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Abstract: Arthrospira platensis (commercially known as Spirulina) is an excellent source of phyco-
biliproteins, especially C-phycocyanin. Phycobiliproteins are significant bioactive compounds with
useful biological applications. The extraction process plays a significant role in downstream mi-
croalga production and utilisation. The important pigments found in A. platensis include chlorophyll
and carotenoids as nonpolar pigments and phycobiliproteins as polar pigments. Supercritical fluid
extraction (SFE) as a green extraction technology for the high-value metabolites of microalgae has
potential for trends in food and human health. The nonpolar bioactive compounds, chlorophyll and
carotenoids of A. platensis, were primarily separated using supercritical carbon dioxide (SC-CO2)
solvent-free fluid extraction pressure; the temperature and ethanol as cosolvent conditions were
compared. The residue from the A. platensis cells was subjected to phycobiliprotein extraction. The
phosphate and water extraction of A. platensis SFE residue were compared to evaluate phycobilipro-
tein extraction. The SFE results exhibited higher pressure (350 bar) and temperature extraction
(50 ◦C) with ethanol-free extraction and increased nonpolar pigment. Phycobiliprotein yield was
obtained from A. platensis SFE residue by ethanol-free buffer extraction as a suitable process with
antioxidant properties. The C-phycocyanin was isolated and enhanced to 0.7 purity as food grade.
This developed method can be used as a guideline and applied as a sustainable process for important
pigment extraction from Arthrospira microalgae.

Keywords: Spirulina; Arthrospira; phycobiliproteins; pigments; supercritical fluid extraction;
green technology

1. Introduction

Arthrospira platensis (commercially known as Spirulina) is a filamentous cyanobac-
terium and blue-green microalga commonly supplemented in functional foods [1,2], nu-
traceuticals [3,4] and animal feed [5] and is also used for biofuel production [6]. A. platensis
can utilise carbon dioxide as a nutrient source for biomass production [7]. Arthrospira
biomass is a rich source of both macro and micronutrients and is used as a food and dietary
supplement due to its therapeutic properties such as antioxidant and anti-inflammatory
activities [1,8,9]. Arthrospira is also a good source of natural proteins, carbohydrates,
lipids, vitamins, enzymes and pigments including chlorophyll, carotenoids and phyco-
cyanin [10,11]. Arthrospira can be cultivated in open systems on a large scale for high
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biomass production [12], making it a significant and interesting natural source for valu-
able biosubstances and functional ingredients. The WHO has designated Arthrospira as
a superfood due to its potentially rich source of chemicals with biological activities that
can also be employed as functional components. Recently, increased knowledge of the
properties of the health-boosting nutrients and nutraceuticals has improved lifestyles. As a
result, Arthrospira microalgae are now attracting increased interest in the nutritional and
food science fields [13].

Arthrospira is also a valuable source of natural pigments including chlorophyll, carotenoids
and phycobiliprotein, especially C-phycocyanin (C-PC) [11,14]. The expanded use of
Arthrospira has coincided with increased consumer knowledge of the value of natural
colourants and their advantages in terms of nutrition, pharmacology and health. As a
result, more natural colours are being used, with spirulina serving as a popular source of
these pigments, particularly in the food and cosmetic sectors [15]. Chlorophyll is one of the
main photosynthetic pigments in natural systems with a role in the photosynthetic process
of absorbing light, transferring energy and transporting electrons. Chlorophyll is also
utilised in several industries for its photophysical and photochemical capabilities, such as
food colouring and optically active centres for luminescent solar concentrators [16,17]. Mi-
croalgae are the main source of valuable compounds obtained through photosynthesis [18].
Carotenoids are insoluble in water and found in Arthrospira [19]. The bioavailability of
carotenoids from Arthrospira has promising potential as a source of provitamin A which has
high antioxidant activity and ameliorates cardiovascular disorders, cancer and anti-aging
activity [20]. Natural carotenoids are used in industrial applications as food colourants,
feed additives, cosmetics and pharmaceuticals [21].

Phycobiliproteins (PBPs) are the light-harvesting pigment proteins of phycobilisomes
(antenna complexes), which act as photosynthetic accessory pigments in cyanobacteria [22].
PBPs can be divided into three groups on the basis of their absorption characteristics as
C-phycocyanin (C-PC, blue pigment), allophycocyanin (APC, light-blue pigment) and
phycoerythrin (PE, red pigment) [23,24]. Phycobiliproteins are used for various diagnostic
scientific research and therapeutic purposes [25] and mainly consist of C-phycocyanin
(C-PC) which is a well-known pigment with antioxidant, anti-inflammatory and anticar-
cinogenic activities [26]. Phycocyanin serves as the main photosynthetic pigment autotroph
of Arthrospira [27]. Phycobiliproteins can be used as safe alternatives to synthetic colours,
which are frequently poisonous or otherwise dangerous in food, cosmetics and pharma-
ceutical products [28]. Phycobiliproteins can be extracted using physical and chemically
assisted methods; however, various aspects such as organism composition, stability and
cell-wall resistance affect the choice of approach [29]. The biosynthetic recovery output
of PBPs from biomass should also be considered and various levels of purity are nec-
essary depending on how the PBPs will be used [30]. The primary phycobiliprotein in
most blue-green algae is C-phycocyanin (C-PC) [31]. Phycobiliproteins have a market
value of USD 5000–33,000 g−1 depending on quality as a natural pigment in the food,
cosmetic, medical and biotechnology sectors [32]. The purity grade of phycobiliprotein
has a significant impact on its commercial market value [33], with an extract purity of
phycobiliprotein at 0.56–0.70 considered as food grade [34], 1.5 as cosmetic grade, 3.9 as
reactive grade and greater than 4.0 as analytical grade [35]. Currently, several technologies
exist for the commercial extraction of pigments from algae. The colours released from the
ruptured cell wall of microalgae can be extracted using organic solvent extraction [36],
pressurised solvent extraction [37], ionic liquid extraction, high-pressure homogenisation,
ultrasonication [38] and supercritical carbon dioxide fluid extraction [39]. A. platensis is
a photosynthetic multicellular blue-green microalga that is cultivated on a large scale for
the commercial processing of biomass and bio-products [40]. Microalgae are becoming
increasingly important, particularly for their composition because they contain high-value
substances such as carotenoids, chlorophylls and phycobiliproteins [41]. Therefore, efficient
methods for obtaining pigments and bio-products from microalgae are needed. These bioac-
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tive chemicals can be successfully extracted using SC-CO2 extraction as an environmentally
friendly method [42].

Supercritical carbon dioxide (SC-CO2) fluid extraction is a green technology aimed
at replacing organic solvent extraction [43]. The supercritical fluid extraction (SFE) ap-
proach is used by a variety of sectors to extract valuable bioactive chemicals [44]. The
SFE technique has been widely employed as a separation technology in the food process-
ing and pharmaceutical sectors for efficient and selective component extraction. SC-CO2
fluid extraction has evolved as a more environmentally friendly method than traditional
petroleum-based solvent extraction procedures. SC-CO2 is a solvent that is widely used
in SFE [45]. The special properties of SC-CO2 make it appealing for isolating essential
oils, neutral lipids, flavours, perfumes, antioxidants and pigments from both terrestrial
and non-terrestrial biomasses [46]. Most nonpolar solutes can be separated by SC-CO2
since it is lipophilic. In comparison to solvent extraction, CO2 separation is straightforward
and leaves no residues in the extract [47]. Utilisation of the SC-CO2 approach focuses on
the extraction of hydrophobic antioxidant chemicals [48]. A small amount of cosolvents
can induce microalgal cells to expand, allowing fast mass transfer of analytes from the
matrix [49]. The SC-CO2 extraction technique uses pressures and temperatures greater than
the CO2 critical point [50]. Several studies have employed the SC-CO2 extraction process
to purify active components (carotenoids and linolenic acid), oil and caffeic acid from
microalgae [51–53]. SFE is a novel environmentally friendly technical method employed
in the food and pharmaceutical industries to avoid the harmful organic solvents that use
CO2 above its critical temperature and pressure points [54]. The addition of cosolvents
induces the expansion of microalgal cells, allowing rapid mass transfer of analytes from
the matrix. Carbon dioxide is the most commonly used SFE solvent in the pharmaceutical
sector and is classed as safe by the USFDA [55]. The methods and processes of bioactive
substance extraction have been improved to maximise the utilisation of biosubstances from
microalgae. Nowadays, SFE is a popular green technology to extract nonpolar pigments
from microalgae.

Arthrospira platensis is one of the main sources of natural commercial phycobiliproteins,
especially C-phycocyanin. Therefore, the objectives of this study were to evaluate the effi-
ciency of (i) extraction processes for nonpolar pigments: chlorophyll and carotenoids, using
SFE as a green technology, before water-soluble phycobiliprotein extraction from Arthrospira
biomass and (ii) evaluation of the improvement in the sequential phycobiliprotein extrac-
tion of cell biomass residues after SFE by comparing phosphate and water extraction with
ultrasound-assisted extraction.

2. Materials and Methods
2.1. Microalgal Production

Arthrospira platensis IFRPD 1182 microalgae were prepared by the Institute of Food
Research and Product Development, Kasetsart University, Thailand. The starter culture
was maintained and prepared in Zarrouk medium [56] composed of (per litre) 16.8 g
NaHCO3, 2.5 g NaNO3, 0.5 g K2HPO4, 1.0 g K2SO4, 1.0 g NaCl, 0.2 g Mg2SO4·7H2O 0.04 g
CaCl2·7H2O, 0.01 g FeSO4·7H2O and 0.08 g EDTA. One millilitre each of vitamin A5 and
B5 micronutrients was added into the medium. The micronutrient solution of A5 was
composed of (per litre) 2.86 g H3BO3, 1.81 g MnCl2·4H2O, 0.22 g ZnSO4·7H2O, 0.08 g
CuSO4·5H2O and 0.01 g MoO3. The B5 micronutrient solution was composed of (per litre)
22.9 mg NH4VO3, 96.0 mg K3Cr2(SO4)4·24H2O, 47.8 mg NiSO4·7H2O, 17.9 mg Na2WO3,
44.0 mg Co(NO3)2·6H2O and 40 mg Ti2(SO4)3. A. platensis was cultured and incubated
in chamber equipment with temperature controlled at 30 ◦C [57]. Light intensity was
controlled at a photon flux density of 162 µmol·m−2·s−1 using fluorescent 18 W daylight
lamps with a 16 h/8 h light/dark cycle. Air mixed with 2% (v/v) CO2 at 0.67 vvm was
added via continuous bubbling through a PTFE membrane filter. The A. platensis starter was
grown for 7–14 days until reaching the log phase and then used at 10% (v/v) for biomass
production. A. platensis was produced in Zarrouk medium in 200 L working volume in
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500 L raceway ponds with a paddle wheel operated at 15 rpm. Average light photon flux
density was 471 µmol·m−2·s−1 during open pond production with batch cultivation. The
biomass of A. platensis was grown to the exponential phase for 15–20 days, with biomass
concentration reaching 1 g·L−1. Cells were harvested using a 60 µm nylon membrane filter
and washed with clean tap water until no residue remained in the culture medium. Then,
the harvested cells were oven-dried at 65 ◦C for 4–6 h in a hot air oven. The oven-dried
biomass of A. platensis was milled to 0.5 mm sample size using a mill grinder (ZM-1, Retsch,
Haan, Germany) for use in the experiments.

2.2. Chlorophyll and Carotenoid Pigments Using Supercritical Fluid Extraction

Oven-dried A. platensis microalgal biomass was investigated for pigments extracted
using SFE as a green technology. The chlorophyll and carotenoid pigments (nonpolar
bioactive compounds) in A. platensis were extracted using an SC-CO2 pilot unit with a
helix SFE System (Applied Separations Inc., Allentown, PA, USA). An overview of the
SC-CO2 system is shown in Figure 1. The system included a solvent and carbon dioxide
pump, a back-pressure regulator (BPR), a 1 L extractor vessel enclosed in a heating jacket, a
pressure transmitter and a sample collector. The 5 g dry weight of A. platensis oven-dried
biomass was added to a high-pressure stainless-steel extractor vessel. The experiments
were performed with and without ethanol at 10% (w/w) of samples as the cosolvent.
Polypropylene wool was used to mediate the inlet and outlet of the vessel. Static extraction
was performed for 60 min, followed by dynamic extraction for 240 min, under various
conditions of pressure at 250 and 350 bar with temperatures of 40 and 50 ◦C. Two main
extraction experiments were compared: with and without ethanol as a cosolvent during
SFE extraction (Table 1). Optimal conditions were cited from previous studies [58,59]. The
flow rate was controlled at 3 litres per minute (LPM). The pigments were extracted and
collected into the sample collector. All experiments were performed in duplicate. The
extracted samples were kept in the dark at −20 ◦C for analysis. The residues of A. platensis
biomass after nonpolar pigment extraction in the extractor were collected for sequential
phycobiliprotein extraction.

Life 2022, 12, x FOR PEER REVIEW 4 of 19 
 

 

ponds with a paddle wheel operated at 15 rpm. Average light photon flux density was 
471 µmol·m−2·s−1 during open pond production with batch cultivation. The biomass of A. 
platensis was grown to the exponential phase for 15–20 days, with biomass concentration 
reaching 1 g·L−1. Cells were harvested using a 60 µm nylon membrane filter and washed 
with clean tap water until no residue remained in the culture medium. Then, the har-
vested cells were oven-dried at 65 °C for 4–6 h in a hot air oven. The oven-dried biomass 
of A. platensis was milled to 0.5 mm sample size using a mill grinder (ZM-1, Retsch, Haan, 
Germany) for use in the experiments. 

2.2. Chlorophyll and Carotenoid Pigments Using Supercritical Fluid Extraction 
Oven-dried A. platensis microalgal biomass was investigated for pigments extracted 

using SFE as a green technology. The chlorophyll and carotenoid pigments (nonpolar bi-
oactive compounds) in A. platensis were extracted using an SC-CO2 pilot unit with a helix 
SFE System (Applied Separations Inc., PA, USA). An overview of the SC-CO2 system is 
shown in Figure 1. The system included a solvent and carbon dioxide pump, a back-pres-
sure regulator (BPR), a 1 L extractor vessel enclosed in a heating jacket, a pressure trans-
mitter and a sample collector. The 5 g dry weight of A. platensis oven-dried biomass was 
added to a high-pressure stainless-steel extractor vessel. The experiments were performed 
with and without ethanol at 10% (w/w) of samples as the cosolvent. Polypropylene wool 
was used to mediate the inlet and outlet of the vessel. Static extraction was performed for 
60 min, followed by dynamic extraction for 240 min, under various conditions of pressure 
at 250 and 350 bar with temperatures of 40 and 50 °C. Two main extraction experiments 
were compared: with and without ethanol as a cosolvent during SFE extraction (Table 1). 
Optimal conditions were cited from previous studies [58,59]. The flow rate was controlled 
at 3 litres per minute (LPM). The pigments were extracted and collected into the sample 
collector. All experiments were performed in duplicate. The extracted samples were kept 
in the dark at −20 °C for analysis. The residues of A. platensis biomass after nonpolar pig-
ment extraction in the extractor were collected for sequential phycobiliprotein extraction. 

 
Figure 1. Overview of the SC-CO2 system. 

  

Figure 1. Overview of the SC-CO2 system.



Life 2022, 12, 1896 5 of 19

Table 1. Experimental conditions for supercritical fluid extraction (SFE) of A. platensis.

Experiment Pressure Temperature Cosolvent

(bar) (◦C) (% w/w)

SFE1 250 40 None
SFE2 250 50 None
SFE3 350 40 None
SFE4 350 50 None
SFE5 250 40 10% ethanol
SFE6 250 50 10% ethanol
SFE7 350 40 10% ethanol
SFE8 350 50 10% ethanol

2.3. Sequential Phycobiliprotein Extraction

A. platensis biomass residues after each SFE experiment (in extractor) were sequentially
extracted for phycobiliproteins (PBPs), whereas oven-dried A. platensis biomass without
SFE was used as the control. PBP extraction was performed using a biomass concentration
of 0.02 g·mL−1 in 0.01 M phosphate extraction (0.01 M PB, pH 7.0) and water extraction
(distilled water). The experiments were performed using ultrasonic-assisted extraction
at frequency 35 kHz and power 320 W (DT 100H, Bandelin, Germany), for 30 min [60].
Temperature was maintained at around 25 ◦C by ice addition in an ultrasonic bath. The
samples were incubated in the dark at 25 ◦C for 24 h and crude phycobiliproteins were
collected from the mixtures by centrifugation at 3461× g for 10 min (EBA 200, Hettich,
Tuttlingen, Germany). All experiments were performed in triplicate.

2.4. C-Phycocyanin Isolation

Crude phycobiliproteins were purified and concentrated using ultrafiltration with
molecular weight cut-off (MWCO) of 100 kDa (Amicon Ultra-15 Centrifugal Filter Unit,
Millipore, Merck, Darmstadt, Germany). The C-phycocyanin isolate was collected after
centrifuging at 5000× g for 10 min at 20 ◦C (Model 6000, Kubota, Tokyo, Japan) for further
analysis. All experiments were performed in triplicate.

2.5. Carotenoid and Chlorophyll Determination

Optical densities of the SC-CO2 fluid extracted samples were measured at 470, 645
and 662 nm using a UV–Vis spectrophotometer (SP-8001, UV–Vis Spectrophotometer,
Metertech, Taiwan), with 100 (% v/v) acetone set as the blank. Total carotenoid and
chlorophyll concentrations were calculated using the following equations [61]:

Chlorophyll a
(

mg·mL−1
)
= 11.75OD662 − 2.350OD645. (1)

Chlorophyll b
(

mg·mL−1
)
= 18.61OD645 − 3.960OD662. (2)

Total carotenoids
(
µg·mL−1

)
=

[1000OD470 − 2.27Chlorophyll a − 81.4 Chlorophyll b]
227

(3)

All samples were determined in duplicate, with chlorophyll and carotenoid contents
expressed as milligram per gram dried biomass (mg·g−1) and microgram per gram dried
biomass (µg·g−1), respectively.

2.6. Phycobiliprotein Determination

Optical densities of the extracted samples from sequential phycobiliprotein extraction
were measured at 562, 615 and 652 nm using a UV–Vis spectrophotometer (SP-8001, UV–Vis
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Spectrophotometer, Metertech, Taipei, Taiwan). Concentrations of C-PC, APC and PE were
combined as total phycobiliprotein concentration according to the following equations [60]:

C − PC
(

mg·mL−1
)
=

OD615 − 0.474OD652

5.34
. (4)

APC
(

mg·mL−1
)
=

OD652 − 0.208OD615

5.09
. (5)

PE
(

mg·mL−1
)
=

OD562 − 2.41C − PC − 0.849APC
9.62

. (6)

where C-PC, APC and PE are C-phycocyanin, allophycocyanin and phycoerythrin concen-
tration. All samples were determined in duplicate, with phycobiliprotein concentration
expressed as milligrams per millilitre (mg·mL−1) and phycobiliprotein extraction yields
expressed as milligrams per gram of dried biomass (mg·g−1).

C − PC Yield
(

mg·g−1
)
=

C − PC ∗ V
Dried Biomass

. (7)

APC Yield
(

mg·g−1
)
=

APC ∗ V
Dried Biomass

(8)

PE Yield
(

mg·g−1
)
=

PE ∗ V
Dried Biomass

. (9)

2.7. Extract Purity

Extract purity of the phycobiliproteins was determined according to the absorbance at
562, 615, 652 and 280 nm using a UV–Vis spectrophotometry (SP-8001, UV–Vis Spectropho-
tometer, Metertech, Taipei, Taiwan) according to the following equations [60]:

C − PC =
OD615

OD280
. (10)

APC =
OD652

OD280
. (11)

PE =
OD562

OD280
. (12)

The purities of C-phycocyanin (C-PC), allophycocyanin (APC) and phycoerythrin (PE)
fractions were calculated using the ratios of absorbance at 615, 652 and 562 divided by
280 nm, while absorbance at 280 nm revealed total protein concentration in the extracted
samples [62].

2.8. Total Phenolic Content

Total phenolic content of the extracted samples from sequential phycobiliprotein
extraction was determined using the Folin–Ciocâlteu colourimetric method with slight
modifications [14]. Briefly, 20 µL of the sample was mixed with 100 µL of 0.2 N Folin–
Ciocâlteu solution (SRL, Mumbai, India) and 80 µL of 0.7 M sodium carbonate solution,
followed by incubation at room temperature for 8 min. Then, 50 µL of distilled water was
added to the mixture, before incubating at 40 ◦C for 30 min. The absorbance was measured
at 750 nm using a microplate reader (M965+, Microplate Reader, Metertech, Taipei, Taiwan).
Gallic acid was used as the standard. All samples were determined in duplicate, with
results expressed as mg gallic equivalent (mg GA·g−1).

2.9. ABTS Assay

The ABTS radical-scavenging antioxidant activity of the extracted samples from se-
quential phycobiliprotein extraction was determined following a previously described
method [63] with slight modifications. Briefly, the ABTS radical solution was prepared
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from the reaction between 505.05 µL of 7 mM ABTS (2,2-azino-bis (3-ethaylbenzothiazoline-
6-sulphonic acid) diammonium salt) (SRL, Mumbai, India) and 5.05 µL of 245 mM ammo-
nium persulphate. The mixture was kept in the dark at room temperature for 16 h and then
diluted with distilled water to an optical density of 0.7 at 750 nm. Then, 10 µL of sample
was mixed with 190 µL of ABTS solution. The mixture was kept in the dark for 5 min.
The absorbance was measured at 750 nm using a microplate reader. Ascorbic acid (Sigma-
Aldrich, Singapore) was used as the antioxidant standard. All samples were determined in
duplicate, with antioxidant capacity expressed as mg ascorbic acid equivalent (mg vitamin
C·g−1).

2.10. FRAP Assay

The ferric ion reducing antioxidant power assay of the extracted samples from
sequential phycobiliprotein extraction was determined according to the method of
Renugadevi et al. [64] with slight modifications. Briefly, the reagent was prepared from
300 mM sodium acetate (pH 3.6) and 10 mM TPTZ (2,4,6-tris (2-pyridyl)-s-triazine) (SRL,
India) in 40 mM HCl and 20 mM ferric chloride (Sigma-Aldrich, Singapore) at volumes
of 25, 2.5 and 2.5 mL respectively. Then, 10 µL of sample was mixed with 190 µL of FRAP
reagent before incubating in the dark for 30 min. The absorbance was measured at 593 nm
using a microplate reader. Ascorbic acid (Sigma-Aldrich, Singapore) was used as the
standard. All samples were determined in duplicate, with results expressed as mg ascorbic
acid equivalent (mg vitamin C·g−1).

2.11. Statistical Analysis

All parameters from the experiments were statistically analysed by one-way analysis of
variance (ANOVA) using SPSS 12.0 (SPPS, Inc., Armonk, NY, USA). Multiple comparisons
in all experiments were conducted using Duncan’s multiple range test (DMRT) with a
significance level of 0.05.

3. Results and Discussion
3.1. Supercritical Fluid Extraction (SFE)

Nonpolar pigment extraction including chlorophyll and carotenoids of A. platensis
oven-dried biomass was performed with various pressure, temperature and cosolvent
assistance (Table 1). Two main groups without (SFE1–SFE4) and with (SFE5–SFE8) ethanol
as a cosolvent were compared. The chlorophyll content of A. platensis using SFE under
different conditions is shown in Figure 2. The extraction results revealed a chlorophyll
content range of 60.12–133.72 mg·mg−1 of dry weight biomass. Higher pressure and
temperature achieved higher chlorophyll content both with and without ethanol. The
highest amount of chlorophyll extracted was 133.73 mg·mg−1 obtained from 350 bar, 50 ◦C
and without ethanol. The carotenoid contents of A. platensis using SFE under various
conditions are shown in Figure 3, with a range of 43.79–77.95 µg·g−1 of dry weight biomass.
The highest amount of carotenoid extracted was obtained at the highest pressure and
temperature of SC-CO2 without ethanol. Higher carotenoid content was observed when
increasing the pressure and temperature of extraction both with and without ethanol as
a co-solvent. Equal pressure and temperature extraction without ethanol showed higher
chlorophyll and carotenoid extraction than with ethanol.
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SFE at high pressure and temperature without cosolvent was evaluated for extraction
of chlorophylls and carotenoids from Arthrospira. Increasing temperature at a constant
pressure gave higher chlorophyll and carotenoid extraction, whereas increasing pressure
at a constant temperature gave higher chlorophyll and carotenoid. Both pressure and
temperature were influencing parameters using SC-CO2. The results concurred with
previous studies of microalgae and seaweed extraction performed using SC-CO2, where
higher pressure gave higher extraction and faster kinetic extraction [65]. At higher pressure,
the enhancement of carbon dioxide density improved the extraction process with enhanced
solubility, while constant temperature and increasing pressure increased yield with faster
kinetic extraction due to the relationship between pressure and density [66]. Temperature
plays an important role in the SFE process [67]. Pigment extraction is dependent on a
delicate equilibrium between the reduction in supercritical carbon dioxide density and
the increase in pigment vapour pressure as the temperature rises, essentially representing
pigment solubility in the solvent [68]. Higher temperatures assisted higher solute solubility,
hence boosting solute mass transfer in the matrix. Our findings were similar to previous
results. High pressure and temperature of SFE at 450 bar and 60 ◦C gave highest carotenoids
from A. platensis as a suitable green extraction technology [59].
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Ethanol at 10% co-solvent did not affect chlorophyll and carotenoid extraction from
A. platensis. Increasing ethanol percentage increased the extraction and yield of more polar
compounds [69]. Nonpolar extracts are generally used to remove or extract nonpolar
substances from biomass as unwanted glycosides and lipids [70]. Previous studies re-
vealed that the optimal yield of chlorophylls and carotenoids from Nannocholopsis gaditana,
Synechococcus sp. and Dunaliella salina was obtained using SFE with ethanol as a cosol-
vent compared with the conventional method (methanol extraction) [71]. SFE has various
advantages over conventional extraction methods using hexane, petroleum ether, chloro-
form, ethanol and methanol to recover nonpolar biosubstances from algae [72]. Higher
carotenoid and chlorophyll extraction from Dunaliella salina was obtained using SFE than
by ultrasound-assisted extraction. [73]. Carotenoid extraction from Chlorella vulgaris was
obtained using SC-CO2 fluid extraction under 350 bar and 40 ◦C and was more difficult
than hydrocarbon extraction [74]. The highest yield of pigment depended on the microalgal
type, cultivation procedure and other factors.

3.2. Sequential Phycobiliprotein Extraction

Previous studies on PBP extraction from Arthrospira revealed the optimised conditions
to be sonication-assisted extraction with incubation at 25 ◦C for 24 h [60]. PBPs were
extracted under various conditions, with concentration, extraction yield and extract pu-
rity shown in Tables 2–4. Phosphate buffer resulted in a higher yield of PBPs than water.
C-PC, APC, PE and PBP concentration ranges were 0.57–1.17, 0.08–0.31, 0.03–0.09 and
0.67–1.55 mg·mL−1, respectively (Table 2). Highest concentration of C-PC was achieved for
SFE4 using phosphate buffer but was not significantly different from SFE1–SFE3. Highest
concentrations of APC and PE were achieved for SFE1 using phosphate buffer. The highest
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PBP concentration was achieved for SFE4. In general, greater PBP yields were obtained fol-
lowing SFE without ethanol cosolvent assistance (SFE1-4). The control experiments showed
the lowest parameters in all cases. Table 3 shows the yield of PBP extraction under various
conditions. The yield ranges of C-PC, APC, PE and PBP were 29.18–56.09, 4.05–14.55,
1.31–4.46 and 34.54–73.40 mg·g−1, respectively. The SFE4 condition with phosphate buffer
extraction provided the highest C-PC yield, whereas the SFE1 condition with phosphate
buffer extraction gave the highest APC and PE yields. The highest PBP yield was achieved
for the SFE4 condition with phosphate buffer extraction. The control experiments showed
the lowest extract yield. Table 3 shows the extract purity of the phycobiliprotein extraction
from A. platensis SFE residues. The maximum extract purities of C-PC, APC and PE were
0.61, 0.24 and 0.30, respectively, following phosphate buffer extraction. C-PC extracted
under the SFE5 condition with phosphate buffer showed maximum extract purity, which
was non-significantly different from SFE1 with phosphate buffer extraction. The control
experiments resulted in the lowest extract purity. The sequential extraction of phycobilipro-
teins from Arthrospira cell residues following SFE led to improvement in concentration,
extraction yield and extract purity compared to the control.

Table 2. Phycobiliprotein concentration of A. platensis SFE residues under various conditions. Data
in the same column with different superscripts are significantly different (p < 0.05). Data were
calculated from triplicate experimental values ± standard deviation (SD). C-PC, APC, PE and PBP
are C-phycocyanin, allophycocyanin, phycoerythrin and total phycobiliprotein concentration. The
abbreviations of conditions of SFE (SFE1–SFE8) are shown in Table 1.

Experiment Phycobiliprotein Concentration (mg·mL−1)
C-PC APC PE PBP

Phosphate buffer extraction
SFE1 1.139 a ± 0.02 0.307 a ± 0.01 0.094 a ± 0.00 1.540 a ± 0.03
SFE2 1.140 a ± 0.03 0.298 ab ± 0.01 0.093 ab ± 0.01 1.530 a ± 0.01
SFE3 1.156 a ± 0.02 0.275 b ± 0.01 0.082 c ± 0.00 1.513 a ± 0.02
SFE4 1.174 a ± 0.03 0.291 ab ± 0.01 0.085 bc ± 0.01 1.550 a ± 0.04
SFE5 0.945 b ± 0.02 0.200 c ± 0.01 0.062 d ± 0.00 1.207 b ± 0.03
SFE6 0.886 bcd ± 0.01 0.184 cd ± 0.01 0.059 de ± 0.00 1.129 bcd ± 0.03
SFE7 0.959 b ± 0.07 0.207 c ± 0.02 0.065 d ± 0.01 1.231 b ± 0.10
SFE8 0.860 bcde ± 0.09 0.189 cd ± 0.02 0.060 d ± 0.01 1.109 bcd ± 0.12
Control 0.766 ef ± 0.09 0.142 f ± 0.01 0.045 f ± 0.00 0.953 ef ± 0.11

Water extraction
SFE1 0.953 b ± 0.04 0.193 c ± 0.01 0.059 de ± 0.00 1.205 b ± 0.06
SFE2 0.960 b ± 0.02 0.200 c ± 0.01 0.063 d ± 0.00 1.223 b ± 0.02
SFE3 0.911 bc ± 0.07 0.196 c ± 0.01 0.064 d ± 0.00 1.171 bc ± 0.07
SFE4 0.957 b ± 0.03 0.196 c ± 0.01 0.060 d ± 0.00 1.214 b ± 0.03
SFE5 0.737 f ± 0.04 0.135 f ± 0.01 0.043 f ± 0.00 0.915 f ± 0.05
SFE6 0.788 def ± 0.00 0.148 ef ± 0.00 0.046 f ± 0.00 0.982 ef ± 0.01
SFE7 0.839 cde ± 0.00 0.167 de ± 0.00 0.051 ef ± 0.00 1.056 cde ± 0.01
SFE8 0.806 def ± 0.01 0.155 ef ± 0.00 0.049 f ± 0.00 1.011 def ± 0.01
Control 0.568 g ± 0.02 0.079 g ± 0.01 0.025 g ± 0.00 0.672 g ± 0.03

For A. platensis residues prepared from SFE without ethanol as cosolvent, PBP concen-
tration and extraction yield were higher than ethanol-assisted extraction. All experiments
achieved higher C-PC, APC, PE and PBP concentration and extraction yield than the control
experiment (A. platensis without SFE). PBPs are a complex group containing C-PC, APC and
PE as the major classes of water-soluble pigments [75]. The SFE process with CO2 separated
the nonpolar pigment. Hence, A. platensis residues from SC-CO2 remained mainly as PBP
water-soluble pigments with fewer nonpolar contaminants. The variable pressure and
temperature conditions of the SFE process of A. platensis did not affect PBP extraction
from A. platensis biomass residues. Our results showed that phycobiliproteins extracted
after SFE without ethanol showed a higher yield of phycobiliproteins. Previous results
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showed the yields of C-PC, APC, PE and PBPs without the SFE process to be 43.57, 2.59,
3.60 and 40.72 mg g−1, respectively. Thus, our results showed higher PBPs from A. platensis
residues in the SFE process. Water can be used as a green extraction solvent [76]. Both
chlorophyll and carotenoid extraction of A. platensis with SC-CO2 and PBP water extraction
of A. platensis SFE residues were enhanced using green technologies and a sustainable ex-
traction process. Previous studies of water extraction of PBPs from marine Spirulina maxima
using ultrasonication extraction at 20–100 kHz achieved a high concentration and yield of
PBP extraction [77]. High levels of proteins were also found in PBPs from Arthrospira [34].
One of the key factors influencing aggregation and dissociation to produce monomers,
trimers, hexamers and other oligomers in solution is the pH value. Trimers were produced
from C-PC with highest solubility at pH 7.0 [78]. Our results showed that concentration and
yield of PBPs under phosphate buffer extraction were higher than using water extraction.
PBPs are extracted more effectively due to their enhanced solubility and diffusion rate at
pH 7.0 maintained under phosphate buffer. When utilising diluted phosphate buffer for
extraction, the osmotic shock may result in cell wall rupture [38]. Therefore, our results
confirmed the optimal condition of PBP extraction using cell residues from SFE, as well as
the suitability of phosphate buffer for extraction.

Table 3. Phycobiliprotein extraction yield from A. platensis SFE residues under various conditions.
Data in the same column with different superscripts are significantly different (p < 0.05). Data were
calculated from triplicate experimental values ± standard deviation (SD). C-PC, APC, PE and PBP
are C-phycocyanin, allophycocyanin, phycoerythrin and total phycobiliprotein. The abbreviations of
conditions of SFE (SFE1–SFE8) are shown in Table 1.

Experiments Phycobiliprotein Extraction Yield (mg·g−1)
C-PC APC PE PBP

Phosphate buffer extraction
SFE1 54.072 a ± 0.93 14.550 a ± 0.01 4.460 a ± 0.05 73.082 a ± 0.98
SFE2 54.486 a ± 2.27 14.216 ab ± 0.15 4.417 a ± 0.40 73.119 a ± 1.72
SFE3 56.091 a ± 0.73 13.325 b ± 0.66 3.988 b ± 0.27 73.404 a ± 1.66
SFE4 55.021 a ± 0.27 13.636 ab ± 0.05 3.985 b ± 0.04 72.643 a ± 0.17
SFE5 46.864 bc ± 1.20 9.926 c ± 0.45 3.053 c ± 0.15 59.843 bc ± 1.80
SFE6 43.038 cde ± 0.84 8.930 cd ± 0.13 2.873 cd ± 0.04 54.841 cde ± 0.76
SFE7 46.428 bc ± 2.84 10.015 c ± 1.02 3.160 c ± 0.45 59.603 bc ± 4.31
SFE8 41.206 de ± 2.90 9.034 cd ± 0.92 2.874 cd ± 0.18 53.114 def ± 3.99
Control 38.965 ef ± 4.65 7.227 f ± 0.67 2.300 e ± 0.02 48.492 fg ± 5.35

Water extraction
SFE1 46.945 bc ± 2.25 9.525 c ± 0.57 2.897 cd ± 0.09 59.367 bc ± 2.91
SFE2 47.703 b ± 0.94 9.924 c ± 0.35 3.139 c ± 0.07 60.765 b ± 1.36
SFE3 45.344 bcd ± 3.01 9.770 c ± 0.36 3.203 c ± 0.01 58.316 bcd ± 3.37
SFE4 47.462 bc ± 1.46 9.706 c ± 0.28 2.998 c ± 0.03 60.167 bc ± 1.71
SFE5 36.610 f ± 2.00 6.710 f ± 0.44 2.145 e ± 0.08 45.465 g ± 2.52
SFE6 39.238 ef ± 0.19 7.349 ef ± 0.03 2.302 e ± 0.10 48.889 fg ± 0.33
SFE7 41.770 de ± 0.12 8.303 de ± 0.11 2.521 de ± 0.07 52.594 ef ± 0.30
SFE8 40.135 ef ± 0.16 7.734 ef ± 0.02 2.463 e ± 0.12 50.333 efg ± 0.30
Control 29.180 g ± 1.14 4.052 g ± 0.33 1.306 f ± 0.14 34.539 h ± 1.61

The total phenolic content in the PBP extract from Arthrospira after SFE is shown
in Figure 4. All experiments with water gave higher TPC compared to the phosphate
buffer (PB). A TPC of approximately 10 mg·g−1 was obtained from water extraction. The
control experiments gave the lowest TPC in all cases. Previous results found that water
extraction from Stypocaulon scoparium algae gave the highest TPC among several solvents
including water-methanol, methanol and ethanol [79]. Therefore, water was a suitable
solvent for total phenolic content extraction. The antioxidant potential of the PBP extract
from Arthrospira residues after SFE was assessed using ABTS and FRAP methodologies,
with results shown in Figures 5 and 6. ABTS and FRAP antioxidant assay involves a single
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electron transfer process; however, the ABTS is distinguished by antioxidant reducing
power, which is measured by the ability to reduce a coloured stable free radical (ABTS•+),
while FRAP is distinguished by the antioxidant chemical ability to reduce Fe3+ ions to blue
Fe2+ ions [80]. The ABTS radical-scavenging activity of the PBP extract was higher following
phosphate buffer extraction compared to water extraction. Maximum ABTS at 5.7 mg·g−1

was achieved for the SFE3 and SFE8 conditions. The FRAP antioxidant activities of the
PBP extract from Arthrospira residues after SFE were higher following phosphate buffer
extraction compared to water extraction, ranging from 1.82 to 2.56 mg·g−1. Our results
indicated that PBP extracts contained phenolic compounds and exhibited antioxidant
capacity. Antioxidant activity is not only caused by phenolic substances [79]. C-PC blue
colourant was observed from A. platensis SFE residues as the main pigment. Therefore,
antioxidant properties in our results were caused by PBP extraction from A. platensis. Higher
PBP extraction was exhibited from phosphate buffer extraction and the assay also gave
higher antioxidant activity. Previous results showed the antioxidant activities of various
C-PC concentrations from A. platensis using the ABTS assay [81]. The scavenging capacity
of ABTS increased concentration dependently [82]. The antioxidant properties of C-PC
can be used as a food supplement. The previous study of C-PC purified by ultrafiltration
presented the antioxidant activity against the ABTS 206.36 µmol Trolox g−1 of ice cream
with C-PC incorporated increasing the antioxidant activity after digestion [63]. Data from
both ABTS and FRAP assays showed that PBPs had significant antioxidant properties
and could be considered as food for human health improvement. C-PC showed high
antioxidant activity which could be applied in several sectors. Reactive oxygen species
(ROS) and oxidative processes are recognised as playing an ameliorating role in a number
of illnesses including atherosclerosis, diabetes and Alzheimer’s disease [82].

Table 4. Extract purity of A. platensis SFE residues under various conditions. Data in the same
column with different superscripts are significantly different (p < 0.05). Data were calculated from
triplicate experimental values ± standard deviation (SD). C-PC, APC and PE are C-phycocyanin
allophycocyanin and phycoerythrin. The abbreviations of conditions of SFE (SFE1-SFE8) are shown
in Table 1.

Experiments Extract Purity
C-PC APC PE

Phosphate buffer extraction
SFE1 0.578 ab ± 0.12 0.240 a ± 0.05 0.299 ab ± 0.06
SFE2 0.472 cd ± 0.02 0.193 bcde ± 0.01 0.243 cde ± 0.02
SFE3 0.498 bcd ± 0.01 0.195 bcd ± 0.01 0.250 bcd ± 0.01
SFE4 0.536 abc ± 0.06 0.214 abc ± 0.03 0.270 abc ± 0.03
SFE5 0.611 a ± 0.10 0.228 ab ± 0.04 0.303 a ± 0.05
SFE6 0.412 d ± 0.00 0.153 defg ± 0.00 0.205 de ± 0.00
SFE7 0.485 bcd ± 0.01 0.183 cdef ± 0.00 0.242 cde ± 0.00
SFE8 0.398 d ± 0.06 0.151 efg ± 0.03 0.200 de ± 0.03
Control 0.418 d ± 0.00 0.148 fg ± 0.00 0.204 de ± 0.01

Water extraction
SFE1 0.470 cd ± 0.00 0.173 cdef ± 0.00 0.231 cde ± 0.00
SFE2 0.473 cd ± 0.01 0.176 cdef ± 0.01 0.235 cde ± 0.01
SFE3 0.448 cd ± 0.03 0.169 defg ± 0.01 0.226 cde ± 0.01
SFE4 0.497 bcd ± 0.01 0.183 cdef ± 0.00 0.245 cd ± 0.01
SFE5 0.407 d ± 0.01 0.144 fg ± 0.01 0.199 de ± 0.01
SFE6 0.414 d ± 0.01 0.148 fg ± 0.00 0.202 de ± 0.00
SFE7 0.419 d ± 0.02 0.153 defg ± 0.01 0.205 de ± 0.01
SFE8 0.434 cd ± 0.01 0.156 defg ± 0.00 0.213 de ± 0.00
Control 0.405 d ± 0.01 0.130 g ± 0.00 0.190 e ± 0.00
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Figure 5. ABTS radical scavenging activity of A. platensis SFE residues under various conditions.
Different letters indicate significant differences (p < 0.05). Data were calculated from triplicate
experimental values ± standard deviation (SD). PB and water are phosphate and water extraction.
The abbreviations of conditions of SFE (SFE1–SFE8) are shown in Table 1.
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tions. Different letters indicate significant differences (p < 0.05). Data were calculated from triplicate
experimental values ± standard deviation (SD). PB and water are phosphate and water extraction.
The abbreviations of conditions of SFE (SFE1–SFE8) are shown in Table 1.

3.3. C-Phycocyanin Isolation

C-PC is the main PBP extracted from Arthrospira. Price and C-PC quality are directly
correlated, with higher cost corresponding to a purer product [83]. Crude C-phycocyanin
supernatants from SFE1 and SFE5 cell residues following phosphate and water extraction
were selected to improve C-PC purity by ultrafiltration. C-PC concentration and purity
(Figure 7) revealed an increase to approximately 0.7, similar to other purification methods.
Previous results from several steps of purification of C-PC were studied. The purification
of C-PC using activated charcoal for 24 h gave the highest purity of 1.2 [60]. Our results
in this study used a short time for purification of 15 min. Crude C-PC isolated using
ammonium sulphate precipitation followed by ion exchange chromatography gave higher
purity than our results [84]. Crude C-PC showed improved purity for ammonium sulphate
precipitation, ultrafiltration, gel filtration, and ion exchange chromatography [85]. The
purification procedures follow several steps to attain high purity of C-PC as a valuable
high cost bioproduct.
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4. Conclusions

A. platensis is a commercially available blue-green microalga that is used as a food
source for human health. Supercritical fluid extraction (SFE) was successfully applied to
obtain the chlorophylls, carotenoids and phycobiliproteins remaining in cell residues. The
optimal yield of nonpolar biocompounds (chlorophylls and carotenoids) was achieved
using SFE at high pressure and temperature. Ethanol as a cosolvent did not improve
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extraction during the SC-CO2 process. The optimal yield of phycobiliproteins from SFE
residues was achieved using a phosphate buffer extraction without cosolvent, while the
purity of C-phycocyanin (C-PC) was improved.
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