, L.C., Ni, D.D., Dayananda, B., Ghafar, N.A., Cozzolino, D., 2022. Unscrambling 
the provenance of eggs by combining chemometrics and near-infrared reflectance 
spectroscopy. Sensors 22 (13). https://doi.org/10.3390/s22134988. Article 4988.  

Hong, Y.H., Birse, N., Quinn, B., Montgomery, H., Wu, D., da Silva, G.R., van Ruth, S.M., 
Elliott, C.T., 2022. Identification of milk from different animal and plant sources by 
desorption electrospray ionisation high-resolution mass spectrometry (DESI-MS). 
Npj Science of Food 6 (1). https://doi.org/10.1038/s41538-022-00129-3. Article 14.  

Horn, B., Esslinger, S., Fauhl-Hassek, C., Riedl, J., 2021. H-1 NMR spectroscopy, one- 
class classification and outlier diagnosis: a powerful combination for adulteration 
detection in paprika powder. Food Control 128. https://doi.org/10.1016/j. 
foodcont.2021.108205. Article 108205.  

Horn, B., Esslinger, S., Pfister, M., Fauhl-Hassek, C., Riedl, J., 2018. Non-targeted 
detection of paprika adulteration using mid-infrared spectroscopy and one-class 
classification - is it data preprocessing that makes the performance? Food Chem. 
257, 112–119. https://doi.org/10.1016/j.foodchem.2018.03.007. 

Hrbek, V., Rektorisova, M., Chmelarova, H., Ovesna, J., Hajslova, J., 2018. Authenticity 
assessment of garlic using a metabolomic approach based on high resolution mass 
spectrometry. J. Food Compos. Anal. 67, 19–28. https://doi.org/10.1016/j. 
jfca.2017.12.020. 

Hu, B.R., Gao, J., Xu, S.C., Zhu, J.Y., Fan, X.M., Zhou, X.Y., 2020. Quality evaluation of 
different varieties of dry red wine based on nuclear magnetic resonance 
metabolomics. Applied Biological Chemistry 63 (1). https://doi.org/10.1186/ 
s13765-020-00509-x. Article 24.  

Huang, M.Z., Yuan, C.H., Cheng, S.C., Cho, Y.T., Shiea, J., 2010. Ambient ionization mass 
spectrometry, 3. In: Yeung, E.S., Zare, R.N. (Eds.), Annual Review of Analytical 

Chemistry, vol. 3, pp. 43–65. https://doi.org/10.1146/annurev. 
anchem.111808.073702. 

Hurkan, K., 2022. Employing barcode high-resolution melting technique for 
authentication of apricot cultivars. Journal of Agricultural Sciences-Tarim Bilimleri 
Dergisi 28 (2), 251–258. https://doi.org/10.15832/ankutbd.870528. 

Innamorato, V., Longobardi, F., Lippolis, V., Cortese, M., Logrieco, A.F., Catucci, L., 
Agostiano, A., De Girolamo, A., 2019. Tracing the geographical origin of lentils (Lens 
culinaris Medik.) by infrared spectroscopy and chemometrics. Food Anal. Methods 
12 (3), 773–779. https://doi.org/10.1007/s12161-018-1406-8. 

Jaakola, L., Suokas, M., Haggman, H., 2010. Novel approaches based on DNA barcoding 
and high-resolution melting of amplicons for authenticity analyses of berry species. 
Food Chem. 123 (2), 494–500. https://doi.org/10.1016/j.foodchem.2010.04.069. 

Jawla, J., Kumar, R.R., Mendiratta, S.K., Agarwal, R.K., Singh, P., Saxena, V., Kumari, S., 
Boby, N., Kumar, D., Rana, P., 2021. On-site paper-based Loop-Mediated Isothermal 
Amplification coupled Lateral Flow Assay for pig tissue identification targeting 
mitochondrial CO I gene. J. Food Compos. Anal. 102 https://doi.org/10.1016/j. 
jfca.2021.104036. Article 104036.  
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