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This paper introduced a study for a new system that consists of one unit with mixed standby units. The 
mathematical model for the system is constructed using semi-Markov model with regenerative point technique 
in two cases: the first case when there is preventive maintenance provided to the main unit and the second 
case when there is no preventive maintenance in the system. Life and repair times of the units in the system 
are assumed to be generally distributed with fuzzy parameters defined by the bell-shaped membership function. 
A Numerical application is introduced to compare the performance of the system in the two cases.
1. Introduction

Markov models have many applications in the real life. Markov pro-

cess is a stochastic process with the memoryless property in which the 
future state depends only on the current state and not on the past 
history (see [12]). Applications of Markov models were presented in 
literature such as [13, 14] and [15]. Semi-Markov models are the gen-

eralization of Markov models (see [16] and [17]). Semi-Markov models 
and their applications were introduced in [18, 19, 20, 21, 22]. Reliabil-

ity measures such as mean time to failure is an effective measure when 
analyzing engineering models. The applications of reliability were in-

troduced in many papers in literature (see for example [23] and [24]).

Fuzzy set theory had been introduced by Zadeh (1965). Fuzzy set 
theory is the generalization of the classical set theory. Fuzzy sets have 
many applications in the expert systems. Uncertainty and fuzziness are 
used in the models in which the parameters are vague and their exact 
values are unknown. Many applications of the fuzzy sets and systems 
were introduced in literature (see for example [25] and [26])

Goel et al. [1] analyzed profit of a cold standby system with two 
repair distributions. El-Said and El-Sherbeny [2] discussed the reliabil-

ity of two units cold standby system with single repair. Kumar et al. 
[3] introduced the cost benefit analysis of a two-unit parallel system 
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subject to degradation after repair. Malik and Barak [4] presented the 
reliability measures of a cold standby system with preventive mainte-

nance and repair. Rathee and Chander [5] introduced a parallel system 
with priority to repair over preventive maintenance subject to maxi-

mum operation and repair times. Grabski [6] introduced reliability and 
maintainability characteristics in semi-Markov models. Singh et al. [7] 
analyzed the cost benefit of two identical warm standby system under 
heavy rain with partially operative after repair. Baweja and Kumar [8] 
obtained reliability measures for a two-unit cold standby repairable sys-

tem with priority to operation over preventive maintenance. Manocha 
and Taneja [9] presented analysis of two unit cold standby system with 
life, repair and waiting times follow arbitrary distributions. Grabski 
[10] introduced semi-Markov reliability model of system composed of 
main subsystem and cold backup component. Kumar and Goel [11] in-

troduced a two-unit cold standby system by considering the concepts of 
degradation, inspection, preventive maintenance and priority.

In this paper, analysis of a new system consists of one unit with 
mixed standby units is presented. The main unit works perfectly at the 
initial time t = 0. After a period of time, the main unit will undergo for 
preventive maintenance in order to increase the life time of the main 
unit and improve the performance of the system. When the main unit 
fails, it will be replaced immediately by a warm standby unit where the 
https://doi.org/10.1016/j.heliyon.2021.e07717
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switch is assumed to work perfectly and hence the cold standby will op-

erate as a warm standby unit. The mathematical model for the system is 
constructed using semi-Markov model with regenerative method tech-

nique. The life time of the system’s units is assumed to follow general 
distribution with failure rate increases with time. The repair and pre-

ventive maintenance rates of the system’s units are assumed to follow 
general distribution. An algorithm is introduced to obtain the mea-

sures of the system when the parameters of the general distribution are 
assumed to be fuzzy with bell-shaped membership function. An applica-

tion is introduced to compare between the two introduced models and 
show the effect of preventive maintenance to improve the performance 
of the system.

2. Notations

𝑆𝑖: state of the system (𝑖 = 0, … , 30).

𝑞𝑖,𝑗 (𝑡): probability density function of the transition from state 𝑆𝑖 to 
state 𝑆𝑗 during time interval (0, 𝑡).

𝐴𝑖(𝑡): probability that the system is up at time t given that the system 
entered regenerative state 𝑆𝑖 at 𝑡 = 0.

𝑍𝑖(𝑡): probability that the system is up initially in state 𝑆𝑖 at time t 
without visiting any other regenerative state.

𝑅𝑖(𝑡): probability that the system will be successfully operating with-

out failure in time interval (0, 𝑡) given that the system starts at regener-

ative state 𝑆𝑖.

𝑓 (𝑡)∕𝐹 (𝑡): probability density function/cumulative distribution func-

tion of the failure of the main unit.

𝑓𝑤(𝑡)∕𝐹𝑤(𝑡): probability density function/cumulative distribution 
function of the failure of the warm standby unit.

ℎ(𝑡)∕𝐻(𝑡): probability density function/cumulative distribution func-

tion of the repair of the main unit.

ℎ𝑤(𝑡)∕𝐻𝑤(𝑡): probability density function/cumulative distribution 
function of the repair of the warm standby unit.

𝑔(𝑡)∕𝐺(𝑡): probability density function/cumulative distribution func-

tion of the main unit to go under PM.

𝑚(𝑡)∕𝑀(𝑡): probability density function/cumulative distribution 
function of the main unit to complete the PM action.

𝜆∕𝜆𝑤: parameter of the distribution of the lifetime of the main/warm 
standby unit.

𝜇∕𝜇𝑤: parameter of the distribution of the repair of the main/warm 
standby unit.

𝑔∕𝑚: parameter of the distribution of the main unit to go under 
PM/complete PM.

©: symbol used for Laplace convolution.

∗: symbol used for Laplace transform.

∼: symbol used for fuzziness.

3. States of the system

𝑁0: the unit is in operative mode.

𝑁𝑐 : the unit is in cold standby mode.

𝑁𝑤: the unit is in warm standby mode.

𝐹0: the main unit is failed.

𝐹𝑤: the warm standby unit is failed.

𝑁𝑝𝑚: the unit is under preventive maintenance.

The up states of the system will be given as follows:

𝑆0 ≡
(
𝑁0,𝑁𝑐,𝑁𝑤

)
, 𝑆1 ≡

(
𝐹0,𝑁𝑤,𝑁0

)
, 𝑆2 ≡

(
𝑁0,𝑁𝑐,𝐹𝑤

)
,

𝑆3 ≡
(
𝑁𝑝𝑚,𝑁𝑤,𝑁0

)
, 𝑆4 ≡

(
𝐹0,𝑁0, 𝐹0

)
, 𝑆5 ≡

(
𝐹0, 𝐹𝑤,𝑁0

)
,

𝑆6 ≡
(
𝐹0,𝑁0,𝑁𝑝𝑚

)
, 𝑆7 ≡

(
𝐹0,𝑁0, 𝐹𝑤

)
, 𝑆8 ≡

(
𝑁0, 𝐹𝑤,𝐹𝑤

)
,

𝑆9 ≡
(
𝑁𝑝𝑚,𝑁0, 𝐹𝑤

)
, 𝑆10 ≡

(
𝑁𝑝𝑚,𝑁0, 𝐹0

)
, 𝑆11 ≡

(
𝑁𝑝𝑚,𝐹𝑤,𝑁0

)
,

𝑆12 ≡
(
𝑁𝑝𝑚,𝑁0,𝑁𝑝𝑚

)
The failed states of the system will be given as follows:
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𝑆13 ≡
(
𝐹0, 𝐹0, 𝐹0

)
, 𝑆14 ≡

(
𝐹0,𝑁𝑝𝑚,𝐹0

)
, 𝑆15 ≡

(
𝐹0, 𝐹𝑤,𝐹0

)
,

𝑆16 ≡
(
𝐹0, 𝐹𝑤,𝑁𝑝𝑚

)
, 𝑆17 ≡

(
𝐹0, 𝐹0,𝑁𝑝𝑚

)
, 𝑆18 ≡

(
𝐹0,𝑁𝑝𝑚,𝑁𝑝𝑚

)
,

𝑆19 ≡
(
𝐹0, 𝐹0, 𝐹𝑤

)
, 𝑆20 ≡

(
𝐹0,𝑁𝑝𝑚,𝐹𝑤

)
, 𝑆21 ≡

(
𝐹0, 𝐹𝑤,𝐹𝑤

)
𝑆22 ≡

(
𝑁𝑝𝑚,𝐹𝑤,𝐹𝑤

)
, 𝑆23 ≡

(
𝑁𝑝𝑚,𝐹0, 𝐹𝑤

)
, 𝑆24 ≡

(
𝑁𝑝𝑚,𝑁𝑝𝑚,𝐹𝑤

)
,

𝑆25 ≡
(
𝑁𝑝𝑚,𝐹0, 𝐹0

)
, 𝑆26 ≡

(
𝑁𝑝𝑚,𝑁𝑝𝑚,𝐹0

)
, 𝑆27 ≡

(
𝑁𝑝𝑚,𝐹𝑤,𝐹0

)
,

𝑆28 ≡
(
𝑁𝑝𝑚,𝐹𝑤,𝑁𝑝𝑚

)
, 𝑆29 ≡

(
𝑁𝑝𝑚,𝐹0,𝑁𝑝𝑚

)
, 𝑆30 ≡

(
𝑁𝑝𝑚,𝑁𝑝𝑚,𝑁𝑝𝑚

)
where the regenerative states are 

{
𝑆0, … , 𝑆12

}
and the non-regener-

ative states are 
{
𝑆13, … , 𝑆30

}
. All states of the system and transitions 

between them are illustrated in Fig. 1.

4. Model description

1. At initial time t = 0, the main unit is in operative mode, one unit 
is in cold standby mode and one unit is in warm standby mode.

2. After a period of time, the main unit will undergo for preventive 
maintenance.

3. When the main unit undergoes for preventive maintenance, it will 
be replaced by a standby unit if it is available.

4. If the main unit fails, it will be replaced by a warm standby unit 
and the cold standby unit will work as a warm standby unit.

5. When a unit is in operative mode, the warm standby unit can fail 
with failure rate less than the failure rate of the main unit.

6. All failed units are repairable.

7. The lifetimes of the units of the system follow general distribution 
with failure rate increases with time.

8. The repair and PM times of the units of the system follow any 
general distribution.

4.1. Mathematical model of the system under preventive maintenance

The equations for the system are constructed by using semi-Markov 
models with the regenerative point technique and the results are given 
as follows:

𝐴0 (𝑡) =𝑍0 (𝑡) + 𝑞0,1 (𝑡)©𝐴1 (𝑡) + 𝑞0,2 (𝑡)©𝐴2 (𝑡) + 𝑞0,3 (𝑡)©𝐴3 (𝑡) (1.1)

𝐴1 (𝑡) =𝑍1 (𝑡) + 𝑞1,0 (𝑡)©𝐴0 (𝑡) + 𝑞1,4 (𝑡)©𝐴4 (𝑡)

+ 𝑞1,5 (𝑡)©𝐴5 (𝑡) + 𝑞1,6 (𝑡)©𝐴6 (𝑡) (1.2)

𝐴2 (𝑡) =𝑍2 (𝑡) + 𝑞2,0 (𝑡)©𝐴0 (𝑡) + 𝑞2,7 (𝑡)©𝐴7 (𝑡)

+ 𝑞2,8 (𝑡)©𝐴8 (𝑡) + 𝑞2,9 (𝑡)©𝐴9 (𝑡) (1.3)

𝐴3 (𝑡) =𝑍3 (𝑡) + 𝑞3,0 (𝑡)©𝐴0 (𝑡) + 𝑞3,10 (𝑡)©𝐴10 (𝑡)

+ 𝑞3,11 (𝑡)©𝐴11 (𝑡) + 𝑞3,12 (𝑡)©𝐴12 (𝑡) (1.4)

𝐴4 (𝑡) =𝑍4 (𝑡) + 𝑞4,1 (𝑡)©𝐴1 (𝑡) + 𝑞4,13 (𝑡)©𝐴13 (𝑡) + 𝑞4,14 (𝑡)©𝐴14 (𝑡) (1.5)

𝐴5 (𝑡) =𝑍5 (𝑡) + 𝑞5,1 (𝑡)©𝐴1 (𝑡) + 𝑞5,15 (𝑡)©𝐴15 (𝑡) + 𝑞5,16 (𝑡)©𝐴16 (𝑡) (1.6)

𝐴6 (𝑡) =𝑍6 (𝑡) + 𝑞6,1 (𝑡)©𝐴1 (𝑡) + 𝑞6,17 (𝑡)©𝐴17 (𝑡) + 𝑞6,18 (𝑡)©𝐴18 (𝑡) (1.7)

𝐴7 (𝑡) =𝑍7 (𝑡) + 𝑞7,2 (𝑡)©𝐴2 (𝑡) + 𝑞7,19 (𝑡)©𝐴19 (𝑡) + 𝑞7,20 (𝑡)©𝐴20 (𝑡) (1.8)

𝐴8 (𝑡) =𝑍8 (𝑡) + 𝑞8,2 (𝑡)©𝐴2 (𝑡) + 𝑞8,21 (𝑡)©𝐴21 (𝑡) + 𝑞8,22 (𝑡)©𝐴22 (𝑡) (1.9)

𝐴9 (𝑡) =𝑍9 (𝑡) + 𝑞9,2 (𝑡)©𝐴2 (𝑡) + 𝑞9,23 (𝑡)©𝐴23 (𝑡) + 𝑞9,24 (𝑡)©𝐴24 (𝑡) (1.10)

𝐴10 (𝑡) =𝑍10 (𝑡) + 𝑞10,3 (𝑡)©𝐴3 (𝑡)

+ 𝑞10,25 (𝑡)©𝐴25 (𝑡) + 𝑞10,26 (𝑡)©𝐴26 (𝑡) (1.11)

𝐴11 (𝑡) =𝑍11 (𝑡) + 𝑞11,3 (𝑡)©𝐴3 (𝑡) + 𝑞11,27 (𝑡)©𝐴27 (𝑡)

+ 𝑞11,28 (𝑡)©𝐴28 (𝑡) (1.12)

𝐴12 (𝑡) =𝑍12 (𝑡) + 𝑞12,3 (𝑡)©𝐴3 (𝑡) + 𝑞12,29 (𝑡)©𝐴29 (𝑡)

+ 𝑞12,30 (𝑡)©𝐴30 (𝑡) (1.13)

𝐴13 (𝑡) =𝑞13,4 (𝑡)©𝐴4 (𝑡) (1.14)

𝐴14 (𝑡) =𝑞14,4 (𝑡)©𝐴4 (𝑡) (1.15)
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Fig. 1. State transition diagram for one unit with mixed standby units and PM.
𝐴15 (𝑡) =𝑍15 (𝑡) + 𝑞15,4 (𝑡)©𝐴4 (𝑡) + 𝑞15,5 (𝑡)©𝐴5 (𝑡) (1.16)

𝐴16 (𝑡) =𝑍16 (𝑡) + 𝑞16,5 (𝑡)©𝐴5 (𝑡) + 𝑞16,6 (𝑡)©𝐴6 (𝑡) (1.17)

𝐴17 (𝑡) =𝑞17,6 (𝑡)©𝐴6 (𝑡) (1.18)

𝐴18 (𝑡) =𝑞18,6 (𝑡)©𝐴6 (𝑡) (1.19)

𝐴19 (𝑡) =𝑞19,7 (𝑡)©𝐴7 (𝑡) (1.20)

𝐴20 (𝑡) =𝑞20,7 (𝑡)©𝐴7 (𝑡) (1.21)

𝐴21 (𝑡) =𝑍21 (𝑡) + 𝑞21,7 (𝑡)©𝐴7 (𝑡) + 𝑞21,8 (𝑡)©𝐴8 (𝑡) (1.22)

𝐴22 (𝑡) =𝑍22 (𝑡) + 𝑞22,9 (𝑡)©𝐴9 (𝑡) + 𝑞22,8 (𝑡)©𝐴8 (𝑡) (1.23)

𝐴23 (𝑡) =𝑞23,9 (𝑡)©𝐴9 (𝑡) (1.24)

𝐴24 (𝑡) =𝑞24,9 (𝑡)©𝐴9 (𝑡) (1.25)

𝐴25 (𝑡) =𝑞25,10 (𝑡)©𝐴10 (𝑡) (1.26)

𝐴26 (𝑡) =𝑞26,9 (𝑡)©𝐴10 (𝑡) (1.27)

𝐴27 (𝑡) =𝑍27 (𝑡) + 𝑞27,10 (𝑡)©𝐴10 (𝑡) + 𝑞27,11 (𝑡)©𝐴11 (𝑡) (1.28)

𝐴28 (𝑡) =𝑍28 (𝑡) + 𝑞28,11 (𝑡)©𝐴11 (𝑡) + 𝑞25,12 (𝑡)©𝐴12 (𝑡) (1.29)

𝐴29 (𝑡) =𝑞29,12 (𝑡)©𝐴12 (𝑡) (1.30)
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𝐴30 (𝑡) =𝑞30,12 (𝑡)©𝐴12 (𝑡) (1.31)

where

𝑍0 (𝑡) = 𝐹 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡) , 𝑍1 (𝑡) = 𝐹 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡)𝐻 (𝑡) ,

𝑍2 (𝑡) =𝐻𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡)𝐹𝑤 (𝑡) ,

𝑍3 (𝑡) = 𝐹 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡)𝑀 (𝑡) , 𝑍4 (𝑡) = 𝐹 (𝑡)𝐺 (𝑡)𝐻 (𝑡) ,

𝑍5 (𝑡) = 𝐹 (𝑡)𝐺 (𝑡)𝐻𝑤 (𝑡) ,

𝑍6 (𝑡) =𝑀 (𝑡)𝐹 (𝑡)𝐺 (𝑡) , 𝑍7 (𝑡) =𝐻 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑍8 (𝑡) =𝐻𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑍9 (𝑡) =𝑀 (𝑡)𝐹 (𝑡)𝐺 (𝑡) , 𝑍10 (𝑡) = 𝐹 (𝑡)𝐺 (𝑡)𝐻 (𝑡) ,

𝑍11 (𝑡) = 𝐹 (𝑡)𝐺 (𝑡)𝐻𝑤 (𝑡) ,

𝑍12 (𝑡) =𝑀 (𝑡)𝐹 (𝑡)𝐺 (𝑡) , 𝑍13 (𝑡) =𝐻 (𝑡) ,

𝑍14 (𝑡) =𝑀 (𝑡) , 𝑍15 (𝑡) =𝐻 (𝑡)𝐻𝑤 (𝑡) ,

𝑍16 (𝑡) =𝑀 (𝑡)𝐻𝑤 (𝑡) , 𝑍17 (𝑡) =𝐻 (𝑡) ,

𝑍18 (𝑡) =𝑀 (𝑡) ,
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𝑍19 (𝑡) =𝐻 (𝑡) , 𝑍20 (𝑡) =𝑀 (𝑡) ,

𝑍21 (𝑡) =𝐻 (𝑡)𝐻𝑤 (𝑡) ,

𝑍22 (𝑡) =𝑀 (𝑡)𝐻𝑤 (𝑡) , 𝑍23 (𝑡) =𝐻 (𝑡) ,

𝑍24 (𝑡) =𝑀 (𝑡) ,

𝑍25 (𝑡) =𝐻 (𝑡) , 𝑍26 (𝑡) =𝑀 (𝑡) ,

𝑍27 (𝑡) =𝐻 (𝑡)𝐻𝑤 (𝑡) ,

𝑍28 (𝑡) =𝑀 (𝑡)𝐻𝑤 (𝑡) , 𝑍29 (𝑡) =𝐻 (𝑡) ,

𝑍30 (𝑡) =𝑀 (𝑡)

and

𝑞0,1 (𝑡) = 𝑓 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡) , 𝑞0,2 (𝑡) = 𝑓𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞0,3 (𝑡) = 𝑔 (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡) ,

𝑞1,0 (𝑡) = ℎ (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡) , 𝑞1,4 (𝑡) = 𝑓 (𝑡)𝐻 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡) ,

𝑞1,5 (𝑡) = 𝑓𝑤 (𝑡)𝐻 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞1,6 (𝑡) = 𝑔 (𝑡)𝐻 (𝑡)𝐹𝑤 (𝑡)𝐹 (𝑡) , 𝑞2,0 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡)𝐹𝑤 (𝑡) ,

𝑞2,7 (𝑡) = 𝑓 (𝑡)𝐻𝑤 (𝑡)𝐺 (𝑡)𝐹𝑤 (𝑡) ,

𝑞2,8 (𝑡) = 𝑓𝑤 (𝑡)𝐻𝑤 (𝑡)𝐺 (𝑡)𝐹 (𝑡) , 𝑞2,9 (𝑡) = 𝑔 (𝑡)𝐻𝑤 (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡) ,

𝑞3,0 (𝑡) =𝑚 (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡) ,

𝑞3,10 (𝑡) = 𝑓 (𝑡)𝐹𝑤 (𝑡)𝐺 (𝑡)𝑀 (𝑡) ,

𝑞3,11 (𝑡) = 𝑓𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡)𝑀 (𝑡) , 𝑞3,12 (𝑡) = 𝑔 (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡)𝑀 (𝑡) ,

𝑞4,1 (𝑡) = ℎ (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞4,13 (𝑡) = 𝑓 (𝑡)𝐻 (𝑡)𝐺 (𝑡) , 𝑞4,14 (𝑡) = 𝑔 (𝑡)𝐻 (𝑡)𝐹 (𝑡) ,

𝑞5,1 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞5,15 (𝑡) = 𝑓 (𝑡)𝐻𝑤 (𝑡)𝐺 (𝑡) , 𝑞5,16 (𝑡) = 𝑔 (𝑡)𝐻𝑤 (𝑡)𝐹 (𝑡) ,

𝑞6,1 (𝑡) =𝑚 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞6,17 (𝑡) = 𝑓 (𝑡)𝑀 (𝑡)𝐺 (𝑡) , 𝑞6,18 (𝑡) = 𝑔 (𝑡)𝑀 (𝑡)𝐹 (𝑡) ,

𝑞7,2 (𝑡) = ℎ (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞7,19 (𝑡) = 𝑓 (𝑡)𝐻 (𝑡)𝐺 (𝑡) , 𝑞7,20 (𝑡) = 𝑔 (𝑡)𝐻 (𝑡)𝐹 (𝑡) ,

𝑞8,2 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞8,21 (𝑡) = 𝑓 (𝑡)𝐻𝑤 (𝑡)𝐺 (𝑡) , 𝑞8,22 (𝑡) = 𝑔 (𝑡)𝐻𝑤 (𝑡)𝐹 (𝑡) ,

𝑞9,2 (𝑡) =𝑚 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞9,23 (𝑡) = 𝑓 (𝑡)𝑀 (𝑡)𝐺 (𝑡) , 𝑞9,24 (𝑡) = 𝑔 (𝑡)𝑀 (𝑡)𝐹 (𝑡) ,

𝑞10,3 (𝑡) = ℎ (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞10,25 (𝑡) = 𝑓 (𝑡)𝑀 (𝑡)𝐺 (𝑡) , 𝑞10,26 (𝑡) = 𝑔 (𝑡)𝑀 (𝑡)𝐹 (𝑡) ,

𝑞11,3 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞11,27 (𝑡) = 𝑓 (𝑡)𝐻𝑤 (𝑡)𝐺 (𝑡) , 𝑞11,28 (𝑡) = 𝑔 (𝑡)𝐻𝑤 (𝑡)𝐹 (𝑡) ,

𝑞12,3 (𝑡) =𝑚 (𝑡)𝐹 (𝑡)𝐺 (𝑡) ,

𝑞12,29 (𝑡) = 𝑓 (𝑡)𝑀 (𝑡)𝐺 (𝑡) , 𝑞12,30 (𝑡) = 𝑔 (𝑡)𝑀 (𝑡)𝐹 (𝑡) ,

𝑞13,4 (𝑡) = ℎ (𝑡) ,

𝑞14,4 (𝑡) =𝑚 (𝑡) , 𝑞15,4 (𝑡) = ℎ𝑤 (𝑡)𝐻 (𝑡) ,

𝑞15,5 (𝑡) = ℎ (𝑡)𝐻𝑤 (𝑡) ,

𝑞16,5 (𝑡) =𝑚 (𝑡)𝐻𝑤 (𝑡) , 𝑞16,6 (𝑡) = ℎ𝑤 (𝑡)𝑀 (𝑡) ,

𝑞17,6 (𝑡) = ℎ (𝑡) ,

𝑞18,6 (𝑡) =𝑚 (𝑡) , 𝑞19,7 (𝑡) = ℎ (𝑡) ,
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𝑞20,7 (𝑡) =𝑚 (𝑡) 𝑞21,7 (𝑡) = ℎ𝑤 (𝑡)𝐻 (𝑡) ,

𝑞21,8 (𝑡) = ℎ (𝑡)𝐻𝑤 (𝑡) , 𝑞22,8 (𝑡) =𝑚 (𝑡)𝐻𝑤 (𝑡) ,

𝑞22,9 (𝑡) = ℎ𝑤 (𝑡)𝑀 (𝑡) ,

𝑞23,9 (𝑡) = ℎ (𝑡) , 𝑞24,9 (𝑡) =𝑚 (𝑡) ,

𝑞25,10 (𝑡) = ℎ (𝑡) ,

𝑞26,10 (𝑡) =𝑚 (𝑡) , 𝑞27,10 (𝑡) = ℎ𝑤 (𝑡)𝐻 (𝑡) ,

𝑞27,11 (𝑡) = ℎ (𝑡)𝐻𝑤 (𝑡) ,

𝑞28,11 (𝑡) =𝑚 (𝑡)𝐻𝑤 (𝑡) , 𝑞28,12 (𝑡) = ℎ𝑤 (𝑡)𝑀 (𝑡) ,

𝑞29,12 (𝑡) = ℎ (𝑡) , 𝑞30,12 (𝑡) =𝑚 (𝑡)

4.2. Mean time to system failure analysis under preventive maintenance

The relations for 𝑅𝑖 (𝑡) can be constructed assuming that the failed 
states are absorbing states and hence set all transitions from them equal 
zero. Substituting in model (1.1)–(1.31) yields the following system of 
equations.

𝑅0 (𝑡) =𝑍0 (𝑡) + 𝑞0,1 (𝑡)©𝑅1 (𝑡) + 𝑞0,2 (𝑡)©𝑅2 (𝑡) + 𝑞0,3 (𝑡)©𝑅3 (𝑡) (2.1)

𝑅1 (𝑡) =𝑍1 (𝑡) + 𝑞1,0 (𝑡)©𝑅0 (𝑡) + 𝑞1,4 (𝑡)©𝑅4 (𝑡)

+ 𝑞1,5 (𝑡)©𝑅5 (𝑡) + 𝑞1,6 (𝑡)©𝑅6 (𝑡) (2.2)

𝑅2 (𝑡) =𝑍2 (𝑡) + 𝑞2,0 (𝑡)©𝑅0 (𝑡) + 𝑞2,7 (𝑡)©𝑅7 (𝑡)

+ 𝑞2,8 (𝑡)©𝑅8 (𝑡) + 𝑞2,9 (𝑡)©𝑅9 (𝑡) (2.3)

𝑅3 (𝑡) =𝑍3 (𝑡) + 𝑞3,0 (𝑡)©𝑅0 (𝑡) + 𝑞3,10 (𝑡)©𝑅10 (𝑡)

+ 𝑞3,11 (𝑡)©𝑅11 (𝑡) + 𝑞3,12 (𝑡)©𝑅12 (𝑡) (2.4)

𝑅4 (𝑡) =𝑍4 (𝑡) + 𝑞4,1 (𝑡)©𝑅1 (𝑡) (2.5)

𝑅5 (𝑡) =𝑍5 (𝑡) + 𝑞5,1 (𝑡)©𝑅1 (𝑡) (2.6)

𝑅6 (𝑡) =𝑍6 (𝑡) + 𝑞6,1 (𝑡)©𝑅1 (𝑡) (2.7)

𝑅7 (𝑡) =𝑍7 (𝑡) + 𝑞7,2 (𝑡)©𝑅2 (𝑡) (2.8)

𝑅8 (𝑡) =𝑍8 (𝑡) + 𝑞8,2 (𝑡)©𝑅2 (𝑡) (2.9)

𝑅9 (𝑡) =𝑍9 (𝑡) + 𝑞9,2 (𝑡)©𝑅2 (𝑡) (2.10)

𝑅10 (𝑡) =𝑍10 (𝑡) + 𝑞10,3 (𝑡)©𝑅3 (𝑡) (2.11)

𝑅11 (𝑡) =𝑍11 (𝑡) + 𝑞11,3 (𝑡)©𝑅3 (𝑡) (2.12)

𝑅12 (𝑡) =𝑍12 (𝑡) + 𝑞12,3 (𝑡)©𝑅3 (𝑡) (2.13)

The mean time to system failure can be obtained by using the fol-

lowing relation

𝑀𝑇𝑇𝐹 = lim
𝑠→0

𝑅∗
0 (𝑠) (3)

4.3. Mean time to system failure analysis without preventive maintenance

To obtain the mean time to system failure in case of no preventive 
maintenance is provided in the system, the following relations for 𝑅𝑖 (𝑡)
are constructed

𝑅0 (𝑡) =𝑍0 (𝑡) + 𝑞0,1 (𝑡)©𝑅1 (𝑡) + 𝑞0,2 (𝑡)©𝑅2 (𝑡) (4.1)

𝑅1 (𝑡) =𝑍1 (𝑡) + 𝑞1,0 (𝑡)©𝑅0 (𝑡) + 𝑞1,4 (𝑡)©𝑅4 (𝑡) + 𝑞1,5 (𝑡)©𝑅5 (𝑡) (4.2)

𝑅2 (𝑡) =𝑍2 (𝑡) + 𝑞2,0 (𝑡)©𝑅0 (𝑡) + 𝑞2,7 (𝑡)©𝑅7 (𝑡) + 𝑞2,8 (𝑡)©𝑅8 (𝑡) (4.3)

𝑅4 (𝑡) =𝑍4 (𝑡) + 𝑞4,1 (𝑡)©𝑅1 (𝑡) (4.4)

𝑅5 (𝑡) =𝑍5 (𝑡) + 𝑞5,1 (𝑡)©𝑅1 (𝑡) (4.5)

𝑅7 (𝑡) =𝑍7 (𝑡) + 𝑞7,2 (𝑡)©𝑅2 (𝑡) (4.6)

𝑅8 (𝑡) =𝑍8 (𝑡) + 𝑞8,2 (𝑡)©𝑅2 (𝑡) (4.7)
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Table 1. Random samples generated from Erlang distribution.

Initial Parameters Generated Random Samples Values of point

estimators

𝑛1 = 10, 𝑘1 = 3, 𝜗1 = 𝜆 = 1.4 𝑆1 = (2.741, 2.719, 3.573, 5.199, 7.026, 3.712, 3.532,2.979, 3.384, 2.677), �̂� = 0.799
𝑛2 = 7, 𝑘2 = 2, 𝜗2 = 𝜇 = 1.1 𝑆2 = (2.749, 0.697, 2.851, 2.015, 1.794, 0.437, 0.566) �̂� = 1.260
𝑛3 = 8, 𝑘3 = 3, 𝜗3 = 𝜆𝑤 = 1.6 𝑆3 = (8.197, 4.708, 5.361, 7.253, 4.082, 6.874, 4.706, 2.900), �̂�𝑤 = 0.544
𝑛4 = 6, 𝑘4 = 3, 𝜗4 = 𝜇𝑤 = 1.5 𝑆4 = (4.212, 4.210, 2.380, 4.370, 5.467, 2.515) �̂�𝑤 = 0.777
𝑛5 = 9, 𝑘5 = 4, 𝜗5 = 𝑔 = 1.8 𝑆5 = (9.161, 7.828, 4.812, 2.517, 7.011, 8.483, 4.140, 3.447, 11.210), �̂� = 0.614
𝑛6 = 7, 𝑘6 = 2, 𝜗6 =𝑚 = 1.3 𝑆6 = (4.471, 2.065, 1.739, 0.473, 2.641, 2.395, 1.088) �̂� = 0.941
Table 2. Intervals for fuzzy parameters �̃�, �̃� and �̃�𝑤 .

𝛼 − 𝑐𝑢𝑡
[
�̃�𝐿, �̃�𝑈

] [
�̃�𝐿, �̃�𝑈

] [
�̃�𝑤𝐿, �̃�𝑤𝑈

]
0.1 [0.648, 0.950] [1.109, 1.411] [0.393, 0.695]

0.2 [0.672, 0.926] [1.133, 1.387] [0.417, 0.671]

0.3 [0.690, 0.908] [1.151, 1.369] [0.435, 0.653]

0.4 [0.699, 0.899] [1.160, 1.360] [0.444, 0.644]

0.5 [0.716, 0.882] [1.177, 1.343] [0.461, 0.627]

0.6 [0.722, 0.876] [1.183, 1.337] [0.467, 0.621]

0.7 [0.736, 0.862] [1.197, 1.323] [0.481, 0.607]

0.8 [0.745, 0.853] [1.206, 1.314] [0.490, 0.598]

0.9 [0.755, 0.843] [1.216, 1.304] [0.500, 0.588]

where

𝑍0 (𝑡) = 𝐹 (𝑡)𝐹𝑤 (𝑡) , 𝑍1 (𝑡) = 𝐹 (𝑡)𝐹𝑤 (𝑡)𝐻 (𝑡) ,

𝑍2 (𝑡) =𝐻𝑤 (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡) ,

𝑍4 (𝑡) = 𝐹 (𝑡)𝐻 (𝑡) , 𝑍5 (𝑡) = 𝐹 (𝑡)𝐻𝑤 (𝑡) ,

𝑍7 (𝑡) =𝐻 (𝑡)𝐹 (𝑡) ,𝑍8 (𝑡) = 𝐹 (𝑡)𝐻𝑤 (𝑡)

and

𝑞0,1 (𝑡) = 𝑓 (𝑡)𝐹𝑤 (𝑡) , 𝑞0,2 (𝑡) = 𝑓𝑤 (𝑡)𝐹 (𝑡) , 𝑞1,0 (𝑡) = ℎ (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡) ,

𝑞1,4 (𝑡) = 𝑓 (𝑡)𝐻 (𝑡)𝐹𝑤 (𝑡) , 𝑞1,5 (𝑡) = 𝑓𝑤 (𝑡)𝐻 (𝑡)𝐹 (𝑡) ,

𝑞2,0 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡)𝐹𝑤 (𝑡) ,

𝑞2,7 (𝑡) = 𝑓 (𝑡)𝐻𝑤 (𝑡)𝐹𝑤 (𝑡) , 𝑞2,8 (𝑡) = 𝑓𝑤 (𝑡)𝐻𝑤 (𝑡)𝐹 (𝑡)

𝑞4,1 (𝑡) = ℎ (𝑡)𝐹 (𝑡) , 𝑞5,1 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡) ,

𝑞7,2 (𝑡) = ℎ (𝑡)𝐹 (𝑡) , 𝑞8,2 (𝑡) = ℎ𝑤 (𝑡)𝐹 (𝑡)

Then the mean time to system failure can be obtained after taking 
Laplace transformation of model (4.1)–(4.7) and then using the relation 
(3)

4.4. The parameters of the model as fuzzy numbers

Now, let us consider that the parameters of the distribution of the 
life, PM and repair times are fuzzy numbers with bell shaped member-

ship function (see [27]) which is defined as follows

𝛽 (𝜗) = 𝑒
−
(
𝜗−𝑢
𝜀

)2
, 𝑢− 𝛿 ≤ 𝜗 ≤ 𝑢+ 𝛿

For arbitrary values for 𝛿 and 𝜀, the intervals for the fuzzy parameters 
𝜗 (assuming that 𝑢 = �̂�) are given as

[
�̃�𝐿, �̃�𝑈

]
=

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎣�̂�−

√
ln
(

1
𝛼𝜀2

)
, �̂�+

√
ln
(

1
𝛼𝜀2

)⎤⎥⎥⎦ , 𝛼 ≥ 𝑒
−
(

𝛿

𝜀

)2

[
�̂�− 𝛿, �̂�+ 𝛿

]
, 𝛼 < 𝑒

−
(

𝛿

𝜀

)2 (5)

where (0 < 𝛼 < 1) and �̂� is the value of the point estimator of 𝜗.
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Table 3. Intervals for fuzzy parameters �̃�𝑤, ̃𝑔 and �̃�.

𝛼 − 𝑐𝑢𝑡
[
�̃�𝑤𝐿, �̃�𝑤𝑈

] [
�̃�𝐿, �̃�𝑈

] [
�̃�𝐿, �̃�𝑈

]
0.1 [0.626, 0.928] [0.463, 0.765] [0.790, 1.092]

0.2 [0.650, 0.904] [0.487, 0.741] [0.814, 1.068]

0.3 [0.668, 0.886] [0.505, 0.723] [0.832, 1.050]

0.4 [0.677, 0.877] [0.514, 0.714] [0.841, 1.041]

0.5 [0.694, 0.860] [0.531, 0.697] [0.858, 1.024]

0.6 [0.700, 0.854] [0.537, 0.691] [0.864, 1.018]

0.7 [0.714, 0.840] [0.551, 0.677] [0.878, 1.004]

0.8 [0.723, 0.831] [0.560, 0.668] [0.887, 0.995]

0.9 [0.733, 0.821] [0.570, 0.658] [0.897, 0.985]

4.5. Algorithm

Steps of applying our considerations to find the measures of the 
mixed standby system are given in the following algorithm.

Step 1: Generate random samples of sizes 𝑛𝑖 for 𝑖 = (1, 2, 3, 4, 5, 6) from a 
distribution with initial parameters 𝜗𝑖, 𝑖 = 1, 2, 3, 4, 5, 6.

Step 2: Obtaining the values of the point estimators for the population 
parameters 𝜗𝑖, 𝑖 = 1, 2, 3, 4, 5, 6.

Step 3: For 𝛼 = 0.1, 0.2, … , 0.9, the intervals for the fuzzy numbers of the 
parameters 𝜗𝑖, 𝑖 = 1, 2, 3, 4, 5, 6, can be obtained using formula (5).

Step 4: Substituting in model (2.1)–(2.13), the intervals for the fuzzy 
mean time to system failure in case of preventive maintenance can be 
obtained by using formula (3).

Step 5: By the same manner, substituting in model (4.1)–(4.7), the in-

tervals for the fuzzy mean time to system failure in case of no preventive 
maintenance can be obtained by using formula (3).

5. Numerical application

Suppose that the life, preventive maintenance and repair times of the 
units of the system follow Erlang distribution with probability density 
function given by

𝜑 (𝑡) = 𝜗𝑘

Γ(k)
𝑡𝑘−1𝑒−𝜗𝑡, 𝑡, 𝜗 > 0, 𝑘 ∈𝑁

and hence the reliability function is given by

Φ(𝑡) =
𝑘−1∑
𝑖=0

𝑒−𝜗𝑡
(𝜗𝑡)𝑖

𝑖!

The point estimator for the parameter 𝜗 is given by

�̂� = 𝑛𝑘∑𝑛

𝑖=1 𝑡𝑖

For 𝛿 = 1 and 𝜀 = 0.1, the following samples are generated from Er-

lang distribution by the aid of MAPLE PACKAGE and the results are 
illustrated in Table 1.

The results for the intervals for the fuzzy parameters �̃�, �̃� and �̃�𝑤 are 
given in Table 2 and the results for the intervals for the fuzzy parame-

ters �̃�𝑤, �̃� and �̃� are given in Table 3.

The results for system fuzzy mean time to failure in the two cases 
when there a preventive maintenance action provided to the system and 
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Table 4. Comparison of the system fuzzy MTTF with and without PM.

𝛼 − 𝑐𝑢𝑡
[

̃𝑀𝑇𝑇𝐹𝐿,
̃𝑀𝑇𝑇𝐹𝑈

] [
̃𝑀𝑇𝑇𝐹𝐿,

̃𝑀𝑇𝑇𝐹𝑈

]
with PM without PM

0.1 [12.191, 23.994] [11.487, 20.200]

0.2 [12.692, 22.305] [11.878, 18.861]

0.3 [13.095, 21.183] [12.191, 18.085]

0.4 [13.307, 20.662] [12.353, 17.722]

0.5 [13.725, 19.743] [12.674, 17.077]

0.6 [13.878, 19.437] [12.791, 16.861]

0.7 [14.251, 18.759] [13.074, 16.380]

0.8 [14.501, 18.347] [13.263, 16.085]

0.9 [14.789, 17.909] [13.480, 15.771]

Fig. 2. Comparison of fuzzy mean time to system failure with and without PM 
versus �̃� for 𝛼 − 𝑐𝑢𝑡 = 0.1.

Fig. 3. Comparison of fuzzy mean time to system failure with and without PM 
versus �̃� for 𝛼 − 𝑐𝑢𝑡 = 0.5.

when there is no preventive maintenance action provided to the system 
are illustrated in Table 4.

Comparison of the results for the fuzzy mean time to system failure 
versus the parameter �̃�, in the two cases of the introduced models with 
and without preventive maintenance, were illustrated in Figs. 2, 3 and 4
when 𝛼− 𝑐𝑢𝑡 = 0.1, 0.5 and 0.9, respectively. It is obvious from the com-

parisons that the fuzzy mean time to system failure in case of the model 
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Fig. 4. Comparison of fuzzy mean time to system failure with and without PM 
versus �̃� for 𝛼 − 𝑐𝑢𝑡 = 0.9.

Fig. 5. Comparison of fuzzy mean time to system failure with and without PM 
versus �̃� for 𝛼 − 𝑐𝑢𝑡 = 0.1.

in which preventive maintenance provided to the main unit is greater 
than the fuzzy mean time to system failure in case of the model with-

out preventive maintenance provided to the main unit. And hence, the 
model with preventive maintenance is better than the model without 
preventive maintenance.

Comparison of the results for the fuzzy mean time to system failure 
versus the parameter �̃�, in the two cases of the introduced models with 
and without preventive maintenance, were illustrated in Figs. 5, 6 and 7
when 𝛼− 𝑐𝑢𝑡 = 0.1, 0.5 and 0.9, respectively. It is obvious from the com-

parisons that the fuzzy mean time to system failure in case of the model 
in which preventive maintenance provided to the main unit is greater 
than the fuzzy mean time to system failure in case of the model with-

out preventive maintenance provided to the main unit. And hence, the 
model with preventive maintenance is better than the model without 
preventive maintenance.
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Fig. 6. Comparison of fuzzy mean time to system failure with and without PM 
versus �̃� for 𝛼 − 𝑐𝑢𝑡 = 0.5.

Fig. 7. Comparison of fuzzy mean time to system failure with and without PM 
versus �̃� for 𝛼 − 𝑐𝑢𝑡 = 0.9.

6. Conclusion

In this paper, analysis of a new mixed standby system was intro-

duced in two cases. The first case considered that there is a preventive 
maintenance action is provided to the main unit after operating a period 
of time. The second case assumed that there is no preventive mainte-

nance can be provided to the units of the system. The mathematical 
models for the two cases were constructed by using the semi-Markov 
models and regenerative point technique. All life, repair and preven-

tive maintenance times of the units of the system were assumed to be 
generally distributed with fuzzy parameter defined by the bell-shaped 
membership function. An example was introduced assuming that the 
life, preventive maintenance and repair times of the units of the system 
follow Erlang distribution. Comparison of the fuzzy mean time to sys-

tem failure of the two models was introduced. The results obtained in 
the numerical example showed that the performance of the model in 
which preventive maintenance provided to the main unit is better than 
the performance of model without preventive maintenance. Many pa-

pers in literature supposed that the failure, preventive maintenance and 
repair rates are constant values however in many cases the fuzziness of 
these rates must be considered.
7

Declarations

Author contribution statement

N. S. Y. Temraz: Conceived and designed the experiments; Per-

formed the experiments; Analyzed and interpreted the data; Con-

tributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agen-

cies in the public, commercial, or not-for-profit sectors.

Data availability statement

No data was used for the research described in the article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The author would like to thank Prince Sattam Bin Abdulaziz Univer-

sity for their valuable help.

References

[1] L.R. Goel, R. Gupta, S.K. Singh, Profit analysis of a cold standby system with two 
repair distributions, Microelectron. Reliab. 25 (3) (1985) 467–472.

[2] K.M. El-Said, M.S. El-Sherbeny, Profit analysis of a two unit cold standby system 
with preventive maintenance and random change in units, J. Math. Stat. 1 (1) (2005) 
71–77.

[3] J. Kumar, M.S. Kadyan, S.C. Malik, Cost-benefit analysis of a two-unit parallel sys-

tem subject to degradation after repair, Appl. Math. Sci. 4 (56) (2010) 2749–2758.

[4] S.C. Malik, S.K. Barak, Reliability measures of a cold standby system with preventive 
maintenance and repair, Int. J. Reliab. Qual. Saf. Eng. 20 (6) (2013), 1350022(1-9).

[5] R. Rathee, S. Chander, A parallel system with priority to repair over preventive 
maintenance subject to maximum operation and repair times, Int. J. Stat. Reliab. 
Eng. 1 (1) (2014) 57–68.

[6] F. Grabski, Reliability and maintainability characteristics in semi-Markov models, J. 
Pol. Saf. Reliab. Assoc. 7 (1) (2016) 79–86.

[7] N. Singh, D. Singh, A.K. Saini, Cost-benefit analysis of two identical warm standby 
system subject to under heavy rain with partially operative after repair, Int. J. Pure 
Appl. Math. 114 (3) (2017) 503–514.

[8] S. Baweja, A. Kumar, Reliability measures of a two-unit cold standby repairable 
system with priority to operation over preventive maintenance, Int. J. Comput. Appl. 
104 (1) (2014) 5–9.

[9] A. Manocha, G. Taneja, Stochastic analysis of a two-unit cold standby system with 
arbitrary distributions for life, repair and waiting times, Int. J. Perform. Eng. 11 (3) 
(2015) 293–299.

[10] F. Grabski, Semi-Markov reliability model of system composed of main subsystem, 
cold backup component and switch, J. Pol. Saf. Reliab. Assoc. 8 (1) (2017) 47–54.

[11] J. Kumar, M. Goel, Availability and profit analysis of a two-unit cold standby system 
for general distribution, Cogent Math. 3 (1) (2016) 1–13.

[12] E. Cinlar, Markov renewal theory, Adv. Appl. Probab. 1 (1969) 123–187.

[13] J.R. Norris, Markov Chains, Cambridge University Press, New York, 1997.

[14] B. Sericola, Markov Chains: Theory and Applications, John Wiley & Sons, Inc., USA, 
2013.

[15] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 
2005.

[16] R.A. Howard, Dynamic Probabilistic Systems, Wiley, Chichester, 1971.

[17] A. Iosifescu-Manu, Non homogeneous semi-Markov processes, Stud. Cercet. Mat. 24 
(1972) 529–533.

[18] J. Janssen, N. Limnios, Semi-Markov Models and Applications, Springer-Verlag, 
Boston, MA, 1999.

[19] R. De Dominics, R. Manca, Some new results on the transient behaviour of semi-

Markov reward processes, Methods Oper. Res. Comput. 13 (1985) 823–838.

[20] J. Janssen, R. De Dominics, Finite non homogeneous semi-Markov processes: theo-

retical and computational aspects, Insur. Math. Econ. 3 (1984) 157–165.

http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib98F13708210194C475687BE6106A3B84s1


N.S.Y. Temraz Heliyon 7 (2021) e07717
[21] S.I. McClean, A semi-Markovian model for a multigrade population, J. Appl. Probab. 
17 (1980) 846–852.

[22] P.-C.G. Vassiliou, A.A. Papadopoulou, Non homogeneous semi-Markov systems and 
maintainability of the state sizes, J. Appl. Probab. 29 (1992) 519–534.

[23] K.K. Aggarwal, Reliability Applications, Reliability Engineering, Topics in Safety, 
Reliability and Quality, vol. 3, Springer, Dordrecht, 1993.

[24] L. Vonta, M. Ram, Reliability Engineering: Theory and Applications, Taylor & Fran-

cis Group, 2021.

[25] L.A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968) 
421–427.

[26] M. Bhattacharyya, Fuzzy Markovian decision process, Fuzzy Sets Syst. 99 (3) (1998) 
273–282.

[27] P. Dutta, B. Limboo, Bell-shaped fuzzy soft sets and their application in medical 
diagnosis, Fuzzy Inf. Eng. 9 (1) (2017) 67–91.
8

http://refhub.elsevier.com/S2405-8440(21)01820-X/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(21)01820-X/bib02E74F10E0327AD868D138F2B4FDD6F0s1

	Comparison of fuzzy semi-Markov models for one unit with mixed standby units with and without preventive maintenance using ...
	1 Introduction
	2 Notations
	3 States of the system
	4 Model description
	4.1 Mathematical model of the system under preventive maintenance
	4.2 Mean time to system failure analysis under preventive maintenance
	4.3 Mean time to system failure analysis without preventive maintenance
	4.4 The parameters of the model as fuzzy numbers
	4.5 Algorithm

	5 Numerical application
	6 Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	Acknowledgements
	References


