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A B S T R A C T   

Background: The prevalence of stunting in the Democratic Republic of the Congo (DRC) is one of 
the highest globally. However, only a few studies have attempted to measure the association 
between stunting and vegetation, which is an important food source. The leaf area index (LAI) is 
an excellent measure for the vegetation state. 
Objective: This paper intended to measure the association between the LAI and stunting among 
children under five years of age in the DRC. Its aim was to better understand the boundary 
conditions of stunting and explore potential links to climate and environmental change. 
Methods: This paper adopts a secondary data analysis approach. We used data on 5241 children 
from the DRC Demographic Health Survey (DHS) 2013–2014, which was collected from a na-
tionally representative cross-sectional survey. We used the satellite-derived LAI as a measure for 
the state of vegetation and created a 10-km buffer to extract each DHS cluster centroid’s corre-
sponding mean leaf-area value. We used a generalised mixed-effect logistic regression to measure 
the association between LAI and stunting, adjusting the model for mother’s education, occupation 
and birth interval, as well as child’s age and national wealth quintile. A height-for-age Z-score 
(HAZ) was calculated and classified according to WHO guidelines. 
Results: Children in communities surrounded by high LAI values have lower odds of being stunted 
(OR [odds ratio] = 0.63; 95% CI [confidence interval] = 0.47–0.86) than those exposed to low 
LAI values. The association still holds when the exposure is analysed as a continuous variable (OR 
= 0.84; 95% CI = 0.74–0.95). 

Abbreviations: LAI, Leaf Area Index; DHA, Demographic and Health Survey; DRC, the Democratic Republic of the Congo; HAZ, Height-for-Age Z- 
score; CI, Confidence Interval; OR, Odds Ration. 
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When stratified in rural and urban areas, a significant association was only observed in rural areas 
(OR = 0.6; 95% CI = 0.39–0.81), but not in urban areas (OR = 0.9; 95% CI = 0.5− 0.5). 
Furthermore, the study showed that these associations were robust to LAI buffer variations under 
25 km. 
Conclusions: Good vegetation conditions have a protective effect against stunting in children 
under five years of age. Further advanced study designs are needed to confirm these findings.   

1. Introduction 

Childhood undernutrition is a significant cause of mortality globally: 3.1 million children under five years die of undernutrition 
annually, accounting for 45% of total child deaths. Southern Asia and sub-Saharan Africa (SSA) are the most affected regions [1]. 
Among undernutrition-related problems, stunting is the most prevalent; globally, almost 149 million children were affected by 
stunting in 2020 [2]. Galway et al. [3] estimated that stunting affects 56 million pre-school children in SSA. The Democratic Republic 
of the Congo (DRC) has one of the highest prevalences of stunting in Africa (estimated at 43%), with some provinces exceeding 50%, 
according to the last Demographic Health Survey (DHS; 2013–2014) [4]. Recently, the DRC’s National Institute of Statistics updated 
this figure to 42% [5]. These numbers are alarming, considering the direct consequences of stunting: weak cognitive development, 
poor academic achievement, and low economic productivity in adulthood [6]. According to Currie and Almond [7], these conse-
quences are the most difficult to reverse through post facto remediation. 

The most important determinants of stunting are socio-economic factors such as social inequality, poor economic growth and the 
need for better sanitation for women [8]. M’Kaibi et al. [9] reported that, in Kenya, households with stunted children were signifi-
cantly more food insecure and had worse dietary diversity scores than households with no stunted children. In the case of the DRC, 
Kismul et al. [10] identified mother’s education and age, wealth quintile and early initiation of breastfeeding as the main determinants 
of childhood stunting. 

Only a few studies have examined the potential environmental determinants of stunting: safe drinking water, hygiene and sani-
tation [11]. Ecological/environmental factors are rarely linked to stunting because they are too complex to be measured. However, 
with the development of remote-sensing satellite technologies, environmental and ecological variables can be quantified and linked to 
stunting and other health outcomes. 

Remote-sensing satellites identify objects – or environmental variables – by measuring their electromagnetic radiation [12]. The 
state of vegetation is one of the essential variables of stunting; this is because the vegetation is a source of food, fuel and 80 medicinal 
plants, as well as a provider of various ecosystem services [12]. Vegetation supports people’s livelihoods and maintains human health, 
especially in developing countries [13,14]. Some empirical studies have demonstrated the association between stunting and vegetation 
state, as shown by satellite observation of forest cover [15,16]. Johnson and Brown [17] studied the association between the nor-
malised difference vegetation index (NDVI) and stunting in West Africa. Kinyoki et al. [15] found a strong association between an 
enhanced vegetation index and stunting in Somalia. 

The limitation of the above studies is that only a set of satellite-derived vegetation proxies are investigated (mainly the NDVI and 
the enhanced vegetation index), and mostly in semi-arid countries. To our knowledge, an investigation of the leaf area index (LAI) as 
an important measure for vegetation structure, has not yet been conducted. The LAI is a biophysical variable that measures the total 
green leaf area per unit of horizontal ground surface area [18,19]. It has been widely used to assess plant canopy structure and growth 
[20,21] and can capture the magnitude of biosphere-climate interactions [22]. According to Weiss et al. [23], the LAI controls for many 
of the vegetation’s physiological processes, such as evapotranspiration, photosynthesis, transpiration and rainfall interception. In the 
context of a changing climate, population growth, persisting levels of undernutrition and a high rate of deforestation in SSA, it is 
crucial to address these knowledge gaps [24]. 

This study aimed to measure the association between stunting and the LAI in the DRC using DHS 2013–14 data. Furthermore, we 
also hoped to assess the extent to which rural and urban areas are related to this association. 

2. Methods 

2.1. Study sites 

The data for this study comes from the DRC, a large country located in tropical Central Africa. With a surface area of 2,345,000 km2, 
the DRC stretches from 5◦23′N to 13◦26′S, and from 12◦12′E to 31◦17′E. The climate is warm and humid (annual mean temperature: 
25 ◦C), except for in the south-eastern highlands [25], where the climate is relatively moderate (annual mean temperature: ±21 ◦C). 
The country has two wet seasons and two dry seasons. July is the coldest month, and March is the warmest. The average annual 
precipitation is 1800 mm, and the average number of rainy days is 115. The tropical evergreen forest dominates the vegetation, with 
seasonal variation in the Cuvette Centrale [26]. A semi-deciduous forest borders this central basin, and the savanna ecosystem covers 
33% of the country [27]. More than 70% of the population lives in rural areas, depending directly on goods and services provided by 
the forest ecosystems. Agriculture is the primary source of income in the DRC. We conducted this research in the DRC because of the 
high prevalence of stunting, the availability of DHS survey data, the presence of the second-largest tropical forest in the world, and the 
population’s dependence on the forest. 
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2.2. DHS data acquisition and study period 

The data on stunting was retrieved from a national representative survey, the DHS, which was conducted between August 2013 and 
February 2014. The survey was conducted under the authority of the United States Agency for International Development (USAID) and 
is accessible upon authorisation (https://dhsprogram.com/data/available-datasets.cfm). 

2.3. Ethical consideration 

Ethics approval was not applied in this study because the data is secondary and is available in the public domain. A written request 
was sent to the DHS Program, and permission was granted to download data from http://www.dhsprogram.com (letter number 
1251772). More details regarding DHS data and ethical standards are available at: http://goo.gl/ny8T6X. 

2.4. Population 

Based on the most recent census conducted in 1984, the population of DRC was estimated at 30.7 million. It was around 78 million 
in 2012, according to the projection of INS [5]. Almost 70% of the population lives in rural areas. However, the overall density of the 
population is relatively low, with 24 habitants per km2. The population of DRC is very young – 61% of the population is aged below 20 
years. 

2.5. Study design 

The DHS is based on a cross-sectional study design and uses a probabilistic-stratified two-stage cluster design to collect data. First, 
areas are drawn from the most recent census data based on each stratum’s probability in proportion to its size. Second, based on equal 
probability systematic sampling, a sample of 25–35 households is drawn from the list of households within each enumerated area. 
Details related to sample sizes and participants’ characteristics are described by Rutstein and Rojas [28] and fully explained in the DHS 
Sampling and Household Listing Manual of the United States Agency for International Aid (USAID) [29]. 

In the DRC, each province (of 26 in total) constituted a study domain from which two strata were drawn: urban and rural. In the 
urban strata, a first-stage proportional random sample was drawn to select quarters (smallest administration boundary) from the 
exhaustive list of the county. Then, a second-stage equal random sample was drawn to select 34 households from each selected quarter. 
In rural strata, a first random sample was drawn from the list of sectors of the country. A second random sample was drawn to select 
villages derived from selected sectors. Finally, 34 households were selected from a third random sample, drawn from selected villages. 
In total, 18,360 households (5474 in urban areas and 12,886 in rural areas) were surveyed, and villages (379) and quarters (161) 
constitute cluster units. 

Participants in the DHS survey were household women (18,360) aged between 15 and 49 years and who were present the night 
before the survey. Men aged between 15 and 59 were selected from half of the selected households. In this study, we included all non- 
pregnant women of child-bearing age from 15 to 49 years old and their children under the age of five years. 

DHS data also contains geographical coordinates, which are related to cluster units. The coordinates are randomly displaced to 
comply with ethical considerations, for up to 5 km in rural areas and up to 2 km in urban areas. 

Fig. 1. Spatial distribution of the leaf area index (LAI; mean values from 2009 to 2014) and Demographic Health Survey (DHS) survey data used in 
this study (in red). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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2.6. LAI data 

The second type of dataset is the LAI, defined as the total green leaf area per unit of horizontal ground surface area [18,19] – this 
includes leaves, stems, branches and fruits [30]. The index can be measured in the field [31] or estimated using satellite images [32]. 
The LAI used in this study is derived from satellite images obtained from the European Centre for Medium-Range Weather Forecasts. 
Price [33] provided more details on how to derive a satellite LAI. The satellite-derived LAI represents the surface area of one side of all 
the leaves found over an area of land for high vegetation: evergreen trees, deciduous trees, mixed forest/woodland, and interrupted 
forest [34]. Its values indicate the state of the vegetation (greening, mature, senescent or dormant) and vary between 0 and 7 m2/m2 

(Fig. 1). 

2.7. Outcome variable 

The only outcome variable of this study is the height-for-age Z-score (HAZ), which represents stunting. This is calculated based on 
the WHO Child Growth Standards and obtained from the DHS 2013–14 dataset. Children are considered stunted if their HAZ falls 
below − 2.0 standard deviations (SD) [35]. Stunting captures the impact of long-term environmental characteristics on childhood 
malnutrition. 

2.8. Exposure definition 

LAI data was pre-processed before being used in the regression model. Monthly LAI spatial data (from 2009 to 2014) obtained from 
the satellite were averaged to get spatial year data, which were related to DHS data using DHS global positioning system (GPS) co-
ordinates. Including LAI data for the years preceding the DHS surveys (2009, 2010, 2011) is important because stunting is the result of 
long-term environmental conditions [17]. 

LAI extracted from DHS GPS coordinates were dichotomised using a median value of 4.21 m2/m2. The LAI values superior to the 
median values were denoted as ‘high LAI’, while the LAI inferior or equal to the median were denoted as ‘low LAI’. We also analyse LAI 
as a continuous variable, because there is no previous study supporting the dichotomisation. 

2.9. Covariates 

Covariates could weaken or strengthen the association between stunting and the LAI if they are not controlled in the regression 
model. These variables are: the child’s age, wealth quintile, previous birth interval, mother’s working status, and education level [1, 
10]. These have been obtained from the 2013–2014 DHS dataset; details on how to measure them are clearly explained by the DHS [4]. 

2.10. Linking DHS data to the LAI 

We used a 10-km buffer around each DHS cluster and averaged the LAI values within the buffer. Therefore, households within the 
same cluster share the same LAI value. The R statistical software (version 3.5.0) [36] made these manipulations possible. 

2.11. Statistical analysis 

We implemented all statistical analyses in R software [36] and assessed the differences between groups using Pearson’s chi-squared 
test. All tests were two-sided, and we set the level of significance to p < 0.05. Multicollinearity between the independent variables was 
assessed using the variance inflation factor (VIF). We used the generally accepted VIF cut-off value of 2.5. We evaluated the association 
between LAI and childhood stunting using mixed-effects logit models. A mixed-effects logit model is a type of logistic regression in 
which random effects are added to linear predictors [37]. The model accommodates correlation via random effects, while retaining the 
ability to model non-normal distributions and allowing models of a specific form [37]. The mixed-effect logistic regression is estimated 
as follows: 

logit(Yijk)= α + β1LAI + δXijk + θ (1)  

where Yijk is the state of the national status (stunting or not stunting) in child i in household j living in DHS cluster k, and α is a constant 
representing the baseline log odds for LAI, the independent variable, varied by the DHS cluster. X represents the child- (child age), 
household- (wealth quantile) and mother-level controlling variables mentioned above, which can potentially influence stunting when 
the model is adjusted. In a crude regression, δ is set to zero. The fixed parameter β1 quantifies the effect of the exposure variable LAI and 
measures the association between LAI and the dependent variable. Finally, θ represents the random cluster effect. We reported the 
crude regression and adjusted the odds ratio (OR) of the model. 

2.12. Sensitivity analysis 

We fitted an additional model with LAI analysed as a continuous outcome. Two more adjusted models measured the association 
between stunting and LAI in rural and urban areas separately. To test the robustness of the association, we repeated the main analysis, 
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using different buffer distances for the exposure variable: 1 km; 5 km; 15 km; 25 km; and 30 km. 

3. Results 

3.1. Population characteristics 

Of the 18,716 households in the DHS data, 5348 contained non-pregnant women of child-bearing age (from 15 to 49 years) and 
children under the age of five years. Among these households, we excluded 107 households/children because the child had an extreme 
HAZ value (i.e. a HAZ above six standard deviations [SD] or below 6 SD), probably due to measurement errors. We analysed 5241 
children, of whom 2371 lived in areas of low LAI and 2870 in areas of high LAI. The characteristics of the women and children involved 
in this study are presented in Table 1. According to the wealth quintile, the communities living in high LAI areas are dominated by the 
poorer and poorest classes, while the middle class dominates those who live in low LAI clusters. Of the women in the DHS data, only 
39% had completed secondary school, and more than half do not work. The majority of the children were between 30 and 39 months. 

3.2. Main analysis 

Table 2 shows the results of the generalised mixed-effect logistic model for the whole dataset when the LAI is a dichotomous 
variable. Children living in an area with a higher LAI are compared with those living in an area with a lower LAI (the reference group). 
Children living in an area with a higher LAI are 34% less likely to be stunted than those exposed to a lower LAI, with the link being 
statistically significant (OR: 0.66; 95% Cl = 0.48–0.90). The association’s direction and magnitude still hold when we adjust the model 
for the child’s age, wealth quintile, previous birth interval, mother’s work status, and mother’s education level (OR = 0.68; 95% Cl =
0.50–0.93). The values of the VIF indicate the absence of multicollinearity in the model. Among the control variables, the child’s age 
and the mother’s previous birth interval and work status are not associated with the odds of being stunted. The wealth quantile is 
associated with the odds of being stunted; that is, the wealthier the household, the less likely it is that the child will be stunted, by a 
factor of 0.22 (95% CI: 0.14–0.34), 0.57 (95% CI: 0.42–0.78), and 0.76 (95% CI: 0.59–0.98) for wealthiest, wealthy, and middle-class 
households, respectively. The mother’s secondary education is also associated with the odds of a child being stunted, by a factor of 0.66 
(95% CI: 0.54–0.80), relative to the mother having received a primary education. 

3.3. Sensitivity analysis 

The association between the LAI and stunting is robust, because the association still holds when the LAI is considered as a 
continuous variable (as indicated in Table 3). For every LAI unit increase, there is a 14% decrease in stunting (OR = 0.86; 95% CI =
0.75–0.98). This decreases by 16% when the model is adjusted for the child’s age, wealth quintile, previous birth interval, mother’s 

Table 1 
Descriptive characteristics of the analytical sample.  

Individual-level variables Low LAI* High LAI* p-values 

Child’s age in months n (%) n (%) 0.025 
0–5 months 37 (1.5) 29 (1)  
6–11 months 262 (11.1) 275 (9.6)  
12–17 months 217 (9.2) 319 (11.1)  
18–23 months 240 (10.1) 259 (9)  
24–29 months 221 (9.3) 263 (9.2)  
30–35 months 1394 (58.8) 1725 (60)  
Wealth quintile n (%) n (%) <0.001 
Poorest 415 (17.5) 792 (27.6)  
Poorer 488 (20.6) 669 (23.3)  
Middle 580 (24.5) 527 (18.4)  
Wealthier 539 (22.7) 446 (15.5)  
Wealthiest 349 (14.7) 436 (15.2)  
Previous birth interval n (%) n (%) 0.687 
No previous birth 581 (24.5) 725 (25.3)  
Interval <24 months 898 (37.9) 1075 (37.5)  
Interval 24–35 months 516 (21.8) 594 (20.7)  
Interval >36 months 376 (15.9) 476 (16.6)  
Mother’s education n (%) n (%) 0.010 
Primary 1392 (58.7) 1801 (62.8)  
Secondary 963 (40.6) 1048 (36.5)  
Higher 16 (0.7) 21 (0.7)  
Mother’s work status n (%) n (%) <0.001 
Agriculture 377 (15.9) 548 (19.1)  
Non-agricultural 608 (25.6) 862 (30.0)  
Not working 1386 (58.5) 1460 (50.9)   

* LAI = leaf area index. 
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work status, and mother’s education level (OR = 0.84; 95% CI = 0.74–0.95). Similarly to when the LAI is analysed as a dichotomous 
variable, the child’s age and the mother’s previous birth interval and work status are not associated with the odds of being stunted. 

Table 4 shows the association between LAI and childhood stunting in urban versus rural areas. The association between LAI and 
childhood stunting is statistically significant and negative in rural areas (OR = 0.6; 95% CI = 0.39–0.81), after controlling for the 

Table 2 
Odds ratios (ORs) of a generalised mixed-effect logistic model measuring stunting, in which the leaf area index (LAI) is analysed as a dichotomous 
variable.  

Individual-level variables OR (crude) OR (adjusted) VIF 

Child’s age in months (ref: 0–5 months)   1.01 
6–11 months  0.9 (0.43–1.91)  
12–17 months  0.89 (0.42–1.88)  
18–23 months  0.76 (0.36–1.62)  
24–29 months  1.23 (0.58–2.60)  
30–35 months  0.95 (0.47–1.95)  
Wealth quintile (ref: Poorest)   1.15 
Poorer  0.95 (0.75–1.22)  
Middle  0.76 (0.59–0.98)*  
Wealthier  0.57 (0.42–0.78)*  
Wealthiest  0.22 (0.14–0.34)*  
Previous birth interval (ref: No prev. birth)   1.02 
Interval <24 months  0.87 (0.71–1.07)  
Interval 24–35 months  0.87 (0.69–1.10)  
Interval >36  0.84 (0.65–1.09)  
Mother’s education (ref: Primary)   1.08 
Secondary  0.66 (0.54–0.80)*  
Higher  0.33 (0.07–1.62)  
Mother’s work status (ref: Agric. work)   1.12 
Not working  0.88 (0.67–1.15)  
Non-agricultural  0.86 (0.65–1.15)  
LAI (ref: Low LAI)   1.01 
High LAI 0.66 (0.48–0.90)* 0.68 (0.50–0.93)*  

The model (crude) is implemented in the second column without controlling variables, while the model (adjusted) is implemented in the third column 
with controlling variables. 
VIF = variance inflation factor. 

* denotes p < 0.05. 

Table 3 
Odds ratios (ORs) of a generalised mixed-effect logistic model measuring stunting when the leaf area index (LAI) is analysed as 
a continuous variable.  

Individual-level variables OR (crude) OR (adjusted) 

Child’s age in months (ref: 0–5 months) 
6–11 months  0.91 (0.43–1.92) 
12–17 months  0.89 (0.42–1.88) 
18–23 months  0.76 (0.36–1.62) 
24–29 months  1.23 (0.58–2.60) 
30–35 months  0.95 (0.47–1.95) 
Wealth quintile (ref: Poorest) 
Poorer  0.95 (0.75–1.22) 
Middle  0.76 (0.59–0.98)* 
Wealthier  0.57 (0.42–0.78)* 
Wealthiest  0.22 (0.14–0.34)*tbl3fnlowast 
Previous birth interval (ref: No prev. birth) 
Interval <24 months  0.87 (0.65–1.17) 
Interval 24–35 months  0.87 (0.69–1.10) 
Interval >36  0.84 (0.65–1.09) 
Mother’s education (ref: Primary) 
Secondary  0.66 (0.55–0.81)*tbl3fnlowast 
Higher  0.33 (0.07–1.65) 
Mother’s work status (ref: Agriculture) 
Not working  0.88 (0.65–1.17) 
Non-agricultural  0.87 (0.65–1.17) 
LAI 
LAI (continuous) 0.86 (0.75–0.98)* 0.84 (0.74–0.95)* 

The model (crude) is implemented in the second column without controlling variables, while the model (adjusted) is 
implemented in the third column with controlling variables. 

* denotes p < 0.05. 
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child’s age, wealth quintile, previous birth interval, mother’s work status, and mother’s education level. However, this association 
does not hold in urban areas (OR = 0.9; 95% CI = 0.5–1.5), where the mother’s work status and previous birth interval are not 
associated with stunting. In urban areas, the mother’s secondary education level is associated with lower odds of being stunted relative 
to the mother’s primary education level. Previous birth intervals of 24–35 months and >35 months are associated with lower odds of 
being stunted in a rural area, with factors of 0.7 (95% CI: 0.52–0.96) and 0.7 (95% CI = 0.56–0.97), respectively. In a rural area, being 
from the wealthiest and wealthier households is likely to reduce the odds of being stunted by a factor of 0.2 (95% CI: 0.06–0.82) and 
0.5 (95% CI: 0.36–0.78), respectively, while in an urban area, only the wealthiest households are associated with lower stunting (OR =
0.3; 95% CI = 0.2–0.6). 

4. Discussion 

The objective of this study has been to measure the association between childhood stunting in the DRC and the LAI, which serves as 
a measure for vegetation state. Using the same DHS dataset, this association is differentiated between urban and rural areas. We found 
that living in an area with a high LAI significantly reduced the likelihood that children would be stunted. We also found a significant 
negative association between childhood stunting and the LAI that was observed only in rural areas. In contrast, there was no significant 
association between childhood stunting and the LAI in an urban area. 

The association between forest cover/vegetation and childhood stunting has previously been observed in a few other studies that 
use different vegetation proxies (most often, the NDVI). Using data from 25 low- and middle-income countries, Rasolofoson et al. [38] 
have demonstrated that exposure to forests significantly reduces child stunting (by around 7%). Sununtnasuk [39] also showed the 
NDVI statistically reducing the probability of stunting in Nepal. However, Acharya et al. [40] have found only a marginal association 
between forest cover and childhood stunting in SSA. Johnson and Brown [17] found an inconsistent association between the NDVI 
(using a forest-cover proxy) and childhood stunting; they determined a positive association in Benin, negative in Mali, and no asso-
ciation in Burkina Faso and Guinea. Some other studies, using variables considered to be direct causes of stunting, have indirectly 
shown the benefit of forest cover in terms of its association with reduced stunting [3,16]. For example, Gol et al. [41] quantified the 
benefit of forest cover in terms of its positive effect on other nutritional outcomes directly related to childhood stunting, for example, 
finding that greater forest cover is associated with a reduced risk of diarrhoeal disease. Net forest-cover loss is associated with reduced 
dietary diversity and the reduced consumption of vitamin A-rich food among children in Malawi. Rasolofoson et al. [16] estimated that 
exposure to forests leads to at least 25% greater dietary diversity in children compared to that of children in non-forested areas. The 
novel point of our study pertains to the use of the LAI as an indicator of the vegetation state. For the DRC, the LAI exhibits a more robust 
link to stunting than the other vegetation-related indices cited above. 

The association between forest cover (here, LAI) and childhood stunting can be explained by the fact that forest ecosystems are the 
main source of local and affordable foods, especially in rural areas in which most communities live close to forests [42]. Most forest 

Table 4 
Odds ratios (ORs) of a generalised mixed-effect logistic model measuring stunting in urban and rural areas.   

Urban Rural 

OR (crude) OR (adjusted) OR (crude) OR (adjusted) 

Child’s age in months (ref: 0–5 months) 
6–11 months  1.1 (0.2–4.7)  0.9 (0.36–2.05) 
12–17 months  1.1 (0.3–4.9)  0.8 (0.35–2.00) 
18–23 months  0.7 (0.2–3.1)  0.8 (0.32–1.87) 
24–29 months  0.7 (0.3–6.0)  1.2 (0.51–2.91) 
30–35 months  0.7 (0.2–4.1)  1.0 (0.41–2.17) 
Wealth quintile (ref: Poorest) 
Poorer  0.6 (0.3–1.2)  1.0 (0.76–1.27) 
Middle  0.6 (0.3–1.1)  0.8 (0.61–1.05) 
Wealthier  0.7 (0.4–1.3)  0.5 (0.36–0.78)* 
Wealthiest  0.3 (0.2–0.6)*  0.2 (0.06–0.82)* 
Previous birth interval (ref: No prev. birth) 
Interval <24 months  1.0 (0.7–1.6)  0.8 (0.65–1.04) 
Interval 24–35 months  1.5 (0.9–2.4)  0.7 (0.56–0.97)* 
Interval >36  1.4 (0.8–2.2)  0.7 (0.52–0.96)* 
Mother’s work status (ref: Agric. work) 
Not working  1.0 (0.6–1.6)  0.9 (0.65–1.3) 
Non–agricultural work  0.7 (0.4–1.0)  1.1 (0.73–1.66) 
Mother’s education (ref: Primary) 
Secondary  0.4 (0.3–0.6)*  0.8 (0.65–1.05) 
Higher  00 (00–00)  4.1 (0.23–73.1) 
LAI (ref: Low LAI) 
High LAI 0.78 (0.43–1.38) 0.9 (0.5–1.5) 0.61 (0.43–0.87)* 0.6 (0.39–0.81)* 

The LAI is analysed as a dichotomic variable. The crude models are implemented without controlling variables, while the adjusted models are 
controlled for the child’s age, wealth quintile, previous birth interval, mother’s work status and mother’s education level. 

* denotes p < 0.05. 
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foods, such as bushmeat, insects, fruits and nuts, contain high nutritional values [43], which are also the primary diet of children in 
Africa. Forest areas are therefore associated with high dietary diversity, which is directly related to children’s nutritional status [44, 
45]. Recently, Gol et al. [41] reviewed 81 articles linking dietary diversity and growth outcomes in children aged under five years; they 
found that 79% of the articles highlighted the association between low dietary diversity and stunting. The loss of forest cover may lead 
to the depletion of micronutrient intake [46,47]. According to Rowland et al. [47], forest areas provide approximately 15% of the 
recommended vegetables and fruit and nearly 96% of meat in developing countries. Fungo et al. [48] showed that the forest provides 
the daily vitamin A intake for women in Cameroon, while Makoudjou et al. [49] demonstrated that forests provide food security and 
proteins for the population of Cameroon. Golden et al. [50] found a significant association between wildlife meat and higher hae-
moglobin concentrations in Madagascar. 

Forest cover can also indirectly reduce the probability of stunting by acting on factors like diarrhoea, time allocated for firewood 
collection, and income. According to various studies, the risk of diarrhoea is much reduced in forested areas [17,51]. A plausible 
explanation for this last factor is that water that is surrounded by forests is less infected by pathogenic bacteria. Another factor, the 
time women spend gathering sufficient firewood for cooking, is much reduced in forest areas compared to non-vegetated areas. 
Therefore, women living in forested areas can save more than 80% of their energy, compared to what they would expend in 
non-forested areas [52]. They can then allocate more time to taking care of the children and improving their nutritional status. 

According to some other studies and as mentioned above, communities living in forests generate more income than those living in 
non-forested areas. This is possible through the commercialisation of non-timber forest products (NTFPs). Vedeld et al. [53] inves-
tigated 57 study cases and concluded that forest products comprise 22% of a forest household’s total income. According to Angelsen 
et al. [54], natural forest products represent 77% of total household income in 24 developing countries. In the DRC, NTFPs are an 
important source of household consumption and income; the Food and Agriculture Organization of the United Nations has indicated 
that around five million women in West Africa earn 80% of their income from forest products [55]. 

The lack of association between childhood stunting and the LAI in urban areas is probably due to the low prevalence of stunting 
there compared to rural areas: a 15% difference, according to a recent study on the DRC [10]. Another cause could be the high 
deforestation rate in urban areas, resulting in LAI values under the median value and low variation in the LAI across urban clusters. 

Among the controlled variables, studies have shown that children living in the poorest households – as indicated by their wealth 
quintile – are associated with higher odds of being stunted. This finding aligns with that of Kismul et al. [10] and can be explained by 
the fact that better living conditions contribute to better childcare and improved access to food. However, this relationship is stronger 
in rural areas than urban, probably because the wealth quintile within the DHS survey data has been constructed differently in the two 
regions; in addition, social inequality could be much more robust in rural areas [56]. Another variable is the mother’s secondary 
education level, which is associated with the odds of being stunted. However, we found no association between stunting and a mother’s 
secondary education level. The small sub-sample we have taken could explain the lack of significance of secondary education among 
mothers. In the sub-analysis, mothers having higher education represent only 0.7% of the sample (Table 1). 

Although we controlled for many possible confounders (control variables), the major limitation is the nature of this study, which 
does not inform the temporality of the cause and effect nor its susceptibility to retaining a residual confounding. There may be other 
possible confounders that are not considered in this study; therefore, the control of the current confounders may not be enough. For 
example, the regression model assumes there are no differences between mothers arising from factors like differences in intra- 
household food allocation behaviours, genetic predispositions, preferences regarding child health, and family preferences. More-
over, because the study area is quite big, the study does not consider exogenous variables such as local nutritional interventions by the 
government or by non-governmental organisations. Such uncontrolled heterogeneities could bias the results; only an experimental 
study design could control these heterogeneities. Another aspect that can add to the residual confounding is the stratification of the 
variable, for example, matching subjects who are within five months of age. It is also difficult to assess whether the exposure came 
before the outcome, and whether the children were born and had stayed in the same area. Additionally, this study found that increased 
LAI was generally associated with lower socio-economic status. This might have masked a true effect of LAI on stunting. 

The random displacement of geographical coordinates is another potential source of bias. To address this type of bias, a sensitivity 
analysis was conducted that varied the LAI buffer distance; the results indicate that the association between the LAI and childhood 
stunting holds with a buffer distance below 20 m (Fig. 2). Removing individuals with missing data could also lead to bias, resulting in a 
wider confidence interval, as observed in the result, even if the association remains statistically significant. 

5. Conclusion 

This study proves that the state of vegetation (as expressed by the LAI) is one of the drivers of childhood stunting all over the DRC in 
general and in rural areas in particular. However, we find no association between the LAI and childhood stunting in urban areas. This 
research’s findings apply only to children under five years of age living in the DRC. This study can help policymakers to integrate forest 
conservation as an intervention aimed at bettering the population’s nutritional status and combating the stunting seen in children in 
rural areas. 
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